
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Integration Activities in
Distributions of Open Source Software

Bram Adams, Ryan Kavanagh,

Ahmed E. Hassan, Daniel M. German

Accepted in Empirical Software Engineering (EMSE), Springer (January 2015)

Abstract Reuse of software components, either closed or open source, is consid-
ered to be one of the most important best practices in software engineering, since
it reduces development cost and improves software quality. However, since reused
components are (by definition) generic, they need to be customized and integrated
into a specific system before they can be useful. Since this integration is system-
specific, the integration effort is non-negligible and increases maintenance costs,
especially if more than one component needs to be integrated. This paper performs
an empirical study of multi-component integration in the context of three success-
ful open source distributions (Debian, Ubuntu and FreeBSD). Such distributions
integrate thousands of open source components with an operating system kernel
to deliver a coherent software product to millions of users worldwide. We empiri-
cally identified seven major integration activities performed by the maintainers of
these distributions, documented how these activities are being performed by the
maintainers, then evaluated and refined the identified activities with input from
six maintainers of the three studied distributions. The documented activities pro-
vide a common vocabulary for component integration in open source distributions
and outline a roadmap for future research on software integration.

1 Introduction

Software reuse is “the use of existing software or software knowledge to construct
new software” [29]. Reuse roughly consists of two major steps [4]: 1. identifying
a suitable component to reuse, and 2. integrating it into the target system. For

Bram Adams
MCIS, Polytechnique Montréal, Canada
E-mail: bram.adams@polymtl.ca

Ryan Kavanagh, Ahmed E. Hassan
Queen’s University, Canada
E-mail: {ryan,ahmed}@cs.queensu.ca

Daniel M. German
University of Victoria, Canada
E-mail: dmg@uvic.ca



example, vendors of mobile phones typically reuse an “upstream” (i.e., externally
developed) operating system component in their device, customized with propri-
etary device drivers, control panels and utilities [45]. Reuse is very commonplace,
as shown in studies on software projects of different sizes in China, Finland, Ger-
many, Italy and Norway [13, 40, 41, 45, 50, 51]. For example, almost half of the
Norwegian software companies reuse “Open Source” (OSS) in their products [41],
while 30% of the functionality of OSS projects in general reuse existing compo-
nents [77].

Although reuse speeds up development, leverages the expertise of the upstream
project and, in general, improves the quality and cost of a product [4, 32, 80],
it is not entirely risk- and cost-free. In particular, the integration step of reuse
consumes a large amount of effort and resources [8,11,25,64], for various reasons.
“Glue code” [94] needs to be developed and maintained to make a component fit
into the target system, and developers need to continuously assess the impact on
this glue code of new versions of the component (such a new version can bring an
unpredictable set of bug fixes and features). Furthermore, the component might
depend on other components, whose bugs could propagate to the target system in
undocumented ways [27,57,66,84]. The ability to make local changes to the source
code of a reused component introduces even more challenges, since an integrator
typically is not familiar with the reused component’s code base and hence can
easily introduce bugs in such local changes [40, 52, 59, 79, 83, 90]. Worse, if the
local changes are not contributed back to the owner of the reused component,
the organization that made the changes will need to maintain them and possibly
re-apply them themselves to future versions of the component [78,90].

Thus far, most of the empirical studies on integration of components [11, 40,
52, 59, 64, 79, 90] concentrated on the base case of integrating one component in a
target system. In practice, however, organizations tend to integrate not one, but
two or more components, which brings along a set of unique challenges [54,64,90],
especially given the popularity of open source development: in the timespan of one
release, an organization needs to co-ordinate the integration of updates by multiple
vendors, typically with totally independent release dates [8,11]. For example [45],
Nokia’s N800 tablet platform reused 428 OSS components, 25% of which were
reused as is (e.g., bzip2 and GNU Chess), 50% were changed locally (e.g., the
graphics subsystem), and 25% were developed in-house using open source prac-
tices (“inner source”, ISS). It is unclear for organizations like Nokia how to keep
their system stable and secure amidst the integration of so many different compo-
nents [40]. Furthermore, there is a clear need [8,16,59] for dedicated training and
education of developers and organizations on integration, since in a world of open
source they now need to collaborate with the providers of 3rd party components
and other external contributors to benefit from external contributions and to avoid
having to maintain bug fixes and other customizations oneself.

This paper aims to improve the understanding of multi-component integration
by empirically studying and documenting the major integration activities per-
formed by OSS distributions [37]. An OSS distribution basically is a “packaging
organization” [59, 71], i.e., an organization that integrates upstream components
into a common platform (similar to product lines [60, 68]), ironing out bugs and
intellectual property issues, and providing extensive documentation and training
on the integrated components. Reusing an OSS component through an established
distribution provides more confidence in the quality of the component [83], and

2



hence many companies use OSS components as the basis for products like routers,
mobile phones or storage devices [46]. Examples of established OSS distributions
are Eclipse, GNOME and operating system distributions like Debian or Ubuntu.

Here, we focus on operating system distributions (henceforth called “OSS dis-
tribution”), which bundle and customize OSS operating system kernels (e.g., Linux
or BSD), system utilities (e.g., compilers and file management tools) and end-user
software (e.g., text processors, games and browsers) with a dependency-aware
package system. There are almost 400 active OSS distributions, and each year 26
new ones are born [55]. Given the growing competition, distributions need to re-
lease new features and versions in an ever shorter time frame [44,69,76] to millions
of desktop users and server installations. To achieve this, they rely on hundreds of
volunteers to integrate the latest versions and bug fixes of the tens of thousands
of integrated upstream components.

We empirically studied the major integration activities of three of the most
popular and successful OSS distributions, i.e., Debian, Ubuntu and FreeBSD, us-
ing qualitative analysis on an accumulated 29 years of historical change and bug
data. We document these activities and the steps used to perform them in a struc-
tured format, distilling the state-of-the-practice tools and processes followed by the
actors involved in the activity, providing concrete examples, and comparing our
findings to prior research and integration outside the context of OSS. Six members
of the maintenance community of the analyzed distributions discussed and refined
the documented activities, and provided feedback on the usefulness and complete-
ness of the activities. Similar to the concept of design patterns [33] or reference
architectures [9], the documented activities can be used by (1) organizations as a
common terminology for discussing and improving integration activities for com-
ponents, and (2) researchers to set up a road map for research on integration, since
integration remains a largely unexplored research area [38,40,79].

The main contributions of this paper are:

– Identification and documentation of seven major integration activities and the
processes that they follow in three major OSS distributions.

– Identification of major challenges for tool support and research for integration
activities.

– Evaluation of and feedback on the identified activities and challenges by six
integration maintainers and release managers of the analyzed distributions.

This paper is structured as follows. First, Section 2 discusses background and
related work on software integration and OSS distributions, after which Section 3
presents the design of our qualitative analysis. Section 4 documents the seven
integration activities that we identified during our analysis, followed by a discus-
sion of the open challenges that we identified (Section 5) and the evaluation of
our findings by six practitioners (Section 6). We conclude with threats to validity
(Section 7) and the conclusion (Section 8) of our study.

2 Background and Related Work

This section discusses background and related work on integration and open source
distributions. Table 1 summarizes key technical terms that will be used throughout
the paper.

3



Table 1 List of common technical terms related to integration and open source distributions.

term meaning

reuse identification and integration of a component (e.g., class or library)
into a system

OSS reuse reuse of Open Source Software
COTS reuse black box reuse based on Commercial Of The Shelf components

ISS reuse reuse of Inner Source Software, i.e., OSS developed in-house
integrator organization that integrates a third party component into its product

maintainer individual or team doing physical integration on behalf of integrator
downstream project synonym for “integrator”

upstream project organization (open source project or company) whose components
are being integrated by another project

upstream component component developed by upstream project that is being reused
multi-component integration integration of more than one upstream component

packaging organization integrator whose business goal is to package upstream com-
ponents into a coherent platform that is offered for sale or reuse

package upstream component that has been integrated into an OSS
distribution using the distribution’s packaging format (e.g., “rpm”)

binary distribution distribution providing compiled code in its packages
source-based distribution distribution providing source code in its packages, for compilation

on the end-user’s machine
derived distribution “child” distribution that customizes packages of an existing

“parent” distribution and adds additional packages to it

2.1 Software Integration

Reuse can be black box or white box [28]. Black box reuse refers to “Commer-
cial Off The Shelf” (COTS) components [8], for which source code typically is
not available. Hence, such components can only be configured and plugged into a
target system. White box reuse provides access to the component’s source code to
customize it to the needs of the target system, either because the component is
OSS [78] or because it is developed in-house following open source principles (“in-
ner source”, ISS), a practice that is increasingly more common in large companies
like Alcatel-Lucent, HP, Nokia, Philips and SAP [79]. OSS and ISS reuse are also
very common in the base platform of software product lines [53, 54, 68], since up
to 95% of such a platform consists of “commoditized” features readily available
from upstream projects.

In general, software reuse creates a win-win situation for the reusing organiza-
tion and the upstream project whose software is reused. The former benefits from
the features provided by the component in terms of productivity and product
quality [29,80], while the upstream project benefits financially (through licensing)
and/or qualitatively from the various forms of feedback in the form of defect re-
ports, code contributions and user experiences. However, despite the differences
between COTS and OSS/ISS, all forms of reuse introduce a dependency on an
upstream project (COTS/OSS) [26, 40, 49, 62, 64] or another division inside the
organization (ISS) [54], which can lead to hidden maintenance costs.

Software reuse has been studied extensively from the perspective of how to
make a software system reusable [15, 23, 29, 56, 67, 68], how to select components
for reuse [6, 13, 50], how to resolve legal issues regarding software reuse [36], and
what factors can impact collaboration between the component provider and inte-
grators [10, 17, 42, 43, 74]. In particular, Curtis et al. found, based on interviews,

4



how the need to communicate outside the team, department or even company
boundaries opens a can of worms (e.g., finger-pointing, silos of domain knowledge,
limited communication channels, lack of contact persons and misunderstanding
due to different context) that can negatively impact the integration process. Herb-
sleb et al. [42, 43] empirically proved that the need to involve more people indeed
relates to the time necessary to resolve bugs and integration issues.

In contrast, the concrete activities involved with the integration of reused com-
ponents, as well as their costs, have been studied in substantially less detail. Es-
pecially for multi-component integration, where not one but a potentially large
number of (typically open source) components are being reused by an organiza-
tion at the same time, empirical evidence is currently lacking [54,64,90]. Lewis et
al. [49] note that “The greater the number of components, the greater the number
of version releases, each potentially coming out at different times.” Hence, what
kind of activities does such integration imply, and how do those activities relate
to known activities for single-component integration? Before explaining how this
study addresses these questions, we first discuss prior work on COTS, OSS and
ISS reuse.

COTS Reuse and Integration

Brownsword et al. [11] studied over 30 medium-to-large commercial projects to
analyze the hidden integration activities of COTS reuse. They found that for an
organization it is important to be informed about (new versions of) promising
COTS components and to continuously monitor the impact of the components on
the organization’s code base. They also point out the maintenance issues of glue
code and configuration of a COTS component, and the fact that projects do not
control the upstream project. However, the findings are rather high-level, and do
not explain how the projects coped with multi-component integration.

Lewis et al. [49] relate on their experience with COTS reuse in 16 government
organizations. They especially stress the loss of control as soon as a contract
for COTS reuse is signed: any clause or adaptation that was not negotiated will
result in additional costs down the line. Changing one’s own system or looking
for another COTS component is preferable to requesting (and having to pay) the
component vendor to adapt her component. The main question in the studied
organizations’ mind was “How do we upgrade an operational system without a
great deal of disruption?”. There was no consensus whether one should always
update to the latest version of a reused component, wait until a new major version
or incorporate only the most pressing changes (e.g., security fixes). These questions
only aggravated for those organizations that were reusing dozens of components,
which causes additional coordination issues.

A similar study was performed by Morisio et al. [64] at NASA. Again, integra-
tion was the most costly aspect of COTS reuse, yet the integration activities varied
widely across projects. Glue code was the main means of integration, and the au-
thors note that most successful projects had to stay in contact with the COTS
component provider throughout the lifecycle of the system to avoid surprises in
the next version of the COTS.

OSS Reuse and Integration

Merilinna et al. [59] performed a literature survey and structured interviews with
nine small-to-medium Finnish companies that reuse OSS components. They found

5



that integration problems are primarily due to the heterogeneous environments
that components need to support as well as the lack of documentation, forcing
companies to rely primarily on their own experience. Merilinna et al. identified
three ways to deal with integration problems: using OSS components as a COTS
component (no changes to the code), contributing changes back upstream, or using
a packaging organization like an OSS distribution as mediator. Not upgrading to a
new version of a reused component can also help. In any case, a thorough analysis
of the OSS component to be reused can avoid many problems.

Ven et al. [90] performed interviews with members of a commercial project
reusing OSS components, and examined in detail the trade-off between changing
the code and contributing the changes back. Even though a project wants to avoid
maintaining local changes (since this is costly), the alternative of contributing
changes to the upstream project also requires an investment of time and resources,
for example to get to know the contribution procedures and to keep track of
the future evolution of the upstream project. Even if a patch is accepted by the
upstream project, the organization developing the patch might still be required to
maintain it since only it has all the insight. Ven et al. recommend to contribute
patches if the local changes are sufficiently generic, to maintain patches oneself
if they are too specific, or (in the worst case) to fork the upstream project, even
though such a fork has only a small chance of success.

While Merilinna et al. and Ven et al. identified two integration activities that
we also identified in our study (i.e., Upstream Sync and Local Patch), we ap-
proached those activities from the perspective of a packaging organization (and
multi-component integration) and documented them in a structured way.

ISS Reuse and Integration

Stol et al. [79] studied the emerging practice of developing and reusing code in-
house using open source practices (ISS). ISS is a popular phenomenon in large
companies, since it provides the benefits of OSS reuse without giving up control.
Some companies only offer their employees the infrastructure for OSS reuse, while
others make it part of their development strategy. A systematic literature study
and detailed study of ISS inside an organization shows that the most costly ISS
issues are due to integration. In addition to the integration issues related to OSS
reuse in general, other challenges like backwards compatibility and the peculiar
interplay between the ISS team and other teams in a company were identified.
For example, the ISS team can send a “delivery advocate” to other teams to help
them integrate the ISS components. However, various activities are company- and
ISS reuse-specific. For example, the ISS team receives components initially from
a specific team in the organization, but after integration becomes responsible for
it itself and starts acting as upstream for the other teams in the organization
(even though the original developers still collaborate on the development of the
component). In this paper, OSS distributions and upstream projects are separate,
independent entities.

