
	

	

How the FLOSS Research Community
Uses Email Archives

Megan Squire

Elon University, USA

ABSTRACT

Artifacts of the software development process, such as source code or emails between
developers, are a frequent object of study in empirical software engineering literature.
One of the hallmarks of free, libre, and open source software (FLOSS) projects is that the
artifacts of the development process are publicly-accessible and therefore easily collected
and studied. Thus there is a long history in the FLOSS research community of using these
artifacts to gain understanding about the phenomenon of open source software, which
could then be compared to studies of software engineering more generally. This paper
looks specifically at how the FLOSS research community has used email artifacts from
free and open source projects. It provides a classification of the relevant literature using a
publicly-available online repository of papers about FLOSS development using email.
The outcome of this paper is to provide a broad overview for the software engineering
and FLOSS research communities of how other researchers have used FLOSS email
message artifacts in their work.

Keywords: Open source, free software, OSS, FOSS, F/OSS, FLOSS, literature review,
software engineering, artifacts, email, mailing list.

INTRODUCTION

The FLOSS research community studies the specifics of how software systems with free,
libre, and open source software (FLOSS) licenses are developed and used, and how they
evolve. To study this phenomenon, FLOSS researchers may choose to study the artifacts
of the development process. The artifacts most frequently studied include archives of
group communication (such as IRC logs or email mailing lists), the histories and reports
of bug tracking systems, documents produced as a byproduct of its development
(documentation, manuals, requirements documents), and the source code itself. These
software development artifacts are available from every individual FLOSS project, either
at their own web site, or, if the project is hosted at a third-party code forge (for example
Github or Sourceforge), from its project page on that forge. Researchers may perform
both computational and semantic analyses on the artifacts and metadata of the FLOSS
software development process.

This paper is an attempt to classify the ways in which one particular artifact (email
message archives) is being used by researchers to understand the FLOSS development
process better. Specifically, this paper searches the large body of FLOSS literature to

	

	

determine whether and how email is collected for use as a research artifact. Relevant
papers were read in order to determine where the emails have been stored, how they have
been cleaned, processed, and analyzed, and how the results have been saved or published.

Outcomes of this work are two-fold. First, it will be useful to gather in one place the vast
body of literature from the FLOSS community that relies on email artifacts. Earlier work
by Crowston, et al. (2012) is an examination of the FLOSS literature in the large,
covering nearly every aspect of empirical research in this area. Our study will be a more
in-depth examination of exactly one type of research artifact or data source, and how it
has been used. Second, the results of this email artifact survey can guide the leaders of
FLOSS data repositories. Three such repositories are FLOSSmole (Howison, et al., 2006),
SRDA (Van Antwerp & Madey, 2008), and FLOSSMetrics (Herraiz, et al. 2009). Results
here can indicate which artifacts are being used as data in the field, as reflected in its
literature, so that these repositories are collecting and storing the emails in a way that is
most helpful to the research community.

To achieve these outcomes, the Motivation section outlines in more detail the reasons for
doing this survey, and lists the four research questions. The Background section describes
the technical foundations for inquiring about email as an artifact of the development
process. The Method section explains the structure for the classification process,
including an outline of the broad categories of papers and their relation to each other.
Following this is a section that includes the Results of the classification, followed by the
Limitations and Future Work section.

MOTIVATION

In this paper we examine the literature to determine how emails are used by researchers
who study FLOSS. Such a survey does not yet exist for either the software engineering
community or the FLOSS research community. Researchers can use this survey to get a
handle on the current state of the art in using email archives for FLOSS analysis. For
example, questions researchers might ask would be:

• Who has used Method X or Project Y in a study already?
• What techniques have already been used, and what were the results? Can I cross-

apply these to Project Y or refine their results by adding Method X?
• Are there any studies that would be interesting to replicate?

Also, as mentioned in the Introduction, the results of this email artifact survey can be
used to guide the leaders of FLOSS data repositories (which many times include
collected artifacts of the development process, as in Howison, et al.) as to how to proceed
with email collection for use by the entire research community. To use their resources
wisely, the administrators of these repositories need to understand what data is desired by
the research community. Then they can write collection scripts or request donations of
the appropriate data. These data sets are then curated and made available to the
community at large. Sharing data sets streamlines the data collection process for the
entire research community and allows people to refer to common data sets, reproduce
results from each others’ work, etc.

	

	

In order to know which emails to collect, how to store the emails, and how to present the
emails as re-usable data, the repository administrators will ask the following:

• Which emails should be collected? Which projects should emails be collected
from, and which can be ignored?

• Are there particular analyses that are performed again and again?
• Can we pre-process the data for you in a useful way to make your analysis work

go faster?
• Are there techniques that should be applied to thousands of projects

simultaneously as part of the data repository collection process?
• Are there analysis techniques that have only been performed on small email

collections but could be applied to larger collections?

Research Questions

This broad survey and classification is the first step in answering a few of these very
practical questions about how the FLOSS community uses email as an artifact of study.
The following four research questions are the focus of our classification.

Q0: In the literature, when emails are used as a data source, what types of analyses
techniques are performed on the data? Are the same techniques used over and over?

As a researcher, knowing the answer to the question “who is doing something similar to
what I am doing?” is a basic preparatory procedure for conducting research. This study
will provide a broad base from which to launch a more specific investigation. From a
repository administrator point of view, the rationale for asking about commonly-used
analysis procedures is because the process of analyzing emails may actually be able to be
automated and added to the data repository itself. It is possible to build in an analysis
and/or cleaning process into the data repository itself. Researchers could then download
raw email data, cleaned email data, or cleaned and processed data.

Q1: In the literature, when emails are used as a data source, are the researchers typically
interested in the CONTENT of the email or the HEADERS, and for what purposes are
each of these being used?

Differences in analysis techniques between these two email parts are significant: very
different skills and techniques are needed to analyze highly structured email headers and
unstructured email content. Researchers interested in applying a particular analysis
technique will want to find work that is similar to what they are proposing. Additionally,
knowing the answer to the content/header split will allow FLOSS data collectors, such as
the FLOSSmole or FLOSSMetrics repositories, to collect and store the emails in the
correct format for researchers, and to correctly focus the cleaning and processing
procedures on the emails themselves. For example, if researchers complain that they are
constantly writing and re-writing routines to take care of email aliasing (e.g. as described
in Appendix A reference 60 [A60] and elsewhere), it may be possible for a repository
administrator to add this cleaning logic into one version of the downloadable repository
data.

	

	

Q2: In the literature, when emails are used as a data source, how many projects or
mailing lists are in the study? For the papers that use a small number of project email lists
in their study, what are the most popular projects to study? Are the same projects being
studied often?

Again, the optimal choice of research techniques may differ depending on the target size
of the data being analyzed. Has anyone ever tried doing X technique on Y years worth of
all the emails stored in Z forge? Did anyone get meaningful results from studying emails
of just one project? What analyses were performed on this project, and could it be
replicated? Note that this question is not attempting to place a value on a higher or lower
number of projects or messages in a study. In other words, a study with more projects is
not better or worse, it simply points to a method that can potentially be generalizable
(extended to more than just a single mailing list). Additionally, knowing how many
projects were involved in each study would help the FLOSS data repository
administrators and data collectors focus their collection efforts on getting the most useful
or popular projects. Knowing which methods have been applied to entire forges full of
projects (hundreds or thousands of projects, or more) will help repository administrators
understand which goals are realistic for storing and curating re-usable corpuses of FLOSS
email.

Q3: Given a particular categorization (for example “single-project studies that use email
headers to build a social network”), what specific papers are included in that group? And
the opposite question: given a particular paper, how was it categorized?