Finally, van der Linden [54] reports on adoption of OSS and ISS reuse in
software product lines [60,68]. The platform on which such product lines are built
largely consists of common functionality for which many components are available.
Reuse of OSS and ISS components for such functionality improves the quality and
speed of development, however it also introduces a dependency on the upstream
projects, not only from the platform, but from all products based on the platform.

6



1995 2000 2005 2010
0

10
0

20
0

30
0

#a
ct

iv
e 

Li
nu

x 
di

st
rib

ut
io

ns

Fig. 1 The number of active Linux distributions over time. BSD distributions (e.g., FreeBSD)
are not included.

In addition to the best practices mentioned before, close collaboration with the
upstream projects in a symbiotic fashion is key to keeping track of new features
and changes, and can be established by reporting or fixing bugs. Although OSS
distributions can be seen as a product line, our study focuses especially on the
identification and structured documentation of major integration activities in the
context of multi-component integration.

2.2 Open Source Distributions

This paper focuses on the maintenance activities involved in software integration
in the context of OSS distributions, since this context enables us to study integra-
tion in a multi-component, open source setting. OSS distributions are one of the
most well-known open source packaging organizations [37, 71]. Such distributions
integrate a collection of upstream software components consisting of an operating
system kernel (e.g., Linux or BSD), core libraries, compilation tools and software
for users like desktop applications and web browsers. Thanks to their inclusion in
an OSS distribution, the integrated upstream projects can reach millions of users
without having to market themselves. Although distributions are especially known
in the Linux and BSD world, even commercial products like Microsoft Windows
and Mac OS X can be considered as distributions (they just ship with more ISS
projects than OSS).

There are hundreds of OSS distributions, most of which integrate thousands
of upstream components. Figure 1 shows that the total number of currently ac-
tive Linux distributions has grown to 380 (in addition to 135 discontinued distri-
butions, which are not shown), increasing more or less by 26 distributions each
year [55]. For the BSD family of open source kernels, there are twelve currently
active distributions [92], in addition to 22 distributions that are either discontin-
ued or have an unclear status. The most popular Linux distributions like Debian
and Ubuntu both integrate more than 24,000 OSS components, whereas FreeBSD
(most popular BSD distribution) integrates almost 23,000 components. The De-
bian distribution doubles in size every 2 years, having passed the mark of 300
MLOC in 2007 [37].

Despite this large scale, integrating an OSS project’s components into a distri-
bution goes far beyond black-box reuse. First, the upstream components need to
be turned into a distributable “package”. Distributions such as Debian, Ubuntu
and Fedora, compile the components for a particular architecture, then split up
the compiled libraries and executables across one or more “binary” packages. Such

7



maintains
maintainer

component

local patch
packagerelease

manager

new release of
distribution

package
community

upstream
project

other
maintainer

dependent
packageuser

interacts with

provides

maintains

depends on

uses

uses
sup

po
rts

tests for contacts

co-ordinatesin charge of

Fig. 2 The maintainer and her relation to other major stakeholders in an OSS distribution.

packages (together with the packages they depend on) can be automatically in-
stalled using a distribution-specific package management system, such as “apt”,
“dpkg” or “yum”. Source-based distributions, like FreeBSD, distribute the (pos-
sibly customized) source code of an upstream component to the end-user as a
so-called “source” package (FreeBSD uses the term “port” for this), for compila-
tion on the user’s machine. Unless otherwise specified, the term “package” in this
paper will refer to both “binary” and “source” (port) packages.

After building and packaging the upstream component, the new package needs
to be tested and delivered to the end-user. Once a package becomes available to
end-users (including the integrators), the real integration maintenance work starts,
since packages (and their dependent packages) need to be continuously updated to
new versions of the packaged component. Similarly, bugs in the package should be
detected and fixed promptly, and (if appropriate) patches should be sent back to
the upstream project that developed the packaged component. Local changes to
the package that have not been sent back, however, need to be maintained and kept
up-to-date by the distribution. User complaints should be triaged and processed
by the distribution as well, before escalating them to upstream, if appropriate.

Organizations that reuse a component typically [46, 59] appoint a person or
group of people, i.e., the “maintainer(s)”, to perform and co-ordinate integration
activities on the organization’s behalf. Organizations like OSS distributions dealing
with multiple upstream projects and components typically have multiple maintain-
ers, each one responsible for a group of related upstream components. Figure 2
shows the interactions of a distribution’s maintainer (in bold) with the other major
actors of the distribution. The maintainer packages and customizes the upstream
software component by herself, interacting with the upstream project whenever
necessary, for example to understand changes in a new release or to communicate
reported bugs. Customizations result in local patches applied to the vanilla up-
stream component, after which the patched component is packaged using the dis-
tribution’s package management tool. The package is being tested by the project’s
package community, which consists of volunteering contributors and testers. Once
stabilized, packages can also be used by end-users, who can contribute bug reports
or suggestions by contacting the maintainer. The maintainer’s work ultimately
ends up in an official release of the distribution, hence all maintainers are being
co-ordinated by the release manager in charge. Some of the common activities of

8



the release manager is discussing release-critical bugs or project-wide packaging
policies with the maintainer, and enforcing deadlines.

Given the size of a distribution, most of the maintainers are responsible for
multiple components (each of which is packaged into one or more packages). De-
bian has around 2,400 [21] maintainers for 24,000 integrated components (a ratio
of 10 components per maintainer), while FreeBSD has around 400 [31] maintain-
ers for 23,000 components (ratio of 57.5). Ubuntu only has around 150 [86–88]
maintainers for 24,000 components (ratio of 160), since most of its packages are
inherited as-is from Debian, thus requiring less work. Given the high maintainer-to-
component ratios, maintainers often team up to share package responsibilities, but
even then, they still need to divide their attention and limited time across many
components. In addition, the maintainers are not the developers of the packages
that they are maintaining, which means that even more time is spent to fully un-
derstand changes or to contact the upstream developers about a change [11, 79].
Finally, various proposals have been launched to shorten the time frame in between
releases of distributions [44,69] or even to synchronize releases with those of other
distributions [76]. This further complicates the task of the package maintainers.

This paper identifies and documents the integration activities that must be
done on a daily basis by the maintainers of three of the most successful OSS distri-
butions. Previous research has focused exclusively on the other stakeholders in Fig-
ure 2: the governance processes of distributions [72], release management [61, 89],
the package/developer community [73], the (evolution of the) size and complexity
of packages [37], and the dependencies of packages [34]. Given the central role of
package maintainers in the success of a distribution, their responsibilities and chal-
lenges need to be understood in order to streamline the interaction between the
OSS distribution and the upstream project, and to bring new maintainers quickly
up-to-speed. Furthermore, previous work focused especially on integration of indi-
vidual components, while packaging organizations like OSS distributions need to
deal with the integration of thousands of components at the same time, with their
users expecting the latest versions of each component to be integrated. Finally,
open source development forces organizations to collaborate with external parties
to reap the full benefits of quality and innovation that can be achieved with open
source components. If not, organizations waste substantial effort, for example to
maintain their own local patches. Hence, studying the integration activities of dis-
tributions will help us understand integration in a multi-component, open source
context.

The following section presents the approach that we followed to identify and
analyze the major integration activities in three large OSS distributions.

3 Case Study Setup

The goal of this paper is to empirically identify and document the major in-
tegration activities in use by packaging organizations for multi-component OSS
integration, as existing empirical work focused exclusively on single-component
integration. Since a wide range of packaging organizations exists, as a first step
we focus on some of the most experienced integration experts in the area of OSS
reuse, i.e., OSS distributions. In particular, we perform qualitative analysis on

9



2. data
sampling

3. data
extraction

4. data 
analysis

5. identifi-
cation and 

documentation 
of activities

6. validation 
of the acti-
vities with 

practitioners

1. subject
selection

Fig. 3 Overview of our case study methodology.

three of the largest and most successful OSS operating system distributions, i.e.,
Debian, Ubuntu and FreeBSD.

Although our results consist of integration activities performed in OSS distri-
butions, these activities are not unique to OSS integration, nor are they just a sub-
set of the integration activities performed by commercial organizations. Whereas
in a commercial setting organizations used to buy or develop all dependencies
themselves, an OSS setting requires one to collaborate with a variety of exter-
nal stakeholders to avoid being stuck with one’s own patches and customizations.
Avoiding this requires a different set of integration activities than before. In fact,
those activities now need to trickle back into the commercial organizations that
started to adopt OSS practices internally (ISS reuse).

To help such organizations, as well as open source projecs, this paper addresses
the following question: What is the core set of activities in OSS for dealing with
integration of multiple 3rd party components? This question allows us to empiri-
cally study what is being done in OSS integration, how it is being done and what
challenges expert integrators still face. In particular, it also helps us understand
what are the state-of-the-art techniques in use by OSS projects to facilitate their
integration activities.

This section discusses the methodology for our study, which is also illustrated
in Figure 3. We first performed a qualitative analysis to identify and document
major integration activities, then evaluated these findings with stakeholders from
the three distributions.

3.1 Subject Selection

To obtain a representative sample, we selected a mixture of binary and source-
based, and derived and independent OSS distributions. A derived (or “child”)
distribution automatically inherits the packages of its “parent” distribution. It
then customizes some of those packages, and also adds its own packages, in order to
enforce a uniform look-and-feel, focus on specific types of packages or to specialize
to a certain set of users (e.g., office workers vs. music producers). Although a
derived distribution saves substantial integration time, it also leads to a unique
set of integration activities, since each level of derivation adds an additional layer
in the integration process.

When looking at the history of open source distributions [55], Debian and
Ubuntu clearly stand out as two of the most influential distributions, with 41.0% of
all distributions deriving from Debian (211 out of 380 active and 135 discontinued
distributions), 90 from Ubuntu and 17 from FreeBSD. In particular, the Debian
distribution has 81 child distributions, 105 distributions deriving from those child
distributions (“grand-children”), 24 great-grand-children and 1 great-great-grand-

10



Table 2 Characteristics of the data for the three subject distributions.

Debian Ubuntu FreeBSD

start of project 16/08/1993 20/10/2004 11/1993
start of data 12/03/2005 20/12/2005 21/08/1994
end of data 16/08/2011 14/09/2011 01/09/2011

#components 24,263 25,345 22,733
#packages 92,277 66,595 22,733

#pkg. versions 896,757 446,324 162,135
#releases 4 14 8 major/55 minor

#maintainers 2,400 150 400

child [55]. The latter potentially needs to integrate packages from its four ancestors
as well as from some upstream OSS projects directly. Ubuntu itself has 79 children
and 11 grand-children [55], while FreeBSD has 15 children, 1 grand-child and 1
great-grand-child [92].

We found that the impact of the above distributions on other distributions
also translated well to their popularity in terms of number of users. In contrast to
mobile app stores, there is no official popularity poll or ranking of OSS distribu-
tions. However, since May 2001 one of the leading sources on OSS distributions
is the distrowatch.com web site, which contains announcements of new versions
of distributions as well as detailed historical overviews of each distribution (either
Linux- or BSD-based). One of its major features is that, on a weekly basis, the site
keeps track of how many people search or click for each distribution. Although this
ranking does not map 1-to-1 to the number of downloads, it does give an important
indication about the popularity of OSS distributions.

Despite its age (the first Debian release was made on the 16th of August,
1993), Debian was still the fourth most popular binary distribution at the time
of our case study, while Ubuntu was the second most popular binary and derived
distribution. We decided not to study the top binary distribution at the time of
our case study (i.e., Linux Mint), since it was a rather recent distribution derived
from Ubuntu, without sufficient historical data available. The third most popular
distribution was Fedora, but since this is totally unrelated to the Debian/Ubuntu
ecosystem, we also did not study this distribution. As source code-based distri-
bution, we picked the most popular source code-based BSD distribution, i.e., the
FreeBSD distribution. Note that FreeBSD is also the most popular BSD distribu-
tion according to the 2005 BSD Usage Survey [39].

3.2 Data Sampling

We study integration activities by systematically analyzing, categorizing and re-
vising historical package data for Debian, Ubuntu and FreeBSD to create a classi-
fication of integration activities. Given the large number of packages and package-
versions in the three distributions (Table 2), we could not examine all of them
manually. Instead, for each distribution we sampled enough package-versions to
obtain a confidence interval of length 5% within a 95% confidence level, taking
into account the large population size [14]:

sample size =
ss

1 + ss−1
#pkg. versions

11

distrowatch.com


clisp (1:2.49-1) experimental; urgency=low

* Use libsigsegv 2.8 should fix a few issues. (Closes: 566686)
* conflict against libreadline6 as it would be illegal to link

against that. (Closes: 553741)
* Use bash for clisp-link (Closes: #530054)
* New upstream version (Closes: #462742)3
* Redid debianization from scratch.

(Closes: #504514,#177057,#462085, #488042, #462088, #433592, #433596)
* Dropped conflicts with ancient versions of clisp.
* Changed build system on powerpc, the resulting image

passes all tests, so should Closes: #592768
* We got a fix the ’file with wrong *pathname-encoding* in ~/’ bug.

(Closes: #443520)
* Fix the build on Sparc by disabling FFI and dynamic modules completely.

-- Peter Van Eynde <pvaneynd@debian.org> Tue, 28 Sep 2010 07:31:59 +0200

Fig. 4 Example change log message for clisp package-version 1:2.49-1 in Debian.

with

ss =
Z2.p.(1 − p)

0.052

Z = 1.96 for 95% conf. level

p = 0.5 for pop. with unknown variability

This means that if we find an integration activity to hold for n% of the sampled
package-versions, we can say with a 95% certainty that n ± 5% of all package-
versions exhibit that activity. For example, 7 ± 5% would mean that the activity
would hold with a 95% certainty for 2% to 12% of the package-versions. Although
the three distributions have a different number of package-versions, the asymptotic
nature of the sample size formula obtained the same number of package-versions
(384) for each distribution.