Knowing the answer to this question will help researchers find similar papers, or to show
results occurring from the different approaches between papers.

The next section describes a few of the technical background features of FLOSS email,
its collection, and its cleaning.

BACKGROUND

At the most basic level, FLOSS is simply defined: it is software released under a free or
open source license. However, largely because of the license requirements (that the
source code is to be publicly available and that users should be able to make changes to
it), in practice FLOSS is usually developed using tools that support frequent, transparent
source code releases and fluid, decentralized, globally-distributed teams. The result is that
in addition to the source code being publicly available for a project, there are also many
other available artifacts of the FLOSS development process: public communication
archives, web-based bug databases and task lists, online wikis and documentation, and
the like. In this section, we describe email as an artifact, and discuss why it is critical to
have a broad understanding of its use in research.

FLOSS Development Artifacts

Artifacts of the development process, usually source code, are a cornerstone data source
for empirical software engineering research (Basili, et al., 2007). By studying the source
code of a project, we can attempt to answer a whole host of questions about the software,

	

	

for example about its quality (Hassan, 2009; Tarvo, 2009) team structure (de Souza, et al.,
2005), and maintenance procedures (Zimmerman, et al., 2005), to name a few. Studying
how source code changes over time can yield additional insights into the evolution of the
project, e.g. (Nakakoji, et al., 2002).

The additional artifacts available from FLOSS projects provide another valuable source
of data to be mined for patterns. For example, researchers may be able to answer
questions about a FLOSS project by studying the way its participants communicate, or by
comparing multiple projects for communication patterns (Scacchi, 2010). If
communication artifacts are publicly available, as they usually are in FLOSS projects,
this makes them easy to study. (Though this ubiquity may not equate to quality, as
Wright, et al. (2010) points out.) Common communication artifacts in FLOSS projects
may include: messages sent to email mailing lists, IRC chat logs, Twitter streams, social
media page updates, and the like (Robles, et al., 2009).

How FLOSS Uses Email Artifacts

Email is the oldest and most-used of these communication techniques among the FLOSS
projects. Typically, a FLOSS project will have at least one email-based electronic mailing
list that helps to streamline communication between developers, users, or both. The
centralized mailing list server software keeps track of who is subscribed to receive all
messages sent to the list. Mailing lists can be either announcement-based (one-way
communication, outbound only, sent to list subscribers) or discussion-based (back-and-
forth communication among the subscribers). Some common uses for mailing lists in
FLOSS projects include: technical discussions between developers, bug reporting by
users or developers, announcements of new releases, asking questions by users, etc. If the
list is public, as many FLOSS lists are, the mailing list messages will also be public. Most
mailing list server software will provide some sort of ability to search or browse the old
messages. This message archive can serve as a valuable tool for project participants both
as a socio-technical resource (welcoming and educating new users, answering technical
questions, giving insight into the community norms and practices), and as an
“institutional memory” of what decisions have been made on the team, etc. (Feller &
Fitzgerald, 2002).

Collecting the Email Archives

To use an email mailing list archive as the object of a research study, the researcher will
typically begin with identifying the list(s) she is interested in, and then she will use some
automated software to download and store all the messages that have been sent to that list.
Depending on what mailing list server software is being used, the old messages may be
available through a web interface, or as downloadable text files, or as emails from the
mailing list server itself. There are also third-party services that scrape and store copies of
email traffic sent to public FLOSS projects. Examples of these third party sites include
Gmane

1, MarkMail2, and MARC3.

	

	

Another location for retrieving mailing list archive data is at a software development
forge, such as Sourceforge or Launchpad. If the FLOSS project is hosting its code on one
of these forges, many times the forge will also provide mailing list services, which makes
the archives for all projects on the forge (or some arbitrary subset) available for download
(Squire & Williams, 2012).

A final option that has been less viable in the past but is growing in importance more
recently is the use of a centralized FLOSS data repository to collect the emails on behalf
of the researcher, and store the results for others to use. Examples of this type of open
data collection and sharing infrastructure in the FLOSS community include FLOSSmole
(Howison, et al., 2006) and SRDA (Van Antwerp & Madey, 2008) both of which have
some historical email data, and FLOSSMetrics (Herraiz, et al., 2009). FLOSSMetrics in
particular has done a good job of collecting email for its 2800 projects, and making the
files and list statistics available to researchers on a project-by-project basis. The metadata
on projects and source code are also available, making this a richer source of data than a
list-only approach. Recall that part of the motivation for the research questions in this
paper was to investigate how frequently-used or very interesting email data could be
cleaned and stored in one of these repositories.

Cleaning the Email Archives

Once the messages have been collected, the researcher - depending on her research
objectives - may need to clean these messages so that they are in a particular order, or
may need to organize them so that they are associated with each other in a particular way.
For example, the messages may need to be organized by thread or by date or by sender,
depending on the target analysis the researcher wants to perform. Robles et al. (2009)
review some tools that are available for this purpose.

Parts of an Email: Content
Email can be thought of as having two parts: the content and the headers. See Figure 1.
The content is what people normally think of as the “body” of the email. It is written by
the sender (either human or an automated email bot), and includes anything normally
found in the body of the email, including text and all attachments. The email content can
be encoded or expressed in different character sets and may include markup languages
like HTML.

Parts of an Email: Headers
The email headers are defined as part of the email specification (Internet Engineering
Task Force, 2008), and include several different fields, some required, some
recommended, and some optional. An example of a required field is the From: field (the
email address and optional name that sent the message), and the Date: field (telling when
the email was sent). An example of a recommended field is Message-ID: which is a
numeric identifier for the individual email message, and In-Reply-To: which tells which
other identifier this message is replying to. All other fields commonly seen in email
message headers are optional, including very common and useful fields like Subject: or
Reply-To: or even To:.

	

	

When reading emails or analyzing them as an artifact of the software engineering process,
it is important that conversation threads can be reconstructed accurately (Yeh & Harnly,
2006; Zawinski, 1997). A thread is a hierarchical grouping of messages according to
topic, sending time, and reply history.

	

Figure 1. Email messages have two parts: headers and content

The next section outlines the structure for the review, including an explanation of how
papers were selected, how the categories were designed, and how the papers were read
and put into categories.

METHOD OF SURVEY

This section outlines the methodology used for this broad literature survey. The following
list of resources was the starting point for seeking papers on our topic.

• Empirical Software Engineering journal (ESE),
• Empirical Methods in Software Engineering journal (EMSE),
• Transactions on Software Engineering journal (TSE),
• Information and Software Technology journal (IST),
• International Journal of Open Source Software and Processes (IJOSSP),
• Foundations of Software Engineering (FSE) conference,

	

	

• International Conference on Software Engineering (ICSE),
• Open Source Systems (OSS) conference,
• Mining Software Repositories (MSR) working conference,
• FLOSS workshops and tracks held at the Hawai’i International Conference on

Systems Sciences (HiCSS)
• ACM digital library
• IEEE digital library

Using each of these sources, we sought papers using keywords and full-text search for
“email”, “mailing list” and similar variants. We then removed any paper that was not
about FLOSS, or which was not about the FLOSS phenomenon in some way (papers that
simply described an open source email-based tool, for example, were excluded). We
further removed any paper that did not use email as a software development artifact
(papers that just mentioned email in passing, for example).

We then sought additional papers by following the citations listed as references for this
initial set. This activity uncovered an all-new set of papers that had been published in
other venues not included in our original list, for example in special issues of more
general disciplinary journals, and the like. We then performed the same task of following
the citations on every new paper, until no new papers could be uncovered.

From this search task, 72 papers were identified that used email artifacts (specifically
mailing list archives) as a data source for the FLOSS research.4 Each of these papers was
read in its entirety, with the intention of classifying them into groups based on data used
(email), projects studied, and analysis technique used. Uncovering these classes will help
to answer our four research questions introduced earlier.

(As we completed this review, we contributed the papers we found to the FLOSShub.org5
paper repository for the general use of the FLOSS development community. While
adding each paper to the repository, we included basic bibliographic information,
abstracts, DOI links, and if available, preprints in PDF format for download.)

Next is a description of the categories the papers were divided into after reading them,
and an explanation of how these categories help to answer each of our research questions.

Q0: In the literature, when emails are used as a data source, what types of analyses
techniques are performed on the data? Are the same techniques used over and over?

To answer this question, it is necessary to read each paper in its entirety, with special
attention paid to the data and methods sections. The papers can be divided into several
categories representing common analysis types for the email portion of the paper
(keeping in mind that in some cases, emails were used as confirmatory or secondary
sources of data):

• Descriptive Statistics: The paper uses emails to calculate of basic metrics or
descriptive statistics about an individual or a team (for example, counting
messages per thread, using email headers to establish user identities or to geo-

	

	

locate developers, using timestamps to measure elapsed time between messages
and follow-ups, etc.);

• Social Network Analysis: The paper uses emails to build a social network (for
example, between developers who email each other);

• Non-Automated Content Analysis: The paper applies non-automated content
analysis (coding/classification) to messages (for example, to read messages and
classify developer actions into categories or timelines, or reading messages to
discover how a project applies the concept of “peer review” in its operation);

• Automated Text Analysis: the paper applies automated text analysis techniques
(for example, applying linguistic analysis of content in messages to make
predictions about future developer behavior, or classifying the intent of a message
into one of several categories based on the language used in the message);

• Linking: The paper describes how to automatically link content in emails to other
artifacts (for example, using source code in an email discussion to link to file
release or a bug report);

• Confirmatory/Secondary Analysis: The paper uses emails to confirm or
supplement the data from another artifact or another analysis (for instance, the
paper uses email headers to confirm developer identities found in a bug database).

Q1: In the literature, when emails are used as a data source, are the researchers typically
interested in the CONTENT of the email or the HEADERS?

To answer this question, papers were divided into groups according to what part of the
email message was the focus of the research:

• Message Content: the paper primarily studies the content of the email (word
choice, sentiment, tone of discussion, sequence of events described therein, etc.);

• Message Headers: the paper primarily studies the headers of the email (senders,
recipients, timestamps, etc.);

• Both: the paper uses both parts of the emails equally.

Q2: In the literature, when emails are used as a data source, how many projects or
mailing lists are in the study? What are the most popular projects to study, and are the
same projects being studied often?

To answer this question, each paper was read to find the total number of projects in the
study, as well as the names of those projects. The following categories emerged:

• Single-project: the paper studies the email archive of a single FLOSS project;
• Small: the paper studies email archives from 2-15 projects;
• Medium-large: the paper studies email archives from 15+ projects (NOTE: no

papers were found in this category);
• Forge-based: the paper uses email archives from an entire forge of FLOSS

projects (which could be many hundreds or thousands of projects).

Again, the purpose of knowing the number of projects in the study is to give a full picture
of the size and scope of the effort to future research teams who want to reproduce or

	

	

extend the work. It is also helpful to data repository administrators so that they know
which techniques could be rolled out to multiple projects at once, versus which ones are
more applicable to one or two projects. (The purpose is not to pass any statistical
judgments based on the size of the study.)

Thus, with a matrix of classifications for these four questions in place, the next section
details how the papers were selected, and which papers were put into which categories.

Q3: We end that section with an answer to Q3, which was “Given a particular
categorization (for example “single-project studies that use email headers to build a social
network”), what specific papers are included in that group? Given a particular paper, how
was it categorized?”

RESULTS

From the FLOSShub repository, 72 papers were identified that used email artifacts as an
object of study in the work. Each paper was read in its entirety, with special attention
paid to the data and methods sections. This section provides a variety of visualizations for
how the papers can be categorized.

Figure 2 uses a visualization type called a parallel set6 to show how many papers can be
grouped into the various categories. Based on the discussion given previously in the
Method section above, the categories we used are as follows:

Q0 (bottom line in Figure 1): What method of analysis is primarily described in this
paper? (From left to right, the categories are: descriptive statistics, social network
analysis (“SNA”), non-automated content analysis, automated content analysis,
confirmatory or secondary to another method, linking.)

Q1 (middle line in Figure 1): Does the method described in the paper primarily use email
headers, email content, or both equally?

Q2 (top line in Figure 1): Does the paper study one project at a time (“Single”), a few
projects (“Small”), or hundreds/thousands projects (“Forge”)?

(Note that Q3 will not appear on the parallel set, as it requires us to list specific papers by
number. Instead, we cover Q3 in Tables 2, 3, and 4 which appear later in this paper.)

	

	

Figure 2: Papers in each category: size, target, and methodology

This parallel set visualization gives a high-level view of the collection – by category -
and shows some patterns right away, a few of which are especially interesting:

• The most common type of FLOSS email paper is one that generates descriptive
statistics using the headers of a single project.

• No forge-based studies (or very large studies) have been conducted using email
content. With respect to Q1 and Q2, this is an important finding. We discover that
when message content is the primary data source for the study, no papers used
more than 15 projects. Larger studies (such as forge-based studies) are restricted
to message header information, presumably because it is more easily digestible
via automated methods (less “messy”), such as would be required with an entire
forge of hundreds or thousands of projects.

• In terms of Q0 and Q1, we find that nearly all SNA papers are based on email
headers. Similarly, nearly all papers generating descriptive statistics are also
using headers.

• And in looking at Q0 and Q2, we see that only descriptive statistics and SNA
papers have covered the entire range of sizes (single, small, and forge).

• Some categories are obviously mutually exclusive (headers alone are not used to
perform automated text analysis or non-automated content analysis, for example)
and the diagram reflects this.

Given these observations, a researcher can identify some under-developed areas ripe for
new research, or some papers that would be fruitful for replication using desired
techniques or data sets. Likewise, administrators of data repositories will know what
email data sets are being used and how they are being used.

However, one sub-question from Q2 remains:

• What are the most popular projects to study, and are the same projects being
studied often?

	

	

Answering this requires each paper to be read in order to discern which FLOSS project
mailing lists were used. The following word cloud (Figure 3) and data table (Table 1)
summarize the results:

	

Figure 3: Most commonly studied projects in the FLOSS email literature

	

FLOSS
Project

Count of Times
It Was Studied

Apache 17
ArgoUML 7
Python 6
PostgreSQL 5
Freenet 5
Linux 4
FreeBSD 4
JMeter 3
KDE 3

Table 1: Projects that have been studied at least three times in the FLOSS email
literature

We find that the most common emails to study are from Apache project (usually the http-
server mailing lists). Likely factors leading to Apache’s relative ubiquity on this list
include its longevity, its popularity, its use by previous authors, its high levels of activity
on its list, and the transparency within the list. We suspect the reason the numbers for
ArgoUML and PostgreSQL are higher is because those projects were the topic of the
2006 Mining Software Repositories “Mining Challenge”. The MSR Mining Challenge
call for papers explains: “The MSR Mining Challenge brings together researchers and
practitioners who are interested in applying, comparing, and challenging their mining
tools and approaches on software repositories for two common open source projects:
PostgreSQL and ArgoUML. The input data sources for the challenge comprise: source

	

	

code releases, source control data, bug data, mailing lists, execution traces, design and
project documentation.” The popularity of Python on this list can be partially explained
by the fact that Barcellini, et al. published three papers on this project [A56-58].