3.3 Data Extraction

We randomly sampled 384 package-versions from each distribution, then auto-
matically extracted for each selected package-version the corresponding change log
message. Such a change log basically consists of a detailed [46] bullet list containing
a high-level, textual summary of all major changes in a particular package-version,
as well as the explicit IDs of all fixed bugs. Figure 4 shows an example change log
message of a Debian package-version (Ubuntu and FreeBSD use a similar format).
Except for two changes, all changes in Figure 4 fix open bug reports, with the re-
ports’ identifier pasted inside the change log. As distributions stipulate that each
new package-version has to be documented in a change log [22], we used change
log data as starting point for the analysis of each package-version.

To interpret the change log’s reported changes, we then manually analyzed the
referenced bug reports via the distributions’ bug repository. As explained below,
each distribution uses a different technology for its change logs and bug reposi-
tory, but we were able to write scripts to automate the fetching of both the logs

12



and reports. The bug reports often contained references to emails on a distribu-
tion’s mailing lists, and sometimes contained patches that had been proposed as
a possible bug fix. If present, we also studied these messages and patches. Finally,
to clarify technical terms or understand particularly unclear bugs or changes, we
used the distribution’s developer documentation (accessible from a distribution’s
web site) and, in the worst case, any relevant web search, especially for finding
relevant communication on online fora. This was only necessary in a small number
of cases.

We now discuss how we obtained the above data for each of the three dis-
tributions. This data can be found online in the paper’s replication package [2].
For Debian, we obtained the names of all integrated components across Debian’s
entire history from the so-called snapshot archive. This is a server containing all
versions of all packages over time1, and allowing scriptable access via a public
JSON-based API. Then, for every integrated component, we retrieved all version
numbers, their timestamps and the list of binary package names associated with
the component (since a component can be split across multiple packages). After
sampling 384 package-versions, we downloaded the corresponding change log us-
ing a simple script from Debian’s change log repository2. Bug reports mentioned
in the change logs can be found in the bug repository using the bug identifier3.
Related email messages and other data mentioned in the bug reports was found
by using a web search.

For Ubuntu, we used the Python API of the Launchpad collaboration plat-
form4 to retrieve the names and version numbers of all Ubuntu packages that
have ever existed. Because Ubuntu is derived from Debian, we filtered the Ubuntu
packages to include only the ones customized by Ubuntu, since the other pack-
ages are identical to Debian packages. Ubuntu-customized packages have a version
number ending in “-MubuntuN”, where “M” and “N” are numbers following a spe-
cial convention. We found 133,311 of such package versions, belonging to 26,858
packages. Except for a different location of the change logs5 and bug reports6, we
used the same approach for data extraction as for Debian.

For FreeBSD, data extraction was a bit more involved, since it is a source-
based repository. For this reason, we retrieved a copy of the FreeBSD version
control system (CVS)7, which contains all local file changes ever made to all
reused components. Since such CVS changes are too fine-grained to be consid-
ered a “version”, but releases are too coarse-grained (multiple port versions can
exist in between two official releases), we had to reconstruct the port versions by
grouping related CVS changes together. For this, we used the FreeBSD convention
that each port’s Makefile is expected to have a PORTREVISION variable that is
changed “each time a change is made to the port which significantly affects the
content or structure of the derived package” [30]. If a maintainer does not change
the PORTREVISION (nor the related PORTVERSION variable), the correspond-

1http://snapshot.debian.org/
2http://packages.debian.org/changelogs/pool/main
3http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=XYZ with XYZ the bug identifier
4http://api.launchpad.net/1.0/
5http://changelogs.ubuntu.com/changelogs/pool/main
6Manual search using the bug identifier on https://bugs.launchpad.net/ubuntu
7ftp3.ie.FreeBSD.org::FreeBSD/development/FreeBSD-CVS/ports/

13

http://snapshot.debian.org/
http://packages.debian.org/changelogs/pool/main
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=XYZ
http://api.launchpad.net/1.0/
http://changelogs.ubuntu.com/changelogs/pool/main
https://bugs.launchpad.net/ubuntu
ftp3.ie.FreeBSD.org::FreeBSD/development/FreeBSD-CVS/ports/


ing changes are not deemed important enough to be automatically picked up by
users during an update of their installation. We interpret this as “changes that
do not change the PORTREVISION variable do not define a new port version”,
similar to the definition of “version” of binary packages.

In practice, we determined for each port the timestamps of all changes that
change PORTREVISION and/or PORTVERSION, then grouped all changes to a
port’s files between two consecutive PORTREVISION changes (excluding the first
PORTREVISION change) into one port version. We treated all changes up to and
including the first Makefile revision as the first PORTREVISION, to account for
the initial import of a port. We wrote scripts that queried the CVS repository8

for all commit log messages between the start and end date of a port version. The
change logs of the resulting port versions then correspond to the concatenation
of these commit log messages. Finally, bug reports were obtained from FreeBSD’s
bug repository based on the bug identifiers mentioned in the change logs9.

3.4 Data Analysis

Since we did not have any classification of integration activities to start from,
initially the first author studied the Debian distribution as a pilot project. He
manually interpreted the changes documented in the change log of each sampled
package-version, then looked up the bug reports referenced by the change log in
order to understand which bugs had been resolved or which features had been
added, and how this was done. For the latter, the bug reports’ comments were an
important source of information. To fully understand the scope and context of more
complex changes, he sometimes had to consult email messages referenced by the
bug reports and patches attached to them. In case of doubt or usage of unfamiliar
technical terms or inside stories, the distribution’s developer documentation was
considered or, in the worst case, a web search was performed.

Once it was clear what exactly the integrators had done to produce the ana-
lyzed package-version, the package-version was tagged with any observed activity
to summarize the rationale behind the version. Two examples of activities could
be “new release” or “package dependency change”. More than one tag could be
assigned to a version, since a new version of a package typically consists of multiple
changes (as seen earlier in Figure 4). By repeating this procedure for all sampled
Debian versions, and constantly revising already analyzed versions when new tags
were found, an initial tagging schema was built up, representing different activities
that go into a package-version.

After finishing the pilot project on Debian, the first two authors revised the
obtained tagging schema, leveraging the second author’s experience as a De-
bian/Kubuntu maintainer and developer. Some tags were merged, others were
renamed, and with the resulting tagging schema in hand, we revised the De-
bian analysis to standardize the tags used. Afterwards, both authors analyzed
the Ubuntu and FreeBSD data using the same tagging schema as a starting point
(and using the same approach as for Debian). Conflicts in tagging between both
authors were manually resolved through discussion. We did not find additional

8:pserver:anoncvs@anoncvs.tw.FreeBSD.org:/home/ncvs
9http://www.FreeBSD.org/cgi/query-pr.cgi?pr=XYZ with XYZ the bug identifier

14

:pserver:anoncvs@anoncvs.tw.FreeBSD.org:/home/ncvs
http://www.FreeBSD.org/cgi/query-pr.cgi?pr=XYZ


tags for Ubuntu and FreeBSD, giving us confidence about the completeness of
our initial tagging schema. Eventually, we obtained seven very popular tags, two
less popular ones and a catch-all tag for multiple unique or less frequent activ-
ities unrelated to any of the other tags. We excluded the latter three tags from
our analysis, but we come back to them in Section 6. The replication package [2]
contains the tags and noteworthy observations of the sampled package versions.

3.5 Identification and Documentation of Activities

The seven most popular tags obtained after the manual analysis all correspond to
unique integration activities, however each distribution could have its own termi-
nology and workflow for such an activity. Hence, in order to abstract up the com-
monalities and variabilities across distributions for a particular activity (tag), all
authors together distilled the intent, motivation, common tasks and current prac-
tices across the distributions based on (1) the information that we encountered in
the change logs, bug reports and mailing lists for the sampled package-versions,
as well as (2) the second author’s experience as a Debian/Kubuntu developer.
This was an iterative process, trying to separate the essential steps used during
an integration activity from implementation details or exceptions in a particular
distribution. Typically, each author would refine one or two patterns, then send
to the next author for further refinement until no more changes were made to an
activity.

Similar to design patterns [33], we then “captured [the activities] in a form
that people can use effectively”. For each integration activity, we documented in
a rigid format its intent, motivation, the major tasks involved in the activity, its
participants, possible interactions with other activities and notable instances of
the activity in the three studied distributions (Debian, Ubuntu and FreeBSD).
Interactions are based on co-occurrence of activities in our data. We also tried
to compare each activity to prior work in the integration literature, to put each
activity in context.

During the tagging of integration activities, and the abstraction into pattern
form, the authors encountered recurring issues and problems of the package main-
tainers. Such issues and problems were noted down by each author individually,
then compared and clustered to obtain a set of challenges, across 4 research ar-
eas. After filtering out challenges that were already addressed by related work,
we obtained 13 concrete challenges or limitations that, based on our data, seemed
to hold back maintainers in their activities. To cross-check those challenges, to-
gether with the activities that we documented, we performed a validation with
practitioners in the next step.

3.6 Validation of the Activities by Practitioners

In order to get feedback on the correctness and usefulness of the documented
integration activities and challenges, we contacted members of the package main-
tenance community of Debian, Ubuntu and FreeBSD. We asked them to (1) verify
the correctness of the activities that we derived and abstracted from the change
log, bug report and other historical data, as well as of the challenges that we

15



uncovered, and to (2) provide feedback on the usefulness of the activities as well
as the activities and challenges that we might have missed while analyzing the
sampled package-versions.

Based on their extensive experience with the 3 distribution communities, the
second and fourth author first compiled a short-list of package maintainers and
release engineers experienced with maintaining large packages. We then contacted
the people on the short-list by email, since email is the preferred channel of commu-
nication for maintainers (and maintainers are volunteers spread across the world,
without a fixed office). We played with the idea of creating a bug report for our
study, since maintainers track the bug repository of their package from close-by,
however since bug reports are a public broadcast medium, and people would have
been able to chime in and perhaps influence the maintainer, we discarded the bug
repository for our purposes.

We eventually received feedback from 3 maintainers (M1, M2 and M3) active
in both Debian and Ubuntu, one (M6) in Debian, 1 (M5) in Ubuntu, and 1 (M4)
in FreeBSD. All of them have at least five to ten years of experience, since the role
of package maintainer or release engineer can only be deserved through years of
active involvement in a distribution. Note that to respect their anonymity we will
refer to all of them as “maintainers” and use a symbolic name.

When contacting the maintainers, we provided them a draft of this paper,
then asked them for feedback about the documented activities and challenges.
In particular, we asked the following questions to evaluate the usefulness and
completeness of the activities and challenges:

Q1 What activities did we miss?
Q2 What can the documented activities be used for?
Q3 Which existing tools and techniques for these activities did we miss?
Q4 What challenges did we miss?
Q5 What promising tools/techniques do you see coming up to address some of

the challenges?

The maintainers replied to the five questions by email. All six also provided
higher-level comments about the paper, with one maintainer providing an an-
notated pdf with more detailed comments. Despite their busy schedule and the
asynchronous nature of email communication (one cannot force someone to re-
ply), only two maintainers left two or more questions blank. We come back to
this in Section 6. The email replies were then analyzed by two of the authors and
summarized into a table (Table 5) in order to compare the findings across all 6
maintainers.

At a high level, the obtained feedback showed us whether the activities as
a whole made sense, whereas at a lower level it exposed inaccuracies, missed
workarounds and any factual errors. We then used this feedback to flesh out the
description of the seven documented activities and the 13 challenges, to obtain
the final version of the activities documented in the present paper. The contacted
members suggested five additional activities, however since we did not have suf-
ficient empirical support for these activities in our data sample, we did not add
them to the documented activities. Instead, we discuss those additional activities
in Section 6.

16



Table 3 Overview of integration activities and their prevalence in the three distributions.
Activities below the horizontal line were not common enough to be documented.

Activity Explanation %Deb. %Ub. %Fre.
A. New Package Integrating a new software project. 1.04 0.78 13.54
B. Upstream Sync Updating to a new upstream version. 40.89 43.75 57.81
C. Dependency Management Managing changes to dependencies. 38.80 30.73 28.39
D. Packaging Change Changing a package’s packaging logic. 43.49 44.01 38.80
E. Product-wide Concern Enforcing policies across all packages. 4.95 3.13 25.00
F. Local Patch Patching upstream source code locally. 22.40 28.39 12.24
G. Maintainer Transfer Managing unresponsive maintainers. 5.73 0.00 2.86
H. Security Patching a security vulnerability. 4.43 1.30 0.78
I. Internationalization Internationalization of packages. 4.17 1.56 0.26
J. Other Catch-all for rare activities. 2.34 4.95 1.04

A B C D E F G H I J

%
pa

ck
ag

e 
ve

rs
io

ns
0

10
20

30
40

50
60

A B C D E F G H I J

%
pa

ck
ag

e 
ve

rs
io

ns
0

10
20

30
40

50
60

A B C D E F G H I J

%
po

rt 
ve

rs
io

ns
0

10
20

30
40

50
60

Fig. 5 Popularity of the integration activities of Table 3 in the 384 sampled (a) Debian,
(b) Ubuntu and (c) FreeBSD package-versions (confidence interval with length 5% for a 95%
confidence level).

4 Integration Activities in Distributions

Table 3 gives an overview and short explanation of the seven major integration
activities that we documented, as well as three less common ones. The table also
provides the percentage of sampled Debian, Ubuntu and FreeBSD package-versions
that involve each of the activities (within a confidence interval of 5%). Those
numbers are also plotted on Figure 5. Since a new version of a component can
involve multiple integration activities, the percentages in the plots add up to more
than 100%. Upstream Sync, Dependency Management and Packaging Change are the
most frequently occurring activities in Debian and FreeBSD. Local Patch is also
common in all three projects, whereas New Package and Product-wide Concern are
common for FreeBSD.

The next subsections discuss each of the seven major integration activities in
detail. For each activity, we provide:

Intent Short outline of the goal of the activity.
Motivation Short description of the role and rationale of an activity.
Major tasks The major steps involved with the activity.
Participants A list of stakeholders from Figure 2 involved with the major tasks

of the activity.
Interactions Activities that co-occurred substantially with a given activity in

package-versions, and hence are related.

17



Literature Discussion of prior work and approaches for the activity, as well as
prevalence of the activity outside the context of OSS distributions.

Notable instances Concrete examples of the activity from the sampled Debian,
Ubuntu and FreeBSD package-versions.