Paper Categories and Summaries

Next we will list each paper and briefly summarize its contribution to the literature and
how it was categorized. All papers are included in the Appendix A, and are numbered for
reference, for example as [A1] or [A2] to differentiate them from the regular references
for this paper. To organize this summary, the papers are first divided into “headers” or
“content”, and then by the size and methods used by the papers in the discussion.

Papers that focus on content

The rationale for papers that concentrate on using email for the content (rather than the
headers) is usually that the researcher wishes to gain understanding about the complex
processes of a FLOSS development team, for example about its decision-making, conflict
resolution, or establishment of hierarchy and status within the team. Email is a primary
vehicle for communication in FLOSS development teams, so it stands to reason that
many of these processes would be explained or revealed in email archives. Much of the
current research has thus focused on such a content-based strategy. Table 2 summarizes
the categorizations for “content” papers in this study.

 Single-Project Small (2-15
projects)

Automated Text Analysis [A26] [A30] [A64] [A65]
Non-Automated Content
Analysis

[A10] [A34]
[A39] [A56]
[A57] [A58]

[A1] [A33]
[A35] [A36]
[A50] [A67]
[A68]

Confirmatory/Secondary
Source

[A7] [A11] [A15]
[A28]

Descriptive Statistics - [A27]
Linking [A63] [A62]
Social Network Analysis [A14] -

Table 2: Methodologies and sizes of FLOSS email papers in the "content" category

In looking at Table 2, it becomes clear that email content has most commonly been
analyzed in a non-automated fashion, for example manually coding emails or by reading
each message individually. By far the most common email archives studied in this way
were those from the Apache development team. For example, Jensen, et al. [A1] read
email archives to reveal how the developers of Apache and Netbeans made decisions
regarding their choice of open source licenses. The paper is structured as case studies
with the email archives serving as the paper trail for the team’s decision to change
licenses. O’Mahoney in [A50] was also concerned with licenses: for six unspecified
projects, she uses content of email messages to learn what tactics open source project
participants are using to protect their work and defend their licenses. Another paper that
was oriented toward case study methodology was Dahlander [A35], which used the

	

	

content of mailing lists of four FLOSS projects (MySQL, Roxen, Cendio, SOT) in order
to understand the relationship between companies (firms) and their related open source
communities.

Freeman [A34] and von Krogh, et al. [A39] use similar techniques for OpenOffice and
Freenet respectively. Freeman reads emails (and a few other sources) to understand
developer motivations and reasons for contribution, while von Krogh et al. use the
content of email to determine the way developers join the community. In [A39], emails
are part of the data that the authors are using to create a "joining script" to describe what
it is like to join a floss community.

Noll [A33] reviews content of emails for the Firefox and Gnome Metacity projects to
determine the timeline of features proposed and implemented. Crowston, et al. in [A36]
were concerned with developer task assignment mechanisms in use for three projects
(Gaim, eGroupware, and Compiere ERP). Kuk [A10] reads messages to figure out what
developers on the KDE project are talking about and how they are re-using code.

Some automated approaches have also been used in analyzing email content. In Rigby
and Hassan [A26], the authors analyzed Apache archives looking for personality traits
and emotional content in the highest committing Apache developers. They used a
linguistic inquiry word count methodology to automatically discover developer
personality traits. Similarly, Junior, et al. [A30] use neuro-linguistic theory on the
contents of the Apache email messages to put developers into categories based on how
they prefer to communicate. Bachelli, et al. in [A64] and [A65] devised a classifier for
emails from four different projects (ArgoUML, JMeter, Mina, and Freenet). Their
classifier uses five categories based on content of the messages.

In contrast, sometimes the researchers are using the email content as secondary evidence
for some other data about the FLOSS developers themselves. In Roberts, et al. [A7] and
Shah [A11] the emails are paired in a confirmatory fashion with survey or interview data
to provide additional insight into developer behaviors. In the former, the Apache list is
reviewed for evidence of the career advancement path and potential for developers
(paired in a confirmatory fashion with survey data). In the latter, the messages from two
unspecified FLOSS project mailing lists serve as background on the project before doing
the interviews that were the bulk of this study. Sometimes the confirmation is for another
quantitative source, for example bug databases or the like. Weisgerber et al. [A28] looks
at developer emails from two projects (FLAC and OpenAFS) for existence of patches,
and then compares these patches introduced in the email to those that made it into the
code in CVS version control system. The goal is to determine whether patches introduced
in email discussions actually make it into the release or not. Von Krogh et al. [A15]
wished to understand the levels of knowledge re-use by developers on 15 different
projects. They used email content to supplement a survey distributed to developers on
these email lists.

Indeed, many of the studies contain such hybrid approaches, where email messages are
just one data source among many. In Patterson, et al. [A27] the authors compile counts of
when certain words are used in Apache and Python project emails. They explain that they
"...study the frequency with which software entities (functions, methods, classes, etc) are

	

	

mentioned in the mail", and then this is compared to the source code to see if the
discussions are actually reflected in the work. The subject of Bachelli, et al in [A62] and
[A63] is explicitly to link project source code with email content. They explain that it is
important to link these because “[t]hrough e-­‐mails,	
 developers	
 discuss	
 design	
 decisions,	

ideas,	
 known	
 problems	
 and	
 bugs,	
 etc.	
 which	
 are	
 otherwise	
 not	
 to	
 be	
 found	
 in	
 the	

[software].”	

Duchenaut, et al. [A14] also combined email with source code. In that study, the authors
used Python developer emails, this time looking for progression and acculturation to the
group, with the email content ultimately being compared to source code contributions in
order to draw a social network for describing development team structure.

Papers that focus on headers

When message headers are used in the literature, which is often, there are a few header
fields that are typically the most commonly used: the sender field and the timestamp field.
By collecting the sender information, it is possible to assess the participation level of
developers, to figure out where a developer is physically located geographically, or to
create graphs of email senders and recipients (which results in a social network for a
FLOSS project). And by collecting timestamps, it is possible to make some
generalizations about the health or vigor of a community, or about the proximity of email
posts to commits into a version control system. Table 3 summarizes the different types of
analyses done on “header” papers in this study.

 Single-Project Small (2-15
projects)

Forge-based (or
very large)

Descriptive Statistics [A2] [A4] [A8]
[A12] [A13] [A22]
[A23] [A42] [A44]
[A45] [A46] [A48]
[A51] [A55] [A61]

[A5] [A38]
[A40] [A43]
[A37] [A41]
[A47] [A49]
[A52] [A70]

[A18] [A19]
[A20] [A24]

Social Network Analysis [A6] [A16] [A21]
[A25] [A31] [A32]
[A66] [A71]

 [A69] [A17]

Table 3: Methodologies and sizes of FLOSS email papers in the "header" category

Mockus in [A40] and [A44] had some of the earliest papers that tried to assess levels of
developer participation via message headers from an email archive. In these papers, they
used email message headers from Apache (and in one case, Mozilla) in concert with CVS
and Bugzilla data to quantify aspects of developer participation, core team size, code
ownership, productivity, defect density, and problem resolution intervals. Hann, et al. in
[A42] and [A46] gathered email headers from Apache to be used as confirmatory
evidence to a survey of Apache developers for why they participate in open source. Koch,
et al. in [A48] also uses email sender lists, this time from the Gnome project, as a
secondary source to determine the identify of developers with entries in the version
control system (CVS). Similarly, German in [A51] uses emails and some CVS data to
learn about how the Gnome Evolution project evolved.

	

	

Studer [A4] also uses mailing lists to supplement the main data source, which is commit
histories. From the mailing lists, they counted messages sent by each developer. These
counts serve as a secondary metric (in addition to commit histories) of a developer's
"participation trajectory". Cerulo [A43] does something similar by using email headers
along with data from a bug system to determine patterns of contribution by developers
from two different but related communities of users (FreeBSD and OpenBSD). Dinh-
Trong and Bieman [A55] used email headers to gather metrics about the communication
patterns for bug reporting (number of people reporting bugs, and number of bugs reported
by each) for the FreeBSD project. This work was a replication study based on [A40].
Jergensen, et al. [A61] were curious how developers move between layers of the
commonly-used onion model. They attempted to craft a "joining script" for the Gnome
project by using email headers in concert with bug tracking data.

Ye and Kishida [A8] describe a system that establishes a count of how many people sent
different amounts of email to the Gimp project list, and compares this to different
numbers of code contributions made by project participants. Similarly, in another early
work, Lee and Cole [A13] calculate simple counts of developers participating on the
Linux mailing list to try to determine participation levels. Koch in [A18] does something
similar with an entire forge of projects, counting messages to produce confirmation about
levels of developer participation and effort estimation.

Tsunoda in [A22] examines the work habits of PostgreSQL developers based on their
email sending patterns. Weisgerber [A23] use message counts to see if refactoring of
software results in additional email communication between ArgoUML developers, and
whether the refactoring leads to additional bugs. And Schilling, et al. [A45] collects email
archive metadata such as date of a developer’s first post and date of joining the mailing
list to determine the familiarity a student-developer has with the KDE project before
joining its Google Summer of Code team.

Sometimes the email headers are used to assess some measure of quality or health of the
project. Sowe, et al. [A38] use email headers to count sender posting and replying
activities, in order to determine some patterns of knowledge sharing between developers,
and Sowe, et al. [A5] use sender data from emails to match to CVS commit data,
analyzing the relationship between commits and email posts for 14 projects. In a similar
vein, Gamalielsson, et al. [A2] collect email headers in order to measure the health of the
community, which they define as the response time between an initial message and its
replies.

There are a few papers that use the email headers to determine the identity of developers,
or the geographic location of developers. [A19], [A20], and [A24] are a group of papers
that attempt to discern the identity of developers who often use multiple email addresses,
usernames, and other identifiers. They also describe how to glean geographic data about
developer location based on the sending email address (for example, the top level domain
and country code) and/or time zone setting for the message. In [A70] the authors
construct a list of male names and female names, then use the message headers combined
with this list of names to determine mailing list posting patterns for males and females on
six FLOSS projects.

	

	

Building a social network of developers is the subject of numerous papers in FLOSS
research generally, and we find that the use of email archives to supplement this work is
common. The earliest example is Oh and Sangyong [A41] who use email message
headers to build a social network of the Linux and Hypermail projects, which is then used
to study membership dynamics and stability. Wagstrom, et al. [A47] do something
similar for an unspecified Web browser project, Roberts, et al. [A32] work on building
social networks from Apache mailing list data, and Valverde, et al. [A17] accomplish this
same task for 120 projects on Sourceforge. Conaldi [A6] builds a social network of
Gnome Epiphany using email sender data, Sowe, et al. [A37] do this for KDE, Debian-
user, and Debian-mentor lists, while Nia, et al. [A49] look at the validity of the social
networks generated for Apache, MySQL, and Perl projects.

Weiss, et al. [A31] uses email senders to show change in a community over time through
Apache Agora-generated social networks. They are particularly interested in finding
communication dyads (who emails whom). Oezbek, et al. [A69] use message headers,
specifically the reply structure of messages, to build social networks for fifteen different
open source projects. In [A66], Toral et al. use email senders to draw social networks in
the Linux-ARM project, using these to find developers playing a "middle man" role.
[A71] uses email headers to build a social network for Mozilla, specifically to understand
what sort of quality assurance (QA) work is happening on the project, and who is
involved.

Sometimes the social networks are combined with other project artifacts. In Bird, et al.
[A21] and [A25], they use both source code and mailing lists to try to construct a
developer social network for the PostgreSQL and Apache projects. Kidane and Gloor
[A16] collect message senders to build a social network, and then compare this network
to known code contribution data (bugs and enhancements) from Bugzilla database for the
same project. Crowston, et al. [A52] use email headers in concert with bug tracker
information to build social networks of developers, for the purpose of understanding
centralization in project leadership.

Papers that focus on both content and headers

Table 4 summarizes which papers use both the content and headers from email messages.

 Single-Project Small (2-15
projects)

Automated Text Analysis - [A9] [A29]
[A54][A72]

Non-Automated Content Analysis - [A53]
Descriptive Statistics - [A59]
Social Network Analysis [A3] [A60]

Table 4: Methodologies and sizes of FLOSS email papers in the "content and header"
category

	

	

	

Barcellini, et al. [A59] use a hybrid approach to understand the community structure of a
project, specifically in terms of developer roles. In this work, they examine message text
quoting patterns (how developers reply and quote one another in email). They use these
patterns to determine the status/role and level of involvement (number of messages) of
each conversation participant.

McLean, et al. [A3] constructed lists of topics from email messages on the Apache http-
server mailing list, then constructed social network of senders to determine if the
developers congregate around certain topics. Bird, et al [A60] also uses content and
headers to build social networks for five projects. This work uses the social networks to
find sub-communities within a larger development team.

Yamauchi, et al. [A53] used content analysis paired with header counts and sender counts
to determine how FLOSS developers coordinate their tasks on the FreeBSD Newconfig
team and the GCC team.

In [A9], Porcini, et al. use process mining techniques, similar to log file mining, to match
disparate events or entities that occur in the same development artifact. In this case the
development artifact is email, and the events they are trying to match are changes to a file,
a bug report, and a mention of this change in an email conversation.

Ibrahim [A29] also takes a hybrid approach, using past emails to build a Naïve Bayesian
classifier for how likely a developer will be to contribute to an email thread, based on
past contributions to the source code. This work uses Apache, PostgreSQL, and Python.

Lanzara and Morner [A54], [A72] are also interested in what they call the “knowledge
ecology” of FLOSS, but they concentrate on using email content and headers together to
explain how the Apache and Linux development teams introduce and solve problems, or
perform other tasks to create organizational knowledge. They both classify threads by
topic, then use headers to find the developer names.

Papers that focus on Apache

One final interesting table helps to explicate Q2 (popular projects) a bit more. We noted
previously in Table 1 that Apache was the most common project studied. Table 5 shows
the classification of projects that study Apache and what techniques are most commonly
used to do that.

 Content Headers Both
Descriptive Statistics [A27] [A12][A40]

[A42][A44][A46]
-

Automated Text Analysis [A26][A30] - [A29] [A54]
[A72]

Non-Automated Content Analysis [A1] [A3] [A68]
Confirmatory/Secondary [A7] - -
Social Network Analysis - [A25][A31]

[A32][A49]
[A60]

Table 5: Techniques and sizes for papers that use Apache

	

	

LIMITATIONS AND FUTURE WORK

There are two limitations of this literature survey and classification. The most significant
possible limitation of this work is that it may have missed inclusion of some papers. This
project started with a comprehensive search in a thorough listing of major FLOSS
conferences and workshops, as well as the FLOSS-oriented journals, and software
engineering conferences that focus on FLOSS or the mining of FLOSS software artifacts.
We also used lists of citations to track related works. However, there is still the
possibility that some papers may be missing.