A. New Package

Intent: Integrating a previously unpackaged upstream component into a distribu-
tion.
Motivation: The users of the distribution or the maintainer of a package require
new functionality provided by a component that has been identified but is not yet
part of the distribution.
Major Tasks:

1. Recruiting a Maintainer responsible for integrating the new component and for
liaising with the upstream project is one of the most important decisions to
take [46, 59]. Most commonly, an upstream developer or motivated end-user re-
quests an upstream component to be integrated in the distribution. One of the
distribution’s maintainers might pick up this request and become the maintainer.
Alternatively, the upstream developer can package the component herself and ask
a distribution maintainer to “sponsor” this package, i.e., to review and to upload it
to the distribution’s package repository. In that case, although the majority of the
integration is done upstream, the maintainer still has the end responsibility. An-
other possibility is that the distribution appoints a maintainer to the integration
of a new component because of a clear need in the distribution.
2. Packaging an Upstream Project requires access to the project’s source code (except
for binary-only packages like Adobe Flash) and verification of its license. The
maintainer then proceeds to determine the build-time and run-time dependencies
of the package. If a dependent component is not yet in the distribution, it has to
be packaged first. This is a process of trial-and-error, trying to build the package
and fixing any dependency problems. The maintainer might have to customize
the software or its makefiles so it would build correctly in the environment of the
distribution. When porting the package to other platforms than Linux- or GNU-
based ones, it is often needed to remove dependencies on Linux- or GNU-specific
libraries or functionality. This can take significant effort. Finally, the maintainer
needs to make sure that the package follows the distribution’s policies, such as
specific locations for configuration files and manual pages.
3. Creating the Package’s Metadata. The maintainer is responsible for creating the
package metadata like the package name, version number and the list of dependent
packages. Such metadata is necessary to add the package to the distribution’s pack-
age management system (“apt” in Debian/Ubuntu, or the port system in FreeBSD)
to enable the automatic and systematic building, packaging, and deployment of
the software project.
4. Integration Testing. The package must build and run consistently on all supported
architectures. Typically, two rounds of tests are used to verify a package. The first
round involves only maintainers ironing out any obvious functionality or platform
issues. The second round involves uploading the package to a staging area (e.g.,
“unstable” in Debian), from where expert end-users can install it for use in their
daily work. Bugs identified by these users are reported (together with possible
patches) to the maintainer, who incorporates this feedback in a new version of

18



the package that is re-uploaded. Some distributions, like Ubuntu, have tools to
automatically run integration testing and identify integration issues.
5. Publishing the Package. If a staged package contains severe bugs, it might be
(temporarily) removed from the staging archive until the bugs are resolved. If
the package has been stable for a certain period of time, it becomes eligible for
inclusion in an upcoming release. The package is either moved to that release’s
archive (Debian/Ubuntu), or to the source code repository (FreeBSD).
Participants: maintainer, upstream developer, package community, expert end-
user.
Interactions: New Package is a prerequisite of the other six activities, and usually
occurs by itself (i.e., a package-version only involves New Package, and no other
activity). In 2.3±5% of the FreeBSD package-versions, it also involves Local Patch

to fix a bug or to make the package compile.
Literature:

In the context of COTS reuse, additional tasks are involved, especially contract
negotiations [7, 65]. Lewis et al. [49] note that “Vendors are driven by profits [...]
They can be cooperative and responsive when it is in their perceived interest to be
so.” Various guidelines and risk assessment tools exist to help companies or federal
departments select the right COTS components [7,49]. They, for example, recom-
mend to find COTS components that fit with the existing architecture, or possibly
adjust the architecture first, rather than requiring the COTS vendor to customize
their component to the system at hand (since that could be very costly). This
is different from OSS distributions, where monetary incentives typically do not
exist and OSS distributions sometimes carry enough weight to convince upstream
components to adapt to them rather than the other way around.

Although not applicable in the case of packaging organizations like OSS dis-
tributions, the identification of COTS/OSS components for reuse is a known chal-
lenge as well [64, 79], typically requiring extensive web or literature research, or
insightful recommendations by experts. While maintainer recruitment and inte-
gration testing are known research problems, the other tasks are less known in
research.
Notable Instance:

A New Package with customization: irssi-plugin-otr (Ubuntu) is an IRC client plu-
gin integrated in July 2008. A first customization changed the location for doc-
umentation to the Ubuntu default location. The second customization fixed the
package’s build process to not download required header files during the build,
since the Ubuntu build servers do not have network access.

B. Upstream Sync

Intent: Bringing a package up-to-date with a newer version of the upstream com-
ponent.
Motivation: As shown in Figure 5, synchronizing the existing packages of a dis-
tribution with a newer upstream version forms the core activity of integration.
End-users expect package maintainers to update their packages to the latest fea-
tures and bug fixes as soon as possible, while maintainers are more concerned
about the long-term stability of a package.
Major Tasks:

19



1. Becoming Aware of a New Upstream Release largely depends on distribution-
specific dashboards that automatically track the development progress of upstream
projects. For example, Debian’s watch file mechanism specifies (1) the URL of the
upstream project’s download page with all releases of a component, as well as (2)
a regular expression to identify the source code and a version number for each
release. If the highest version number surpasses the current version, this means
that a new release is available.

Derived distributions (e.g., Ubuntu) not only need to synchronize with the up-
stream projects, but also with their own parent distribution, typically at the start
of a new release cycle. For example, out of 167 analyzed Ubuntu package-versions
involving Upstream Sync, 99 versions were synchronized with the upstream project,
65 were synchronized with the parent distribution (Debian) and 3 were synchro-
nized with both. Since the derived distribution can leverage the Upstream Sync and
other activities performed by the maintainers of the parent distribution, risk as-
sessment (task 2) becomes slightly easier. However, keeping track of which patch
was synchronized from which upstream project requires rigorous book-keeping.
Projects use custom dashboards for this, sometimes interfacing with the bug re-
porting infrastructure.
2. Assessing the Risk of an Upstream Release requires the maintainer to review the
changes to the previous upstream version [70] in order to estimate whether the
new version is production-ready. These changes run the risk of breaking important
functionality, while end-users do not always need the new features and bug fixes.
Despite the importance of this analysis, in practice it currently is a largely manual
task supported by basic tools like “diff” [70], change and commit log messages,
email communication with upstream developers, and experience.

The outcome of risk assessment is often to not update to a full new release, but
to “cherry-pick” a select number of acceptable changes out of all changes made
upstream or by another distribution, then merge those changes into the current
package-version (discarding the other changes). For example, an upcoming release
of a distribution might be too nearby, making the full import of a new version of
a component too risky. Instead, maintainers would cherry-pick the show-stopper
bug fixes that they are most interested in. Some distributions, like FreeBSD, prefer
not to cherry-pick, i.e., they either take a new version of a component as a whole,
or do not update to it.
3. Updating Customization involves revisiting the customizations (patches) per-
formed on earlier versions of the packaged component (e.g., the initial New Package

or later Local Patch activities). Maintainers typically submit these patches up-
stream, to be merged. As a consequence, some patches no longer need to be main-
tained locally and can be discarded by the maintainer. Other patches, however,
need to be updated by the maintainer to be cleanly applied to the new version of
the upstream package. Just like task 2, this requires manual analysis of the patch
and the new package-version.
4. Updating the Package’s Metadata, cf. task 3 of New Package.
5. Integration Testing, cf. task 4 of New Package.
6. Publishing the Package, cf. task 5 of New Package.
Participants: maintainer and upstream developer.
Interactions: Upstream Sync is a pivotal activity that can be accompanied by
any other activity, except for New Package (by definition). Upstream Sync occurs

20



mostly together with Packaging Change, Dependency Management, Local Patch and
(in source-based distributions) Product-wide Concern.
Literature:

Together with Local Patch, Upstream Sync is the most discussed integration ac-
tivity in literature, independent of the type of reuse (COTS/OSS/ISS) or orga-
nization (OSS/commercial) [49, 65], and it is the source of most of the issues
related to Dependency Management (sometimes even preventing Upstream Sync of
other packages). For example, Begel et al. [5] report that at Microsoft up to 9%
of 775 surveyed engineers rely on other teams to inform them of changes to a
component they rely on. Researchers [20,59] and practitioners [46] recommend to
continuously monitor (or inquire) for new versions and their impact on the soft-
ware system, even appointing a specific gatekeeper responsible for doing this. This
also helps mitigate one of the largest risks of reuse: the component vendor going
out of business [49].

Since reuse induces a dependency on the provider of a COTS/OSS/ISS com-
ponent (who fully controls the component’s evolution [49]), researchers have re-
ported two extreme approaches to deal with this dependency: swiftly updating to
each new component version [11,54,79] versus sticking to a particular version and
patching it for the organization’s particular needs [54,59,71]. There is no system-
atic methodology to decide between the two approaches and hybrid approaches
in between like cherry-picking [49], typically personal experience is the deciding
factor [59], while other factors like the safety-critical nature of a software system
can play a role as well [49]. Interestingly, many integration issues could in fact be
avoided if the new component version would be backwards compatible with the
previous version [16, 79], but this is outside the control of the organization that
reuses a component.
Notable Instances:

A low-risk Upstream Sync: Gnash (Ubuntu) is a Flash player that was updated
to upstream version 0.8.7 in March 2010 (#52225410), right at the start of the
Ubuntu feature freeze window (i.e., close to the next release). Since new features
are technically not allowed in a freeze window, a member of the Ubuntu release
team needed to explicitly approve the Upstream Sync. As Gnash is a package in-
herited from Debian, and the update mostly contained bug fixes, version 0.8.7
quickly got synced.
An Upstream Sync taking a long time: Krita 2.1.1-1 (Debian), the painting pro-
gram of the KOffice suite, was broken early May 2010 because one of the libraries
it depends on (libkdcraw7) had been replaced by a newer version (libkdcraw8)
in an Upstream Sync of KDE 4.4.3 (#580782). Unfortunately, the solution (an
Upstream Sync to KOffice 2.2.0), took 2 months because this new version of KOf-
fice introduced too many new functionalities, requiring the package to be tested
more thoroughly.
A patch cherry-picked from another distribution: libpt 1.10.10 (Ubuntu), a cross-
platform library, relied on the new gspca webcam driver provided by the 2.6.27
Linux kernel. For this driver to work, all programs and libraries consuming the
webcam stream now had to load the libv4l wrapper libraries at run-time, forcing
62 Ubuntu packages to be modified. Since three weeks earlier a patch had been

10This notation refers to a bug report in the distribution’s bug repository.

21



uploaded to Fedora (another distribution) to make these changes for libpt, this
patch was cherry-picked into Debian (and Ubuntu).

C. Dependency Management

Intent: Keeping track of the dependencies of a package to make sure it can be
properly built and run.
Motivation: Packages depend on other packages to be built (e.g., compilers and
static libraries) and to be run (e.g., dynamic libraries and services). For example,
in our data set, Debian packages containing dynamic libraries have on average 6.4
packages depending on them directly (median: 2.0), and 47.6 transitively (median:
3.0). If a package on which many other packages (“reverse-dependencies”) depend
changes, for example because of an Upstream Sync, that change might break its
reverse-dependencies.

A special case of such a change are “library transitions”, i.e., changes to the
public interface of a shared library that might force dozens of packages to be rebuilt
or, in the worst case, to be adapted to the new interface via source code changes.
For example, if the C runtime library would change, all packages using C might
need to be changed and/or re-built.
Major Tasks:

1. Becoming Aware of Dependency Changes either happens automatically (see Upstream
Sync), or based on an announcement by the maintainer of a dependent package
that is about to change significantly. The latter announcement typically is sent
to the release manager and any affected maintainers, leaving time to discuss the
repercussions of the update. In case such an announcement has not been done,
at the very minimum, the maintainer should notice a change in the API through
the updated interface version (“SONAME”) of a dynamic library11. For example,
a dynamic library “libfoo” with interface version 1 would have a SONAME of
“libfoo.so.1”. If this SONAME suddenly changed to “libfoo.so.2” upstream, main-
tainers would know that the API of the component has changed substantially.
2. Assessing the Risk of a Dependency Change is similar to task 2 of an Upstream

Sync: determining which and whose packages broke because of a change is largely
a manual task, requiring insight into how an API is used by other packages, whose
implementation and algorithms are typically unknown to the maintainer. Unfor-
tunately, no tool support is available in practice to assist in this task. Typically,
the build logs are checked for errors and the package is driven through a small
smoke test scenario.
3. Fixing the Damage either happens atomically, i.e., the changed package and
all its reverse-dependencies are updated at once (FreeBSD), or interleaved, i.e.,
each of the packages is updated independently (Debian/Ubuntu). Atomic updates
can delay a new package-version as long as not all broken packages have been
updated successfully, but at least the end user will not be impacted by inconsistent
packages. Distributions like Fedora and Ubuntu use sandbox build environments
to atomically update a transitioning library with all its reverse-dependencies in
isolation, without affecting other packages (and hence users) [81].

11If the maintainer finds out that the interface did change without a SONAME update, she
would contact upstream to ask for an update of the SONAME, then perform an Upstream Sync
of the updated library before resuming the Dependency Management of the library’s reverse-
dependencies.

22



Whether or not the update model is atomic, the maintainer of the library
causing the changes is responsible for performing all rebuilds. The maintainer
analyses the build and test logs to determine which packages failed to build, and
attempts to write patches for those, using her knowledge of the API changes. If this
fails, she needs to assist the failing packages’ maintainers to resolve the transition
issues, similar to delivery advocates for ISS reuse [79]. To keep track of which
packages have already been re-built, the release manager and maintainers use a
tracking system: Ubuntu and Debian both use a custom library transition tracker,
while Ubuntu sometimes uses a bug tracker.
4. Updating the Packages’ Metadata, cf. task 3 of New Package.
5. Integration Testing, cf. task 4 of New Package, once the whole transition is com-
plete (atomic model) or for each updated package separately (interleaved model).
6. Publishing the Package, cf. task 5 of New Package.
Participants: maintainers of the changed package and those of its reverse-dependencies,
release manager.
Interactions: Dependency Management can be accompanied by any other activity,
except for New Package. It occurs mostly together with Upstream Sync, Packaging
Change, Local Patch and (in source-based systems) Product-wide Concern.
Literature:

Similar to Upstream Sync, Dependency Management is independent of the kind of
reuse and organization. Begel et al. [5] observed a wide range of mitigation tech-
niques for dependency problems at Microsoft, ranging from minimizing the number
of dependencies to explicitly planning backup strategies to deal with dependency
issues. Other companies, such as the one studied by de Souza et al. [19,20], stressed
the importance of vendor-integrator communication to reduce the effort required
for “impact management” of reused APIs. Managers first should build an impact
network consisting of people affecting or affected by their component, then use
frequent email communication or people assigned explicitly to a particular API
(or ISS component [79]) to manage forward (i.e., on other teams) and backward
(i.e., on their team) dependency impact. Similar to other major companies like
Google [91], as well as the studied OSS distributions, a team is required to inform
its clients of major API breakage. de Souza et al. [20] note, however, that one
should not forget the ripple effect of “indirect” (i.e., transitive) dependencies.