The second main limitation to this survey is that because it focuses on FLOSS research
(and how FLOSS email archives are used) there could be studies within the non-FLOSS
literature that contain applicable techniques, but were not included because they are not
really about FLOSS projects. It is our contention that the relative importance of email as
a communication medium in the decentralized, geographically-dispersed world of FLOSS
development, coupled with the required ease-of-access to FLOSS emails, makes FLOSS
projects the appropriate and obvious place to start looking at how email archives can be
used in software engineering research more generally. However, it seems reasonable that
other, non-FLOSS papers may also use email archives in interesting and useful ways.

One other theme emerges for future work in this area. We are reminded that email is just
one of many useful artifacts that are part of a typical FLOSS project footprint. Two other
commonly-studied artifacts are bug reports and the actual project source code. These
have both been studied extensively and with more than ten years of extant FLOSS
research literature, both are ripe for surveying and classifying in the future.

CONCLUSIONS

We can draw several conclusions from this survey and classification of the literature on
FLOSS email analysis.

First, with respect to Q0 and Q3 and the use of certain data analysis techniques, the most
obvious outcome of this work is that it becomes plain that there are few papers using
content analysis or textual analysis techniques (automated or not) on a large scale or on a
forge-sized scale. Fifteen seems to be the highest number of projects studied in this way.
However, based on the large number of papers that are looking at email content,
expanding the ability to conduct content analyses on a large scale could be a very
interesting avenue for research. Repositories of FLOSS data, such as FLOSSmole or
FLOSSMetrics, could work on this problem. Alternatively, they could host data sets or
analyses based on third-party (non-project-based) mailing list repositories such as
Markmail.org.

Second, in terms of Q1 and Q3 and the structure of messages, we see that a very large
number of papers used email header data exclusively, usually to gather descriptive
statistics about the communication patterns in a team. Header data is theoretically quite

	

	

manageable as it is already labeled and mostly atomic. Yet upon closer reading we see
that many of the papers were very detailed in describing how it was still necessary to
clean the headers to prepare them for use (for example [A19],[A20],[A24],[A21]). So it
seems clear that even though email headers could be considered less “messy” than email
content, there is still quite a bit of work to be done to the raw headers to ready them for
mining and analysis. Because the precise cleaning procedure may be dependent upon the
choice of analysis method and on the source of the data, this literature review can help
researchers decide on an appropriate model to follow, or can indicate where to find
similar examples and guidance. In addition, repository administrators or data collectors
can learn a few ways that the data should be cleaned before dumping it out for the
researchers to use. FLOSS repositories, in addition to collecting the emails as they do
now, could provide cleaned header fields for these emails according to the various
methods already in use in the literature. This meshes nicely with the mission of
repositories of data, which is to centralize and coordinate data collection efforts so that
researchers do not have to reinvent the wheel each time they want to use a FLOSS artifact.

Third, in terms of Q2 and project popularity, this study reveals that Apache (particularly
the http-server list) is far and away the most frequently studied project. Some of the
papers studying Apache explain that their choice is due to some combination of the size,
popularity or success (variously defined) of that project [A42], [A60]. In some other
cases, a research group gets started with Apache and keeps using that list for several
years (for example the same core group works on [A12], [A26], [A68]). In terms of
replicability, this project would be an ideal candidate for long-term archiving and
automation of repeated studies. Data repositories should prioritize storage of prime email
archives like Apache.

REFERENCES

Basili, V.R., Zelkowitz, M.V., Sjøberg D.I., Johnson, P. & Cowling, A.J. (2007).
Protocols in the use of empirical software engineering artifacts. Empirical Softw. Eng. 12,
1 (February 2007), 107-119. DOI=10.1007/s10664-006-9030-4

Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/Libre Open Source
Software Development: What we know and what we do not know. ACM Computing
Surveys, 44(2).

de Souza, C., Froehlich, J., & Dourish, P. (2005). Seeking the source: Software source
code as a social and technical artifact. In GROUP ’05: Proc of the 2005 Int. ACM
SIGGROUP Conf. on Supp. Group Work, 197–206.

Feller, J. & Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Free Software Foundation. (n.d.) Free Software Foundation available licenses. Retrieved
July 1, 2012, from http://www.gnu.org/licenses/

Hassan, A.E. (2009). Predicting faults using the complexity of code changes. (2009). In
Proc 31st Int. Conf. on Softw. Eng. (ICSE ’09), 78–88.

	

	

Herraiz, I., Izquierdo-Cortazar, D., & Rivas-Hernandez, F. (2009). FLOSSMetrics:
Free/Libre/Open Source Software Metrics. In Proc. 2009 European Conf. on Software
Maintenance and Reengineering (CSMR '09). 281-284. DOI=10.1109/CSMR.2009.43

Howison, J., Conklin, M., & Crowston, K. (2006). FLOSSmole: A collaborative
repository for FLOSS research data and analyses. Int. J. of Info. Tech. and Web Eng. 1, 3,
17–26.

Internet Engineering Task Force. (2008). RFC 5322. Retrieved July 1, 2012 from
http://tools.ietf.org/html/rfc5322

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution
patterns of open-source software systems and communities. In IWPSE ’02: Proc. of the
Int. Wksp. on Prin. of Softw. Evolution, 76–85.

Open Source Initiative. (n.d.) Licenses by category. Retrieved July 1, 2012, from
http://www.opensource.org/licenses/category

Robles, G., Gonzalez-Barahona, J.M., Izquierdo-Cortazar, D., & Herraiz, I. (2009). Tools
for the study of the usual data sources found in libre software projects. Int. J. Open
Source Softw. and Proc, 1 (1), 24-45.

Scacchi, W. (2010). Collaboration practices and affordances in Free/open source software
development. In I. Mistrík, J. Grundy, A. van der Hoek, and J. Whitehead, (Eds.),
Collaborative Software Engineering. Springer, New York, 307-328.

Squire, M. & Williams, D. (2012). Describing the software forge ecosystem. In Proc.
45th Hawaii Int. Conf. on System Sciences (Maui, Hawaii, January 4-7, 2012). 3416-
3425.

Tarvo, Alexander. (2009). Mining software history to improve software maintenance
quality: A case study. IEEE Software, 26, 1, 34–40.

Van Antwerp, M. & Madey, G. (2008). Advances in the SourceForge Research Data
Archive (SRDA). In Proc. 3rd Workshop on Public Data about Software Development
(WoPDaSD’08), (Milan, Italy, September 2008). 6 pages.

Wright, H., Kim, M., & Perry, D. (2010). Validity concerns in software engineering
research. In Proc. Future of Software Engineering Research (FoSER’10). 411-414.

Yeh, J.-Y., & Harnly, A. (2006). Email Thread Reassembly Using Similarity Matching.
In Proc. 3rd Conference on Email and Anti-Spam (July 27-28, 2006, Mountain View,
California USA). 8 pages.

Zawinski, J. (1997). Message threading. Retrieved July 1, 2012 from
http://www.jwz.org/doc/threading.html

Zimmermann, T., Zeller, A., Weissgerber, P. & Diehl, S. (2005). Mining version histories
to guide software changes. IEEE Trans. on Softw. Eng., 31,6, 429–445.

	

	

APPENDIX: Papers Reviewed

[A1] Jensen, C. & Scacchi, W. (2011). License update and migration processes in open
source software projects. In Proc. of the 7th Int. Conf. on Open Source Systems (OSS
2011). 177-195.

[A2] Gamalielsson, J., Lundell, B., & Lings B. (2010). Responsiveness as a measure for
assessing the health of OSS ecosystems. In Proc. of the 2nd International Workshop on
Building Sustainable Open Source Communities (BSOSC at OSS 2010). 8 pages.

[A3] McLean, A.C., Pratt, L.J., Knutson, C.D., & Ringger E.K. (2011). Knowledge
homogeneity and specialization in the Apache HTTP Server project. In Proc. of the 7th
Int. Conf. on Open Source Systems (OSS 2011). 106-122.

[A4] Studer, M., Muller, B. & Ritschard, G. (2007). Understanding the KDE social
structure through mining of email archive. In Proc. 2nd Workshop on Public Data about
Software Development. (OSS 2007). 11 pages.

[A5] Sowe, S., Samoladas, I., Stamelos, I., & Angelis, L. (2008). Are FLOSS developers
committing to CVS/SVN as much as they are talking in mailing lists? Challenges for
Integrating data from Multiple Repositories. In Proc. 3rd Workshop on Public Data
about Software Development. (OSS 2008). 49-54.

[A6] Conaldi, G. (2009). Flat for the few, steep for the many: Structural cohesion as a
measure of hierarchy in FLOSS communities. In Proc. 4th Workshop on Public Data
about Software Development. (OSS 2009). 3 pages.

[A7] Roberts, J.A., Hann, I-H., & Slaughter, S. (2006). Understanding the motivations,
participation, and performance of open source software developers: A longitudinal study
of the Apache projects. Management Science, 52(7). 984-999.
DOI=10.1287/mnsc.1060.0554

[A8] Ye. Y. & Kishida, K. (2003). Toward an understanding of the motivation Open
Source Software developers. In Proc. 25th Int. Conf. on Software Engineering (ICSE
2003). 419-429.

[A9] Poncin, W., Serebrenik, A., & van den Brand, M. (2011). Process mining software
repositories. In Proc. 15th European Conference on Software Maintenance and
Reengineering (CSMR 2011). 5-14.

[A10] Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer
mailing list. Management Science, 52(7). 1031-1042. DOI=10.1287/mnsc.1060.0551

[A11] Shah, S.K. (2006). Motivation, governance, and the viability of hybrid forms in
open source software development. Management Science, 52(7). 1000-1014.
DOI=10.1287/mnsc.1060.0553

[A12] Rigby, P.C., German, D.M., & Storey, M.-A. (2008). Open source software peer
review practices: A case study of the Apache server. In Proc. 30th Int. Conf. on Software
Engineering (ICSE 2008). 541-550. DOI=10.1145/1368088.1368162

	

	

[A13] Lee, G.K. & Cole, R.E. (2003). From a firm-based to a community-based model of
knowledge creation: The case of the Linux kernel development. Organization Science,
14(6). 633-649.

[A14] Duchenaut, N. (2005). Socialization in an Open Source software community: A
socio-technical analysis. Computer Supported Cooperative Work, 14(4). 323-368. DOI=
10.1007/s10606-005-9000-1

[A15] von Krogh, G., Spaeth, S., & Hafliger, S. (2006). Knowledge reuse in open source
software: An exploratory study of 15 open source projects. In Proc. 38th Annual Hawaii
Int. Conf. on System Sciences (HICSS 38). 1-10.

[A16] Kidane, Y. & Gloor, P. (2007). Correlating temporal communication patterns of
the Eclipse open source community with performance and creativity. Computational and
Mathematical Organizational Theory, 13(1). 17-27. DOI=10.1007/s10588-006-9006-3

[A17] Valverde, S., Theraulaz G., Gautrais J., Fourcassie V., & Sole R.V. (2006). Self-
organization patterns in wasp and open source communities. IEEE Intelligent Systems,
21(2). 36-40. DOI=10.1109/MIS.2006.34

[A18] Koch, S. (2008). Effort modeling and programmer participation in open source
software projects. Information Economics and Policy (Empirical Issues in Open Source
Software), 20(4). 345-355. DOI=10.1016/j.infoecopol.2008.06.004

[A19] Gonzalez-Barahona, J.M., Robles, G., Andradas-Izquierdo R., & Ghosh, R.A.
(2008). Geographic origin of libre software developers. Information Economics and
Policy (Empirical Issues in Open Source Software), 20(4). 356-353.
DOI=10.1016/j.infoecopol.2008.07.001

[A20] Robles, G. & Gonzalez-Barahona, J.M. (2005). Developer identification methods
for integrated data from various sources. In Proc. 2005 Intl. Workshop on Mining
Software Repositories. 106-110. DOI=10.1145/1082983.1083162

[A21] Bird, C., Gourley, A., Devanbu, P., Gertz, M. & Swaminathan, A. (2006). Mining
email social networks in Postgres. In Proc. 2006 Intl. Workshop on Mining software
repositories (MSR 2006). 185-186. DOI=10.1145/1137983.1138033

[A22] Tsunoda, M., Monden, A., Kakimoto, T., Kamei, Y., & Matsumoto, K. (2006).
Analyzing OSS developers' working time using mailing lists archives. In Proc. 2006 Intl.
Workshop on Mining Software Repositories (MSR 2006). 181-182.
DOI=10.1145/1137983.1138031

[A23] Weißgerber, P., Diehl, S., & Gorg, C. (2006). Mining refactorings in ARGOUML.
In Proc. 2006 Intl. Workshop on Mining Software Repositories (MSR 2006). 175-176.
DOI=10.1145/1137983.1138028

[A24] Robles, G. & Gonzalez-Barahona, J.M. (2006). Geographic location of developers
at SourceForge. In Proc. 2006 Intl. Workshop on Mining Software Repositories (MSR
2006). 144-150. DOI=10.1145/1137983.1138017

	

	

[A25] Bird, C., Gourley, A., Devanbu, P., Gertz, M. & Swaminathan, A. (2006). Mining
email social networks. In Proc. 2006 Intl. Workshop on Mining Software Repositories
(MSR 2006). 137-143. DOI=10.1145/1137983.1138016

[A26] Rigby, P.C. & Hassan, A.E. (2007). What Can OSS Mailing Lists Tell Us? A
Preliminary Psychometric Text Analysis of the Apache Developer Mailing List. In Proc.
2007 Intl. Workshop on Mining Software Repositories (MSR 2007). 23-31.
DOI=10.1109/MSR.2007.35

[A27] Pattison, D.S., Bird, C.A., & Devanbu, P.T. (2008). Talk and work: a preliminary
report. In Proc. 2008 Intl. Working Conference on Mining Software Repositories (MSR
2008). 113-116. DOI=10.1145/1370750.1370776

[A28] Weißgerber, P., Neu, D., & Diehl, S. (2008). Small patches get in!. In Proc. 2008
Intl. Working Conference on Mining Software Repositories (MSR 2008). 67-76.
DOI=10.1145/1370750.1370767

[A29] Ibrahim, W.M., Bettenburg N., Shihab E., Adams B., & Hassan A.E. (2010).
Should I contribute to this discussion? In Proc. 2010 Intl. Working Conference on Mining
Software Repositories (MSR 2010). 181-190. DOI=10.1109/MSR.2010.5463345

[A30] Junior, M.C., Mendonca, M., Farias, M., & Henrique, P. (2010). OSS developers
context-specific preferred representational systems: An initial neurolinguistic text
analysis of the Apache mailing list. In Proc. 2010 Intl. Working Conference on Mining
Software Repositories (MSR 2010). 126-129.

[A31] Weiss, M., Moroiu, G., & Zhao, P. (2006). Evolution of open source communities.
In Proc. 2nd Int. Conf. on Open Source Systems (OSS 2006). 21-32. DOI=10.1007/0-387-
34226-5_3

[A32] Roberts, J., Hann, I.-H., & Slaughter, S. (2006). Communication networks in an
open source project. In Proc. 2nd Int. Conf. on Open Source Systems (OSS 2006). 297-
306. DOI=10.1007/0-387-34226-5_30

[A33] Noll, J. (2007). Innovation in open source software development: A tale of two
features. In Proc. 3rd Int. Conf. on Open Source Systems (OSS 2007). 109-120.
DOI=10.1007/978-0-387-72486-7_9

[A34] Freeman, S. (2007). The material and social dynamics of motivation: Contributions
to open source language technology development. Science Studies, 20(2). 55-77.