Similar to Upstream Sync, backwards compatibility of dependent packages can
avoid many integration issues [16,79]. Furthermore, many Dependency Management

issues are due to unnecessarily high coupling between components by relying on
implementation details [78] and private APIs [79]. Hence, using components via
explicit [79] and stable [59] interfaces can avoid many problems. Finally, packaging
organizations like distributions can eliminate many dependency issues of their
users by providing assemblies (sets) of integrated components instead of individual
components. This is why many distributions offer so-called “virtual” packages, for
example to integrate all core packages of Perl, KDE or GNOME.
Notable Instances:

A surprise library transition: A library interface change to the libfm 0.1.14-1

(Debian) file manager library was not announced by the upstream developer. As
a consequence, applications built against the old version of libfm (“libfm.so.0”),
such as the pcmanfm file manager, broke (#600387). The dynamic linker had no
way of knowing that “libfm.so.0” was no longer the original library version all

23



packages were built against, but rather the new version with a different interface
that should have been named “libfm.so.1”.
Problems with non-atomic fixes of dependency changes: The transition of Perl
5.10 (Debian), the Perl programming language ecosystem, to Perl 5.12 at the end of
April 2011 (#619117) took slightly over two weeks, during which over 400 packages
(directly or indirectly depending on Perl), including high-profile ones such as vim,
subversion, rxvt-unicode and GNOME, were not installable from the staging area
until all their dependencies were rebuilt consistently against Perl 5.12.
A dependency change requiring only a rebuild: The chances of acceptance for
Boost 1.34.1 (Ubuntu), a general-purpose C++ library, in Ubuntu 7.10 looked slim,
since Ubuntu had just entered its “Feature Freeze” (only bug fixes were still ac-
cepted for the upcoming release) and all Boost’s reverse-dependencies had to be
updated. However, the contributor championing the new Boost release was able
to convey the urgency of the release (fixes to show-stopper bugs) and the pack-
age maintainer verified that all reverse-dependencies could just be rebuilt without
source code changes.

D. Packaging Change

Intent: Changing the packaging logic or metadata to fix packaging bugs, follow
new packaging guidelines or change the default configuration, either for binary or
source packages.
Motivation: The packaging process combines the build process [58] of an up-
stream component with the dependency management and packaging machinery of
a distribution. Hence, understanding the packaging process is not a trivial process,
and bugs slip in frequently. Furthermore, as the packaged component evolves, its
packaging requirements evolve as well. For example, new features might have been
added that need to be configured in the package. The Packaging Change activ-
ity covers any such changes to the packaging, building and installation logic and
metadata of a package.
Major Tasks:

1. Replicating Reported Problems is a prerequisite in order to fix a packaging prob-
lem. Ideally, the maintainer would like to clone the packaging environment of a
bug reporter, or at least have a complete description of the build platform, all
installed libraries and their versions. Tools exist to generate such a description
when submitting bug reports, yet inexperienced bug reporters often do not know
or forget to use those.
2. Understanding the Build and Packaging Process is a necessity in order to be able to
fix packaging bugs or enhance the packaging logic. Such understanding currently
is based on interpreting the build and execution logs of packages. Furthermore,
trial-and-error is commonly used when changing the packaging logic. Since there
is no dedicated way to test build and packaging changes, the maintainer verifies
the correctness of those changes by manually installing the package and running
the unit or user tests of the package.
3. Integration Testing, cf. task 4 of New Package.
4. Publishing the Package, cf. task 5 of New Package.
Participants: maintainer, package community (for testing), expert end-user.
Interactions: This activity is performed during most of the other activities, such as
New Package and Upstream Sync. Frequently, this activity requires a Local Patch.

24



Literature:

The Packaging Change activity has not been discussed thoroughly in prior re-
search, except for the well-known difficulty of configuring COTS/OSS/ISS com-
ponents [79]. Such configuration issues are due to the fact that, by default, compo-
nents need to be generic and contain many features, whereas a specific integrator
only needs some of those. The need to adapt packaging logic is specific to the do-
main of packaging organizations (of which OSS distributions are a subset), since
they are a mediator between upstream components and final users, and hence
require upstream components to fit into their own package management system.
Notable Instances:

A package with missing files: The librt shared library implementing the POSIX
Advanced Realtime specification had been dropped without warning from the
GNU standard C library on Debian (libc6 2.3.6-18), breaking the XFS file system
package (#381881). To resolve this case of Dependency Management for XFS, a
Packaging Change was made to libc6’s package metadata to indicate that librt was
no longer provided.
Broken packaging because of changed guidelines: Versions 2.6 to 3.2 of Python

(Ubuntu), the Python programming language ecosystem, suddenly failed to build
on Ubuntu (#738213) because essential libraries like libdb and zlib on which
python depended could not be found anymore on the build platform. The change
in directory layout was a result of the work on enabling 32 and 64 bit versions of
libraries to be installed on a single machine.
Broken packaging because of upstream changes: The GNU Octave (FreeBSD)

developers changed the layout of their web site as well as the build logic of some of
their projects (#144512). The maintainer had to fix the code fetching script and
refactor the existing build script shared by all GNU Octave ports into separate
scripts for the individual ports.

E. Product-wide Concern

Intent: Applying product-wide policies and strategic decisions to the integrated
packages.
Motivation: Since a distribution integrates thousands of packages, there are im-
portant rules and strategic decisions that should be followed in order to make the
distribution coherent and consistent. For example, a new standard for package
help files should be adopted by all packages, either all at once or at their own
pace. Similarly, strategic decisions to transition to a new version of a core library
or to move to a new default window manager should be followed up as uniformly
as possible by all involved packages.
Major Tasks:

1. Determining Ownership and Timing of Changes happens through discussions be-
tween the co-ordinator (release manager or a volunteer) of the product-wide con-
cern and the affected maintainers. The co-ordinator notifies all affected package
maintainers about the decision, explaining the motivation of the Product-wide

Concern, the end goal and the different steps involved in getting there. Those
steps depend on the enforcement strategy in use.

25



2. Enforcing the Concern happens either through centralized or distributed en-
forcement. With centralized enforcement, the Product-wide Concern co-ordinator
applies the concern’s changes herself on all affected packages at once. Maintainers
only need to test if their package still works and report a bug if it does not. With
distributed enforcement, the package maintainers, briefed by the co-ordinator, are
in charge of the change for their own package. This gives them the freedom to
implement a Product-wide Concern as they see fit, but might delay updates to
their packages’ reverse-dependencies. While the concern is being enforced, the co-
ordinator continuously monitors the status of the concern via dashboards, mailing
lists and/or bug reporting systems.

Debian uses distributed enforcement, FreeBSD uses centralized enforcement
and Ubuntu uses both. Derived distributions like Ubuntu automatically leverage
Product-wide Concern changes performed by the contributors of the parent dis-
tribution. FreeBSD co-ordinators use regular expressions to change the packaging
logic of hundreds of ports at once, thanks to the strict naming conventions in the
packaging logic. Given the high risk of such product-wide changes in FreeBSD,
the co-ordinator needs approval by the release manager, after which the whole
distribution is rebuilt on the distribution’s build cluster to check the effects of the
product-wide change.
3. Integration Testing, cf. task 4 of New Package.
4. Publishing the Package, cf. task 5 of New Package.
Participants: maintainer, co-ordinator, release manager.
Interactions: Product-wide Concern is typically accompanied by Dependency Man-

agement, Upstream Sync or Packaging Change.
Literature:

Similar to Packaging Change, Product-wide Concern is a relatively unknown ac-
tivity. For example, Curtis et al. [17] identify the issue that “Projects must be
aligned with company goals and [that they] are affected by corporate politics,
culture, and procedures”, and they stress that the “inter-team groups dynamics”
(between an integrator and upstream) significantly complicates the already com-
plex “intra-team group dynamics”. However, no concrete advice or discussion of
the tasks involved are provided, especially not in the context of multi-component
integration at the scale of OSS distributions (thousands of integrated components).
Notable Instances:

The massive migration to GCC 4 (Debian) in July 2005 is an example of
a Product-wide Concern with distributed enforcement. Since the compiler suite
broke C++ programs compiled with earlier GCC versions, all C++ packages using
GCC had to be rebuilt. An approach typically followed in cases like this12,13, is
to (permanently) rename the packages after rebuilding by attaching a suffix like
“+b2”. This ensures the visibility of rebuilt packages, enabling other packages to
explicitly depend on the rebuilt versions.
The migration to Dash as the default command shell in Ubuntu 6.10 (October
2006) and Debian Lenny (February 2009) illustrates the differences between cen-
tralized and distributed enforcement. The Ubuntu co-ordinator instantaneously
made Dash the default shell, breaking many packages’ scripts and build files (cen-
tralized). Although several users were enraged, the co-ordinator consistently re-

12http://bit.ly/FOCJHf
13http://lwn.net/Articles/160330/

26

http://bit.ly/FOCJHf
http://lwn.net/Articles/160330/


ferred to the maintainers and upstream developers of the failing packages to fix
incompatible Bash-specific code (“bashisms”). A web site with official migration
strategies and workarounds was provided.

When Debian discussed their move to Dash (independently from the Ubuntu
move)14, the Ubuntu co-ordinator convinced them about the importance of clear
release goals and communication with all stakeholders. The Debian developers
then built tools to screen all packages for known bashisms. Maintainers of packages
containing bashisms were notified by email and requested to fix the bashisms by
a certain date (distributed).

F. Local Patch

Intent: Maintaining local fixes and/or customizations to a package.
Motivation: Integrators and their users will find bugs in packages. Some of these
bugs are package-specific, while others are due to the integration of the package in
the distribution. Typically, maintainers are encouraged to send the fixes for both
kinds of bugs upstream, such that the upstream project will take ownership of the
code (and its maintenance) and include it by default in their project. In practice,
however, many integration bug fixes are not accepted by upstream (or take time to
be adopted) and tend to end up as local patches that need to be maintained by the
integrator and re-applied by the integrator upon each Upstream Sync. The same
holds for customization changes specific to a distribution, for example because of
Product-wide Concern.
Major Tasks:

1. Getting a Local Patch Accepted Upstream requires a patch that fixes the bug in
a clean way and follows the programming guidelines of the upstream developers.
After thorough testing, the maintainer submits the patch to the preferred bug
reporting system of the upstream project. The report should be as detailed as
possible, making clear what bug is fixed, in which version of the project, and what
the impact is on the users of the distribution. Either the patch is accepted in a
reasonable period of time, or it is not. If accepted, the maintainer can discard
his Local Patch. Otherwise, the maintainer is responsible for maintaining and re-
applying the Local Patch across all future versions of the package.
2. Maintaining the Patch upon an Upstream Sync is the maintainer’s responsibility
until the Local Patch is accepted by upstream (if ever), cf. task 3 of Upstream Sync.
As such, Local Patch is a very common activity, involving 22.1 ± 5% (Debian),
28.4 ± 5% (Ubuntu) and 12.2 ± 5% (FreeBSD) of all package-versions. Of these
versions, only 7 ± 5% (Debian), 0.3 ± 5% (Ubuntu) and 0 ± 5% (FreeBSD) had to
update an existing Local Patch, whereas 24.7± 5% (Debian), 11.9± 5% (Ubuntu)
and 6.3 ± 5% (FreeBSD) could stop maintaining the Local Patch because it was
included into a new upstream version. To keep track of local patches, Debian-based
distributions use patch management systems such as “quilt”, “dpatch” and “git”,
while FreeBSD maintainers manage patches manually.
3. Updating the Package’s Metadata, cf. task 3 of New Package.
4. Integration Testing, cf. task 4 of New Package.
5. Publishing the Package, cf. task 5 of New Package.
Participants: maintainer, upstream developer, bug reporter.

14http://bit.ly/z3ORxT

27

http://bit.ly/z3ORxT


Interactions: Local Patch is typically accompanied by Upstream Sync, Packaging
Change, or Dependency Management.
Literature:

The paradox of on the one hand having to submit a patch upstream to avoid
maintenance but on the other hand having a hard time getting the patch accepted,
is the most studied integration challenge in the literature, across different kinds of
reuse and organizations [3,11,59,78,79]. No silver bullet exists, although, similar to
Upstream Sync and Dependency Management, close collaboration of an organization
with the upstream project is generally recommended [79], even in the case of
COTS [64]. However, such a collaboration takes a lot of time, effort and goodwill,
and also does not guarantee that the upstream project will accept and maintain
the patch [90]. In fact, it often happens that even an accepted patch still needs
to be maintained by the downstream organization (since the organization has the
required expertise) [45].

An opposite approach has been successful in the case of ISS, where the ISS
team reaches out to the teams that reuse its components to help them with in-
tegration [79]. Alternatively, one could use COTS-style glue or wrapper code to
avoid changing the actual code altogether [26, 54]. However, such approaches are
less powerful (one loses the benefits of OSS/ISS) and still require maintenance.
As a kind of middle ground, many organizations use packaging organizations like
OSS distributions as a maintenance buffer between upstream and themselves [59],
shifting the problem to the distributions. In the presence of sufficient industrial
partners, one could even consider making an independent fork of an upstream
component, but this is quite costly and in the end not that successful in prac-
tice [90]. Note that patches for local usage or configuration will never be picked up
upstream, hence require eternal maintenance. This applies especially to end-users,
who might have local patches on top of a distribution’s package.
Notable Instances:

A patch that is quickly adopted upstream: The Debian and Ubuntu packages of
the GNOME sensors-applet (Debian/Ubuntu) desktop widget for temperature and
other sensors featured “ugly, outdated icons” (#69800) because the newer icons
did not comply with the license policy of Debian and Ubuntu. To fix this, the
Ubuntu maintainer built a local patch on top of the Debian package to use the
newer icons in Ubuntu, while the upstream developer contacted the icon designer
to make the new icons compatible with Debian by adding an additional license
to the icons (an example of the “Disjunctive” legal pattern [35]). The designer
complied, and the Ubuntu maintainer reported the license change to the Debian
maintainer, such that he could drop his Local Patch.
A Local Patch can cause havoc: A notorious security hole in the OpenSSL De-
bian package (an implementation of the SSL/TLS protocols) was introduced into
Debian by a local patch and lasted from May 2006 until May 200815. A call to
the function adding randomness to a cryptographic key had accidentally been
commented out by a Local Patch (#363516). The Debian maintainer had con-
tacted upstream, but did not fully disclose himself, nor his plans, and was largely
ignored16. The patch was never sent upstream for inclusion afterwards. To com-
plicate the issue further, the address of the mailing list contacted by Debian was

15http://lwn.net/Articles/282038/
16http://bit.ly/w7rn04

28

http://lwn.net/Articles/282038/
http://bit.ly/w7rn04


not the real OpenSSL development list, since that one was hidden from non-
developers17. This security hole propagated to over 44 derived distributions, with-
out any of the maintainers or contributors involved identifying the bug.

G. Maintainer Transfer

Intent:

Maintaining a package if the maintainer is absent, unwilling or incapable to
further maintain a package.
Motivation:

Being a package maintainer is a major responsibility, since it requires mediating
between upstream projects and the end-user, typically for multiple packages at a
time. However, maintainers may have periods during which they cannot spend the
required time on integration, they may lose interest in certain packages, or they
could just become unresponsive to bug reports or user requests. In the worst case,
a package could even be orphaned when the maintainer quits. To prevent packages
(and any product based on it [54]) from stalling, OSS distributions need to provide
a means to keep packages evolving, while bypassing or overriding a maintainer.
Major Tasks:

1. Overriding the Maintainer depends on how a distribution organizes package
ownership. If package maintenance is shared across all distribution developers col-
lectively, the concept of overriding a maintainer is not relevant. In Ubuntu, for
example, packages in the commercially supported Main and Restricted archives
are managed by a team known as Core Developers, whereas the packages in the
commercially unsupported Universe and Multiverse archives are supported by the
community under the guidance of a team known as “Masters Of The Universe”
(MOTU). Any developer can modify any package, as long as it is managed by
the developer’s collective and the change does not introduce unnecessary diver-
gences compared to upstream. In case of disagreement amongst developers, there
are conflict resolution procedures in place, but those rarely need to be used.

Distributions with individual package ownership, on the other hand, need a
Maintainer Transfer policy to take over the role of a maintainer if she becomes
unresponsive or disappears altogether. A contributor proposing an Upstream Sync,
Dependency Management, Infrastructure Change or a Local Patch that fulfils cer-
tain criteria can explicitly mark her change as a Maintainer Transfer. In Debian,
for example, this is called a “Non-Maintainer Upload” (NMU), and is only valid
for changes that fix an important, known bug. Debian provides the “nmudiff” tool
to help contributors submit NMUs.

The unique property of a Maintainer Transfer change is that a timer is at-
tached to it, with a delay depending on the severity of the proposed change (e.g.,
FreeBSD typically uses a delay of 2 weeks). Unless the maintainer replies to the
change on time, the change is set to go in automatically once the timer expires.
If the maintainer replies on time, she can request suspending the timer in order
to review the change. If not approved, the contributor needs to revise the change
corresponding to the maintainer’s comments.

We found that 5.7±5% (Debian) and 2.9±5% (FreeBSD) of all package-versions
contain an instance of Maintainer Transfer (Ubuntu has collective package own-

17http://www.links.org/?p=327

29

http://www.links.org/?p=327


ership, hence does not have such transfers). The min/median/max number of days
until such changes were accepted is 0/1.5/556 days for Debian and 1/16/465 days
for FreeBSD. In Debian, the median value is very low, indicating that maintain-
ers often commit a Maintainer Transfer before the timer goes off. In FreeBSD,
time-outs are much more common. The cases with maximum time-out in Debian
(#325110) and FreeBSD (#140303) correspond to packages that temporarily were
orphaned, i.e., the maintainer officially stepped down.

2. Supporting Orphaned Packages is typically done by an ad hoc team of volun-
teers, based on casual contributions or reported critical bugs. In Debian, the QA
team typically jumps in to make changes to orphaned packages.

3. Adopting Orphaned Packages either happens by volunteers interested in an
orphaned package, or by convention, when a contributor provides patches for an
orphaned package and automatically becomes the new maintainer. For example,
if no feedback is received for a patch in FreeBSD within three months, the main-
tainer is deemed to have abandoned the package and any contributor may assume
maintainership [82, Section 5.5].
Participants: maintainer, contributor.
Interactions: Maintainer Transfer can co-occur with all other activities, except
for New Package.
Literature:

We could not find any reference to the Maintainer Transfer activity in literature.
However, Curtis et al. [17] and Lewis et al. [49] do stress the importance of hav-
ing “system-level thinkers” as maintainers, who are able to sufficiently understand
both the specific domain of the integrated component as well as the overall archi-
tecture of their own system. According to our analysis, the Maintainer Transfer

activity would kick in as soon as the maintainer of a component would not possess
those skills.
Notable Instances:

An NMU helping out a busy maintainer: httrack 3.40.4-3.1 (Debian), an offline
browser, fixed an issue with the file system locations for test files. The bug was
reported on the 11th of October 2006, followed one week later by a proposed
NMU by a contributor. A couple of hours later the NMU was approved by the
maintainer, who noted (#392419): “Thanks a lot, I didn’t yet had [sic] the change
[sic] to review the issue”.
An NMU with strings attached: The maintainer of libcdio 0.78.2+dfsg1-2.1 (De-

bian), a library for accessing CD media, had been warned on the 20th of Jan-
uary 2008 about C++ header file issues with the upcoming release of GCC 4.3
(Product-wide Concern). Two months later, a contributor sent in an NMU patch
fixing the compiler errors. One day later, the maintainer chimes in (#461683): “I
don’t object to a NMU (I know I haven’t been handling my libcdio package in the
best possible way), but if you wish to NMU, please consider applying the patches
that were sent to other bug reports”). The NMU was approved the same day.
A hostile NMU: On the 18th of May 2007, a contributor requested an Upstream

Sync to the new upstream release (1.3.2) of libjcalendar-java 1.2.2-6.1 (Debian), a
calendar picker component, and also proposed a Packaging Change to support the
Kaffe Java VM. However, since nothing happened for one week, the contributor
added a comment to both bug reports stating “I am planning a NMU if nothing
happens (again)” (#424981, #424982) . The next day, the maintainer replied
(#424981) “I admit that I’m not very reactive, but before you do your NMU,

30



Table 4 Open challenges for integration activities.

Area Challenge

packaging
· insight into upstream build process
· automatic build-/run-time dependency extraction
· accurate replication of packaging environment

testing
· cross-platform testing of package & its dependencies
· integration testing during packaging
· accurate replication of functionality issues

evolution
· determining best moment for Upstream Sync
· insight into upstream changes
· recommendations about important API changes
· management of ownership of package changes

merging
· prediction of integration defects
· identifying opportunities for cherry-picking
· insight into merge status of Local Patches

have you checked that Jcalendar 1.3.2 is backwards compatible with version 1.2?”.
Nothing happened for 1.5 months, until the NMU timer had expired and the NMU
went in.

5 Identified Integration Challenges

The seven discussed integration activities document the complexity of integra-
tion. Even in the simplest case, i.e., black box integration, maintainers still need
to package the integrated project (New Package), verify if the integrated product
is compatible with each Upstream Sync, and follow up on Dependency Management

changes like library transitions. In the case of white box integration, the integrated
projects need to be customized or fixed with Local Patches, and streamlined to
product-wide policies (Product-wide Changes). All the time, the packaging logic
and configuration files need to be kept up-to-date (Packaging Change), and main-
tainer activity needs to be monitored (Maintainer Transfer).

To paraphrase Curtis et al. [17], we “are not claiming to have discovered new
insights” for OSS integration, instead we identified and documented the core in-
tegration activities that the maintainers of three large OSS distributions perform
on a daily basis “to help identify which factors must be attacked to improve” in-
tegration. Although distributions have guidelines on how to address some of these
activities [22,82], the differences in terminology (e.g., “NMU” vs. “time-out”) and
technical procedures (e.g., centralized vs. distributed Product-wide Concern) make
it confusing to understand and compare the activities, or to study possible tools
and techniques to improve these activities. Hence, the unifying vocabulary that
we provide is key to understand the integrating process of upstream components,
complementing existing work on code integration [15,23,29,67,68] and on selection
of reusable components [6,13,50]. Finally, we also compared the activities to those
in prior work, in particular in commercial settings.

Throughout our analyses and the documentation of the 7 integration activities,
we distilled 13 concrete challenges summarized in Table 4, across four different
research areas. Most of the challenges have been discussed earlier in this paper.
Ubuntu and Debian are currently in the process of designing an automatic unit and

31



integration testing system for the packaging process. Similar to defect prediction
work at the code level, prediction of integration defects and the effort involved
with fixing these defects would be extremely useful. There is some initial work on
this [63, 94], but more work is needed to bring such techniques to practitioners.
Similarly, a kind of bugzilla repository for managing ownership of changes, i.e., who
should update reverse-dependencies, who should perform a Product-wide Concern

or who should act on an NMU, is needed to improve communication across all
involved parties. Insight into the upstream build process [1,85] currently relies on
manual tracing and analysis of build and run-time logs, with only some packages
having rudimentary scripts for checking runtime dependencies. In general, however,
the ability to accurately replicate bugs in code and build is missing. Packaging
environments can vary widely between users, with certain combinations of package
and distribution versions causing subtle packaging or run-time problems. Current
bug reporting tools automatically include detailed platform information, yet such
information is often insufficient to identify Dependency Management changes.

As the above challenges impact even three of the largest and most popular
OSS distributions, more powerful tool and process support is essential for most of
the OSS integration activities, complementing the mailing lists, bug repositories,
and custom dashboards (for example to track library transitions) currently in
use by organizations. Until now, researchers have only been studying some of the
challenges, such as API changes [18] and merge defects [12, 75]). Clearly, more
research is needed to support maintainers in the field.

6 Evaluation

The six contacted maintainers pointed out some small factual errors in an earlier
version of the documented integration activities, and recent advances (e.g., regard-
ing the automatic test systems being built for Debian and Ubuntu). However, no
fundamental errors were identified, nor was ant activity discarded. The identified
inaccuracies have been fixed in the activity descriptions above.

Regarding the completeness and usefulness of the documented activities, Ta-
ble 5 summarizes the replies of the six contacted maintainers. As explained in
Section 3.6, two maintainers (M2 and M5) provided empty replies for at least two
questions, while M1 left one question open. Hence, we obtained some empty replies
for Q2, Q3 and Q5. We now discuss each question’s answers.

Q1. What activities did we miss? Five of the maintainers pointed out missing
activities, although many of them were captured in some form.

A.“Upstream Lobbying” was in fact mentioned as part of Local Patch, but M4
found that it deserved its own activity. Interestingly, M6 mentioned the inverse
kind of lobbying, i.e., lobbying in derived distributions for newly reported or fixed
bugs. Instead of splitting up Local Patch, we decided to keep this activity as is,
but add more detail about the lobbying part.

B. “Post-release Maintenance” was suggested by M4 and M2 as a dedicated
integration activity encompassing all the activities occurring after a new package-
version has made it into a new release of the distribution. M4 notes that “while the
maintainer isn’t required to support the use of a product they [sic] are often the

32



Table 5 Maintainer feedback on the usefulness and completeness of the documented activities
and challenges.

M1 M2 M3

Q1 license/copyright analysis
vulnerability resolution

no
post-release maintenance

Q2 people unfamiliar with topic <no reply>
major activities . . .

. . . in easy-to-read way
Q3 <no reply> <no reply> more detail/examples

Q4 license tracking none none

Q5
DEP5/CDBS license checking

<no reply>
automated testing

autom. dep. checking autom. dep. checking

M4 M5 M6

Q1
upstream lobbying

package end-of-life
monitoring downstream . . .

post-release maintenance . . . distributions for bugs/patches

Q2
useful overview

<no reply>
nice intro to what . . .

do we document our activities? . . . being distro dev is about
Q3 what to do? nothing none

Q4
timely integration

none
monitoring the status . . .

desktop vs. enterprise . . . of all packages . . .
hundreds of variants . . . in the distribution

Q5 good question :-) <no reply>
improvements to package process

atomic package updates

first person contacted if someone can’t get to build on FreeBSD”. Our activities do
not capture this activity by itself, only its outcome, for example in the form of a
Packaging Change or Local Patch. This is because many emails could be exchanged
regarding a maintenance problem without a corresponding change log item or bug
report (i.e., our data set does not capture such discussions). Although this hints at
less important integration issues (since they did not need to be fixed or acted upon
in some form), future work should analyze the mailing list data of the distributions
to uncover this part of the integration work.

C. “License/Copyright Analysis” was mentioned by M1 as an important activity:
“copyright/licensing analysis isn’t mentioned anywhere, yet it’s often a tiresome
process when creating a new package (and often forgot [sic] to update on upstream
sync)”. License analysis did not occur very often in our data set, for example in our
Ubuntu samples we only found one occurrence (version “0.4-0ubuntu1” of package
“branding-ubuntu”), in which case the license of some files had not been specified
as being GPL. For this reason, the activity is captured in our Other category.

D. “Vulnerability Resolution” was pointed out by M2 as a missing activity, i.e.,
the steps performed to address a vulnerability in a timely manner after release.
Although it is not one of the top 7 activities (and hence not documented in detail
by us), vulnerability resolution occurred relatively often (Table 3), occurring in
4.4 ± 5% (Debian), 1.3 ± 5% (Ubuntu) and 0.8 ± 5% (FreeBSD) of all package-
versions. Our data shows how most of these vulnerabilities were reported and fixed
upstream. Similar to Upstream Sync, distributions first have to become aware of
vulnerabilities, then update their packages as soon as a fix is available.

For this reason, vulnerability changes tend to use NMUs (see Maintainer

Transfer), since the security team wants to update a vulnerable package as soon

33



as possible, overruling the maintainer if necessary. Often, vulnerability fixes are
cherry-picked, leaving other upstream changes until the next official Upstream

Sync. For example, cups-base revision 1.44 (FreeBSD) (24th of January 2005) fixed
a vulnerability in the Cups printer server identified and reported upstream by a
university student, while php4 4:4.4.0-3ubuntu1 (Ubuntu) cherry-picked 8 upstream
vulnerability fixes for the php programming language (19th of December, 2005).
Since the full details of vulnerabilities and how they were processed internally are
not available in publicly available databases, and since it is less common than the
seven documented activities, detailed analysis of this integration activity is future
work.

E. “Package End-of-life” was a missing and often overlooked activity according
to M5. Some packages lose user and maintainer interest over time, hence when the
distribution evolves and integration activities need to be performed on the pack-
age, either nobody steps up or substantial effort is required by other maintainers
to keep the package up-to-date. Similarly, if an older version of a library is ren-
dered obsolete by a newer one, or the older version starts to create conflicts with
the newer one, the older version needs to be removed from the distribution. How-
ever, we did not find evidence of this activity in our data samples. Our Maintainer
Transfer activity comes closest, since this one occurs when an unmaintained pack-
age is “saved” from end-of-life by a new maintainer.

Surprisingly, the Internationalization activity, which is the ninth most fre-
quent activity that we found (Table 3), was not mentioned by any maintainer. This
activity comprises all the work related to translation and adaptation of a package
to other cultures (e.g., different currencies) [93]. Since distributions reach signifi-
cantly more users than an individual upstream project could reach on its own, a
packaged project has a higher chance of being used in non-English locales. Hence,
distributions typically have dedicated teams addressing the internationalization
needs of their packages.

For example, the debian-l10n-english team works on the translation templates
of packages to facilitate the job of translators (who are often not software en-
gineering experts). Distributions typically solicit Internationalization patches
once development has been frozen, i.e., the basic new functionality has been stabi-
lized and only bug fixes are still allowed. Although Internationalization changes
are typically harmless, they can in rare cases keep packages from executing. In
January 2006, for example, an incomplete Japanese character prevented the xchat
IRC client of FreeBSD from executin. A 1-character fix in a translation template
fixed this issue.

Q2. What can the documented activities be used for? M1, M3 and M4
agree that the documented patterns provide a clear overview of the major integra-
tion activities, which is useful for novices (M1) as well as any stakeholder involved
in integration (M3/M4). M4 noted that the activities do not necessarily need to
be used as direct documentation. They could also be used to check how well the
distribution collects data or monitors the progress of each integration activity. M3
informed us that the structured, accessible explanations of the major integration
activities piqued the interest of two of his package testers, which he believes to
be a success. M6 recommended us to “reach out to developers communities with
this documentation. E.g., you could write a blog post providing an introduction

34



to your paper, targetted at distribution devs”. We are planning to follow up on
this suggestion.

Q3. What is missing from the documented activities? M3 was interested
in getting more details and examples for each activity, while M4 wanted to know
what the recommended practices and tools for each activity are. Our documented
activities on purpose describe only the major tasks and how they are implemented
in the three considered distributions, without a dedicated section for “best prac-
tices”. Given the many challenges identified in Section 5 as well as in Section 2,
many activities rely on manual work, and hence do not yet have best practices.

Q4. What challenges did we miss? M1 again mentioned license tracking.
M4 noted that the largest challenge is not how to perform each activity, but
how to perform them on time. Given the ever shorter time frame in between re-
leases [44,69,76], this is indeed an important constraint on the identified challenges.
Furthermore, the right activity to do on a particular moment also depends on the
end-user: “desktop users want updates ASAP while enterprise users don’t want to
change their software for multiple years”. This echoes known phenomena such as
Microsoft’s monthly “patch Tuesday” [48] and Mozilla’s extended support releases
for companies [47]. M4 concluded by warning for the challenges represented by the
hundreds of variations in build systems, versioning schemes, projects, etc. Slightly
related to this, M6 noted that “something orthogonal is the management of a large
amount of software packages: getting a global overview from their status is not
easy”. This ties into the management-related challenges of Table 4 identified from
our data.

Q5. What promising tools/techniques do you see coming up to address

some of the challenges? Both M1 and M3 expect automated dependency check-
ing tools to become mainstream, i.e., “It may take some time to make that auto-
matic but we are getting closer every day”. Such tools would improve at least the
Upstream Sync and Dependency Management activities. M1 mentioned two promis-
ing license analysis tools, while M3 remarked that “We already have automated
testing tools in Ubuntu (see QA team) so we are heading in the right direction
here”. M6 saw the advent of atomic Dependency Management and other packaging
process improvements as a promising development.

Overall, the six maintainers liked the work and found that the documented
activities described their daily activities “quite well” (M6). They would not nec-
essarily use our documented representation of the activities themselves (it is more
targeted towards novices), except to systematically check which activities their dis-
tribution is not tracking (M4). Some missing important activities were identified,
in particular license analysis and tracking of licensing changes, vulnerability reso-
lution and post-release maintenance, as well as some missing challenges (especially
time pressure). Finally, some tool support for dependency checking is expected to
arrive in the medium term, however many challenges remain open.

7 Threats to validity

With respect to construct validity, there are several threats to consider. First, we
used the change log messages as a representative record of the maintainers’ activ-

35



ities, based on which important bug reports were identified for in-depth manual
analysis and (if necessary) mailing list messages and other kinds of documentation.
We did not formally verify the accuracy of these data sources, nor their complete-
ness. Although M6 warned that the log message of the first version of a Debian
package does not always mention whether Local Patch has been performed, none
of the 4 instances of New Package found suffered from this issue.

There is no further evidence that suggests that the logs are incorrect: the three
analyzed distributions require their maintainers to provide log messages [22, 46],
since those are the primary input for end users and other maintainers affected by
changes to a package. In fact, bug reports and mailing lists form the official means
of communication in OSS distributions, together with IRC chat messages. In cases
where a bug report identifier was missing (cf. Figure 4), either the change log item
was sufficiently clear or we were able to find a related email message via a web
search.

Second, we only analyzed a subset of the package-versions, and, hence, change
logs. To mitigate this threat, we randomly sampled a large enough subset of
package-versions to obtain a confidence interval of ±5% with a 95% confidence
level. Furthermore, the activities that we identified for Ubuntu and FreeBSD did
not add any new activity on top of those identified for Debian.

Third, our algorithm for reconstructing “versions” from the FreeBSD CVS
commits depends on conventions that are documented by the FreeBSD project,
but not explicitly enforced. It is possible that the recovered versions are either too
fine-grained (under-approximating the actual number of activities performed for
a version) or too coarse-grained (over-approximating). Feedback from the package
maintainers confirmed that the algorithm is correct and that deviations from the
guidelines should be minimal.

Fourth, since we study individual package-versions, our sample could contain
multiple versions of some packages, just one version of other packages, and no
version at all of the remaining packages. Such an approach is necessary, since
large projects like KDE or GNOME involve more integration effort than smaller
projects, and hence need to have more weight in our study. In addition, such
projects typically also have a larger number of associated packages, which increases
their weight further. The risk that this sampling decision biases the observed
activities is small, since ecosystems like KDE and GNOME consist of hundreds of
different applications and tools, developed by hundreds of developers and packaged
by dozens of maintainers. In other words, even inside one such ecosystem, we should
still expect a large diversity in integration activities.

Regarding internal validity, as mentioned above we rely on the accuracy and
completeness of the logs of each package-version. Even in the event that some ac-
tivities were not documented in the logs, there is no specific reason to believe that
some activities would be less documented than others, hence this effect would can-
cel itself out across the different activities. For example, Post-release Maintenance

was missed in our results, since “unimportant” discussions (i.e., those without ex-
plicit bug report or patch attached to them) did not have any trace in the change
log and its referenced bug reports, across all three distributions.

Furthermore, the nature of manual classification implies that there might be
some misclassifications (both for the activities as well as challenges). To overcome

36



this, the logs were interpreted by two of the authors, both of whom have experi-
ence in integration tasks (one of them is a Debian/Kubuntu developer), and they
discussed their decisions with each other in order to resolve differences and obtain
consensus. These discussions also resolved possible bias introduced by having the
first set of tags be derived only by one of the authors. Furthermore, to validate
the discovered patterns of integration and open challenges, we reached out to six
maintainers/release engineers of Debian, Ubuntu and FreeBSD to evaluate and
provide feedback on these patterns. Nonetheless, the quantitative results of this
paper (prevalence of each activity) is exploratory only and we do not extrapolate
these results.

The evaluation by the six maintainers was performed entirely via email, since
this is the preferred means of communication for maintainers (and bug reposito-
ries, as discussed, are not suited). Furthermore, the asynchronous nature of emails
provided breathing space to the maintainers and made it easier for them to orga-
nize their feedback amongst their voluntary open source activities and day-time
job. Even then, we still observed that some of the questions were not addressed.
In future work, we might complement asynchronous messages via email with syn-
chronous follow-up via, for example, instant messaging (using IRC).

The open replies by some of the maintainers, as well as the selection of main-
tainers for the evaluation, also could introduce bias. M2 provided three open
replies, M5 two open replies and M1 one open reply, yielding a total of 6 open
replies out of 30 (20%). Due to the distribution of the open replies across the
questions, each question obtained at least four concrete replies (two obtained six
replies). Furthermore, the open replies are spread across the Debian and Ubuntu
maintainers, reducing the overal impact of the missing data even further. Re-
garding selection bias, all six maintainers were experienced maintainers in their
respective OSS distribution, covering a range of different packages according to
size and domain.

An alternative evaluation methodology would have been to first perform a
survey or interview, after which the research findings would be empirically analyzed
and validated on change log and other data. However, doing this would bias our
results to the activities that stakeholders think would be important, not necessarily
all important activities that they are actually doing. Some essential activities never
would have surfaced.

With respect to external validity, we have analyzed three of the largest OSS dis-
tributions as exemplars of packaging organizations. Since integration is the central
activity of OSS distributions, we expect the identified activities to be representa-
tive for many of the activities that other packaging organizations would face in
the case of OSS reuse. For example, packaging organizations like GNOME and
KDE, or even “regular” Java or C++ systems that reuse multiple open source
libraries as well have to deal with Upstream Sync (e.g., reusing a new version
of log4j), Dependency Management (e.g., adding the dependencies of the new ver-
sion of log4j) and Local Patch (e.g., customizing the new version of log4j to fix
a bug). Nevertheless, manual analysis of other kinds of OSS distributions (e.g.,
Fedora-based), packaging organizations in general or any organization that per-
forms multi-component integration, is necessary to confirm these conjectures and
validate the generalizability of the seven integration activities. Such an analysis

37



might discover new activities, for example in the case of package organizations
that do not build products for end-users but rather middleware or frameworks for
other companies to build on.

8 Conclusion

Software reuse is a major tenet of software engineering, yet the integration activi-
ties that accompany it, be it in a COTS, OSS or ISS context, introduce unforeseen
maintenance costs. Since more empirical research is necessary in this area to help
organizations reuse components successfully and since most studies thus far fo-
cused on integration of individual components and/or non-OSS integration, we
performed a large-scale study on three successful OSS distributions, i.e., Debian,
Ubuntu and FreeBSD.

Analysis of a large sample of change log messages, bug reports and other his-
torical integration data resulted in the identification of seven major integration
activities, whose processes were documented in a pattern-like fashion to help or-
ganizations and researchers understand the responsibilities involved in integration.
The activities were shown to be non-trivial and requiring a large amount of effort,
and they were validated by six maintainers of the three distributions. Based on
the seven documented activities, the major challenges turned out to be related
to cherry-picking of safe changes from a new upstream release, the management
of dependencies between packages, testing of packages and co-ordination among
maintainers. Models and tools are needed to support these integration activities.

By providing a unified terminology across distributions and by documenting
the integration activities in a structured way, our catalogue of activities enables
maintainers of open source distributions, organizations interested in reusing OSS
or ISS components, and researchers to better understand the challenges and ac-
tivities that they face, and to plan policies, tools and methods to address these
challenges. Together with other studies on integration, a dedicated training pro-
gram on integration could be built, aimed at developers and their managers, with
the aim of reducing or at least stabilizing maintenance costs caused by integration.

Finally, and very encouragingly, all distribution maintainers that we contacted
hope that the documented activities and challenges will inspire researchers to start
up a research program in the domain of reuse and integration.

Acknowledgments

The authors would like to thank all maintainers and release engineers of Debian,
Ubuntu and FreeBSD who participated in our study, either directly (providing
feedback on the documented activities), or indirectly (providing insights into the
fascinating world of OSS distributions).

38



References

1. Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. Design recov-
ery and maintenance of build systems. In Proc. of the Intl. Conf. on Soft. Maint., pages
114–123, 2007.

2. Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. Replication
package. http://mcis.polymtl.ca/publications/2015/integration oss distribution adams et al.zip,
2011.

3. Christian Bac, Olivier Berger, Véronique Deborde, and Benoit Hamet. Why and how-to
contribute to libre software when you integrate them into an in-house application ? Proc.
of the 1st Intl. Conf. on Open Source Systems (OSS), pages 113–118, June 2005.

4. Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse influences productivity
in object-oriented systems. Commun. ACM, 39(10):104–116, October 1996.

5. Andrew Begel, Nachiappan Nagappan, Christopher Poile, and Lucas Layman. Coordina-
tion in large-scale software teams. In Proceedings of the 2009 ICSE Workshop on Cooper-
ative and Human Aspects on Software Engineering, CHASE ’09, pages 1–7, Washington,
DC, USA, 2009. IEEE Computer Society.

6. Jesal Bhuta, Chris Mattmann, Nenad Medvidovic, and Barry W. Boehm. A Framework
for the Assessment and Selection of Software Components and Connectors in COTS-Based
Architectures. In WICSA, page 6, 2007.

7. Information Technology Resources Board. Assessing the risks of commercial-off-the shelf
applications. Technical report, ITRB, September 1999.

8. Barry Boehm and Chris Abts. Cots integration: Plug and pray? Computer, 32(1):135–138,
January 1999.

9. Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: its
extracted software architecture. In Proc. of the 21st Intl. Conf. on Software Engineering
(ICSE), pages 555–563, 1999.

10. Frederick P. Brooks, Jr. The Mythical Man-month (Anniversary Ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

11. Lisa Brownsword, Tricia Oberndorf, and Carol A. Sledge. Developing new processes for
cots-based systems. IEEE Softw., 17(4):48–55, July 2000.

12. Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive detection of
collaboration conflicts. In Proc. of the 19th ACM SIGSOFT Symp. and the 13th European
Conf. on Foundations of Software Engineering (ESEC/FSE), pages 168–178, 2011.

13. Weibing Chen, Jingyue Li, Jianqiang Ma, Reidar Conradi, Junzhong Ji, and Chunnian
Liu. An empirical study on software development with open source components in the
chinese software industry. Softw. Process, 13:89–100, January 2008.

14. W. G. Cochran. Sampling Techniques. John Wiley and Sons, Inc., New York, 2nd edition,
1963.

15. James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability in software
engineering. IEEE Softw., 15:37–45, Nov. 1998.

16. Ivica Crnkovic and Magnus Larssom. Challenges of component-based development. J.
Syst. Softw., 61(3):201–212, April 2002.

17. Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for
large systems. Commun. ACM, 31(11):1268–1287, November 1988.

18. Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive changes for frame-
work evolution. In Proc. of the 30th Intl. Conf. on Software Engineering (ICSE), pages
481–490, 2008.

19. Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and John Patterson.
Sometimes you need to see through walls: A field study of application programming inter-
faces. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work, CSCW ’04, pages 63–71, New York, NY, USA, 2004. ACM.

20. Cleidson R. B. de Souza and David F. Redmiles. An empirical study of software develop-
ers’ management of dependencies and changes. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 241–250, New York, NY, USA, 2008.
ACM.

21. Project participants. http://www.debian.org/devel/people, 2013.
22. Debian project. Debian Developer’s Reference, 2011 edition, 2011.
23. Robert DeLine. Avoiding packaging mismatch with flexible packaging. In Proc. of the

21st Intl. Conf. on Software Engineering (ICSE), pages 97–106, 1999.

39



24. Developer’s Reference Team, Andreas Barth, Adam Di Carlo, Raphaël Hertzog, Lucas
Nussbaum, Christian Schwarz, and Ian Jackson. Debian. The Debian Project, April 2011.

25. Roberto Di Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Ste-
fano Zacchiroli. Supporting software evolution in component-based foss systems. Sci.
Comput. Program., 76:1144–1160, December 2011.

26. Piergiorgio Di Giacomo. Cots and open source software components: are they really
different on the battlefield? In Proc. of the 4th intl. conf. on COTS-Based Software
Systems (ICCBSS), pages 301–310, 2005.

27. M. Dogguy, S. Glondu, S. Le Gall, and S. Zacchiroli. Enforcing type-safe linking using
inter-package relationships. In Proc. of the 21st Journées Francophones des Langages
Applicatifs (JFLA), page 25p., January 2010.

28. William Frakes and Carol Terry. Software reuse: metrics and models. ACM Comput.
Surv., 28(2):415–435, June 1996.

29. William B. Frakes and Kyo Kang. Software reuse research: Status and future. IEEE
Trans. Softw. Eng., 31:529–536, July 2005.

30. Freebsd porter’s handbook. http://bit.ly/FQDPhP, 2011.

31. The freebsd developers. http://www.freebsd.org/doc/en/articles/ contributors/staff-
committers.html, 2013.

32. J. E. Gaffney and T. A. Durek. Software reuse – key to enhanced productivity: some
quantitative models. Inf. Softw. Technol., 31(5):258–267, June 1989.

33. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

34. Daniel M. German, Jesus M. Gonzalez-Barahona, and Gregorio Robles. A model to un-
derstand the building and running inter-dependencies of software. In Proc. of the 14th
Working Conf. on Reverse Engineering (WCRE), pages 140–149, 2007.

35. Daniel M. German and Ahmed E. Hassan. License integration patterns: Addressing license
mismatches in component-based development. In Proc. of ICSE, pages 188–198, 2009.

36. Daniel M. German, Jens H. Webber, and Massimiliano Di Penta. Lawful software en-
gineering. In Proc. of the FSE/SDP wrksh. on Future of Soft. Eng. research (FoSER),
pages 129–132, 2010.

37. Jesus M. Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José Amor, and
Daniel M. German. Macro-level software evolution: a case study of a large software com-
pilation. Empirical Softw. Engg., 14:262–285, June 2009.

38. Sigi Goode. Something for nothing: management rejection of open source software in
australia’s top firms. Inf. Manage., 42(5):669–681, July 2005.

39. The BSD Certification Group. Bsd usage survey. Technical report, The BSD Certification
Group, October 2005.

40. Øyvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption of open source software
in software-intensive organizations - a systematic literature review. Inf. Softw. Technol.,
52(11):1133–1154, November 2010.

41. Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of open source in
the software industry. In Proc. of the 4th IFIP WG 2.13 Intl. Conf. on Open Source
Systems (OSS), volume 275, pages 211–221, 2008.

42. James D. Herbsleb and Rebecca E. Grinter. Splitting the organization and integrating
the code: Conway’s law revisited. In Proceedings of the 21st International Conference on
Software Engineering, ICSE ’99, pages 85–95, New York, NY, USA, 1999. ACM.

43. James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An
empirical study of global software development: Distance and speed. In Proceedings of the
23rd International Conference on Software Engineering, ICSE ’01, pages 81–90, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

44. Raphaël Hertzog. Towards debian rolling: my own debian CUT manifesto.
http://raphaelhertzog.com/2011/04/27/towards-debian-rolling-my-own-debian-cut-
manifesto/, 2011.

45. Ari Jaaksi. Experiences on product development with open source software. In Proc. of
the IFIP Working Group 2.13 on Open Source Soft, volume 234, pages 85–96. Springer,
2007.

46. Joseph Koshy. Building Products with FreeBSD.
http://www.freebsd.org/doc/en/articles/building-products/, 2013. May 2013.

40



47. Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster releases im-
prove software quality? – an empirical case study of mozilla firefox. In Proc. of the 9th
IEEE Working Conf. on Mining Software Repositories (MSR), pages 179–188, Zurich,
Switzerland, June 2012.

48. Robert Lemos. Microsoft details new security plan. http://news.cnet.com/Microsoft-
details-new-security-plan/2100-1002 3-5088846.html, 2003.

49. Patrick Lewis, Patrick Hyle, Marian Parrington, Elizabeth Clark, Barry Boehm, Christo-
pher Abts, and Robert Manners. Lessons learned in developing commercial off-the-shelf
(cots) intensive software systems. Technical report, SERC, October 2000.

50. Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. Slyngstad,
and Maurizio Morisio. Development with off-the-shelf components: 10 facts. IEEE Softw.,
26:80–87, March 2009.

51. Jingyue Li, Reidar Conradi, Odd Petter Slyngstad, Marco Torchiano, Maurizio Morisio,
and Christian Bunse. A state-of-the-practice survey of risk management in development
with off-the-shelf software components. IEEE Trans. Softw. Eng., 34:271–286, 2008.

52. Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair Khan,
Marco Torchiano, and Maurizio Morisio. An empirical study on off-the-shelf component
usage in industrial projects. In Proc. of the 6th intl. conf. on Product Focused Software
Process Improvement (PROFES), pages 54–68, 2005.

53. Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer-Verlag, 2007.

54. Frank Van Der Linden. Applying open source software principles in product lines. The
European journal for the informatics professional (UPGRADE), 3:32–40, June 2009.

55. Andreas Lundqvist. Gnu/linux distribution timeline. http://futurist.se/gldt/, 2013.
56. Michael Mattsson, Jan Bosch, and Mohamed E. Fayad. Framework integration problems,

causes, solutions. Commun. ACM, 42(10):80–87, October 1999.
57. Stephen McCamant and Michael D. Ernst. Predicting problems caused by component

upgrades. In Proc. of the Symposium on the Foundations of Software Engineering, pages
287–296, 2003.

58. Shane McIntosh, Bram Adams, Yasutaka Kamei, Thanh Nguyen, and Ahmed E. Hassan.
An empirical study of build maintenance effort. In Proc. of ICSE, pages 141–150, May
2011.

59. Janne Merilinna and Mari Matinlassi. State of the art and practice of opensource com-
ponent integration. In Proc. of the 32nd Conf. on Software Engineering and Advanced
Applications (EUROMICRO), pages 170–177, 2006.

60. Marc H. Meyer and Alvin P. Lehnerd. The Power of Product Platforms. Free Press, March
1997.

61. Martin Michlmayr, Francis Hunt, and David Probert. Release management in free software
projects: Practices and problems. In Open Source Development, Adoption and Innovation,
volume 234, pages 295–300, 2007.

62. Ivan Mistŕık, John Grundy, André Hoek, and Jim Whitehead. Collaborative Software
Engineering: Challenges and Prospects, chapter 19, pages 389–402. Springer, first edition,
2010.

63. Abdallah Mohamed, Guenther Ruhe, and Armin Eberlein. Optimized mismatch resolution
for cots selection. Softw. Process, 13(2):157–169, March 2008.

64. M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and S. E. Condon. Cots-
based software development: processes and open issues. J. Syst. Softw., 61(3):189–189,
April 2002.

65. Fredy Navarrete, Pere Botella, and Xavier Franch. How agile cots selection methods
are (and can be)? In Proceedings of the 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, EUROMICRO ’05, pages 160–167, Washington,
DC, USA, 2005. IEEE Computer Society.

66. Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda. Update propa-
gation practices in highly reusable open source components. In Proc. of the 4th IFIP WG
2.13 Int. Conf. on Open Source Systems (OSS), volume 275, pages 159–170, 2008.

67. D. L. Parnas. On the design and development of program families. IEEE Trans. Softw.
Eng., 2:1–9, Jan. 1976.

68. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.

69. Scott James Remnant. A new release process for ubuntu?
http://netsplit.com/2011/09/08/new-ubuntu-release-process/, 2011.

41



70. Josip Rodin and Osamu Aoki. Debian New Maintainers’ Guide. The Debian Project,
June 2011.

71. Michel Ruffin and Christof Ebert. Using open source software in product development: A
primer. IEEE Softw., 21(1):82–86, January 2004.

72. Bert M. Sadowski, Gaby Sadowski-Rasters, and Geert Duysters. Transition of governance
in a mature open software source community: Evidence from the debian case. Information
Economics and Policy, 20(4):323–332, 2008.

73. Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani. Under-
standing free/open source software development processes. Software Process: Improvement
and Practice, 11(2), 2006.

74. Carolyn B. Seaman. Communication costs in code and design reviews: An empirical study.
In Proceedings of the 1996 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’96, pages 34–. IBM Press, 1996.

75. Emad Shihab, Christian Bird, and Thomas Zimmermann. The effect of branching strate-
gies on software quality. In Proc. of the ACM/IEEE intl. symp. on Empirical Software
Engineering and Measurement (ESEM), pages 301–310, 2012.

76. Mark Shuttleworth. The art of release. http://www.markshuttleworth.com/archives/146,
2008.

77. Manuel Sojer and Joachim Henkel. Code Reuse in Open Source Software Development:
Quantitative Evidence, Drivers, and Impediments. Journal of the Association for Infor-
mation Systems, 11(iss.12), 2010.

78. Diomidis Spinellis and Clemens Szyperski. Guest editors’ introduction: How is open source
affecting software development? IEEE Softw., 21(1):28–33, January 2004.

79. Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. A compar-
ative study of challenges in integrating open source software and inner source software.
Inf. Softw. Technol., 53(12):1319–1336, December 2011.

80. Clemens Szyperski. Component software: beyond object-oriented programming. Addison-
Wesley Publishing Co., 1998.

81. The Fedora Project. Package update HOWTO. http://fedoraproject.org/wiki/Package update HOWTO,
2011.

82. The FreeBSD Documentation Project. FreeBSD Porter’s Handbook. The FreeBSD Foun-
dation, 2011.

83. F. Tiangco, A. Stockwell, J. Sapsford, A. Rainer, and E. Swanton. Open-source software
in an occupational health application: the case of heales medical ltd. Procs, 1:130–134,
2005.

84. Paulo Trezentos, Inês Lynce, and Arlindo L. Oliveira. Apt-pbo: solving the software
dependency problem using pseudo-boolean optimization. In Proc. of the IEEE/ACM intl.
conf. on Automated Software Engineering (ASE), pages 427–436, 2010.

85. Qiang Tu and Michael Godfrey. The build-time software architecture view. In Proc. of
ICSM, pages 398–, 2001.

86. ”motu” team. https://launchpad.net/%7Emotu/+members, 2013.
87. ”ubuntu core development team” team. https://launchpad.net/%7Eubuntu-core-

dev/+members, 2013.
88. ”ubuntu universe contributors” team. https://launchpad.net/ universe-

contributors/+members, 2013.
89. André van der Hoek and Alexander L. Wolf. Software release management for component-

based software. Softw. Pract. Exper., 33:77–98, January 2003.
90. Kris Ven and Herwig Mannaert. Challenges and strategies in the use of open source

software by independent software vendors. Inf. Softw. Technol., 50(9-10):991–1002, August
2008.

91. James Whittaker, Jason Arbon, and Jeff Carollo. How Google Tests Software. Addison-
Wesley Professional, 2012.

92. Comparison of bsd operating systems. http://en.wikipedia.org/wiki/Comparison of BSD operating systems,
2011.

93. Xin Xia, David Lo, Feng Zhu, Xinyu Wang, and Bo Zhou. Software internationalization
and localization: An industrial experience. In Proc. of the 18th Intl. Conf. on Engineering
of Complex Computer Systems (ICECCS), pages 222–231, 2013.

94. Daniil Yakimovich, James M. Bieman, and Victor R. Basili. Software architecture clas-
sification for estimating the cost of cots integration. In Proc. of the 21st Intl. Conf. on
Software Engineering (ICSE), pages 296–302, 1999.

42


	Introduction
	Background and Related Work
	Case Study Setup
	Integration Activities in Distributions
	Identified Integration Challenges
	Evaluation
	Threats to validity
	Conclusion