[A35] Dahlander, L. & Magnusson M. (2008). How Do Firms Make Use of Open Source
Communities? Long Range Planning, 41(6). 629-649.

[A36] Crowston, K., Li, Q., Wei, K., Eseryel Y.U., & Howison J. (2007). Self-
organization of teams for free/libre open source software development. Information and
Software Technology Journal, 49. 564-575.

	

	

[A37] Sowe, S.K., Stamelos, I., & Angelis, L. (2006). Identifying knowledge brokers that
yield software engineering knowledge in OSS projects. Information and Software
Technology, 48. 1025-1033. DOI=10.1016/j.infsof.2005.12.019

[A38] Sowe, S.K., Stamelos, I., & Angelis, L. (2008). Understanding knowledge sharing
activities in free/open source software projects: An empirical study. Journal of Systems
and Software, 81(3). 431-446. DOI=10.1016/j.jss.2007.03.086

[A39] von Krogh, G., Spaeth, S., & Lakhani, K. (2003). Community, joining, and
specialization in open source software innovation: a case study. Research Policy, 32(7).
1217-1241. DOI=10.1016/S0048-7333(03)00050-7

[A40] Mockus, A., Fielding, R., & Herbsleb, R.T. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3). 309-346. DOI=10.1145/567793.567795

[A41] Oh, W. & Sangyong, J. (2004). Membership dynamics and network stability in the
open-source community: the ising perspective. In Proc. Int. Conf. on Information Systems
2004. 413-426.

[A42] Hann, I.-H., Roberts, J., Slaughter, S., & Fielding, R. (2002). Economic incentives
for participating in open source software projects. In Proc. Int. Conf. on Information
Systems 2002. 365-372.

[A43] Cerulo, L., Cimitile, M., Di Penta, M., & Canfora, G. (2011). Social interactions
around cross-system bug fixings. In Proc. 2011 Intl. Workshop on Mining Software
Repositories (MSR 2011). 143-152. DOI=10.1145/1985441.1985463

[A44] Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source
software development: The Apache server. In Proc. 21st Int. Conf. on Software
Engineering (ICSE '00). 263-272. DOI=10.1109/ICSE.2000.870417

[A45] Schilling, A., Laumer, S., & Weitzel, T. (2012). Who will remain? An evaluation
of actual person-job and person-team fit to predict developer retention in FLOSS projects.
In Proc. 45th Hawaii Int. Conf. on Systems Science. (HiCSS 45) 3446-3455.
DOI=10.1109/HICSS.2012.644

[A46] Hann, I.-H., Roberts, J., Slaughter, S., & Fielding, R. (2002). Why do developers
contribute to open source projects? First evidence of economic incentives. In Proc. 2nd
International (ICSE) Workshop on Open Source. 4 pages.

[A47] Wagstrom, P.A., Herbsleb, J., & Carley, K. (2005). A social network approach to
free/open source software simulation. In Proc. 1st Int. Conf. on Open Source Systems
(OSS 2005). 16-23. DOI=10.1.1.178.4984

[A48] Koch, S. & Schneider, G. (2003). Effort, co-operation and co-ordination in an open
source software project: GNOME. Information Systems Journal, 12(1). 27-42.
DOI=10.1046/j.1365-2575.2002.00110.x

	

	

[A49] Nia, R., Bird C., Devanbu P., & Filkov V. (2010). Validity of network analyses in
Open Source projects. In Proc. 7th IEEE Working Conf. on Mining Software Repositories
(MSR 2010). 201-209. DOI=10.1109/MSR.2010.5463342

[A50] O'Mahony, S. (2003). Guarding the commons: How community managed software
projects protect their work. Research Policy, 32(7). 1179-1198.

[A51] German, D. (2004). Mining CVS repositories, the softChange experience. In Proc.
Intl. Workshop on Mining Software Repositories (MSR 2004). 17-21.

[A52] Crowston, K., Wiggins, A., & Howison, J. (2010). Analyzing leadership dynamics
in distributed group communication. In Proc. 43rd Hawaii Int. Conf. on Systems Science
(HiCSS 43). 10 pages. DOI=10.1109/HICSS.2010.62

[A53] Yamauchi, Y., Yokozawa, M., Shinohara, T., & Ishida, T. (2000). Collaboration
with lean media: How open source software succeeds. In Proc. Computer Supported
Cooperative Work (CSCW ’00). 329-338. DOI=10.1145/358916.359004

[A54] Lanzara, G.F. & Morner, M. (2005). The knowledge ecology of open-source
software projects. Information Systems Journal. October 7. 44 pages.

[A55] Dinh-Trong, T.T. & Bieman, J.M. (2005). The FreeBSD Project: A replication
case study of open source development. IEEE Trans. Software Eng. 31(6). 481-494.
DOI=10.1109/TSE.2005.73

[A56] Barcellini, F., Detienne, F., & Burkhardt, J.-M. (2009). Participation in online
interaction spaces: Design-use mediation in an Open Source Software community.
International Journal of Industrial Ergonomics, 39. 533-540.
DOI=10.1016/j.ergon.2008.10.013

[A57] Barcellini, F., Detienne, F., & Burkhardt, J.-M. (2008). User and developer
mediation in an Open Source Software community: Boundary spanning through cross-
participation in online discussions. International Journal of Human-Computer Studies, 66.
558-570. DOI=10.1016/j.ijhcs.2007.10.008

[A58] Barcellini, F., Detienne, F., & Burkhardt, J.-M., Sack, W. (2008). A socio-
cognitive analysis of online design discussions in an open source software community.
Interacting with Computers, 20. 141-165. DOI=10.1016/j.intcom.2007.10.004

[A59] Bird, C. & Nagappan, N. (2012). Who? What? Where? Examining distributed
development in two large open source projects. In Proc. 2012 Working Conf. on Mining
Software Repositories (MSR 2012). 237-246. DOI= 10.1109/MSR.2012.6224286

[A60] Bird, C., Pattison, D., & D’Souza, R. (2008). Latent social structure in open source
projects. In Proc. 16th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT '08/FSE-16). 24-35.

[A61] Jergensen, C., Sarma, A., & Wagstrom, P. (2011). The onion patch: Migration in
open source ecosystems. In Proc. 19th ACM SIGSOFT symposium and the 13th

	

	

European conference on Foundations of software engineering. 20-30.
DOI=10.1145/2025113.2025127

[A62] Bacchelli, A., Lanza, M., & Robbes, R. (2010). Linking e-mails and source code
artifacts. In Proc. 32nd ACM/IEEE Int. Conf. on Software Engineering (ICSE 2010). 375-
384. DOI=10.1145/1806799.1806855

[A63] Bacchelli, A., D'Ambros M., Lanza M., & Robbes R. (2009). Benchmarking
Lightweight Techniques to Link E-Mails and Source Code. In Proc. 16th Working
Conference on Reverse Engineering (WCRE). 205-214. DOI=10.1109/WCRE.2009.44

[A64] Bacchelli, A., Dal Sasso, T., D’Ambros, M., & Lanza, M. (2012). Content
classification of developer emails. In Proc. 34th ACM/IEEE Int. Conf. on Software
Engineering (ICSE 2012). 375-385.

[A65] Bacchelli, A., D’Ambros, M., & Lanza, M. (2010). Extracting source code from e-
mails. In Proc. 18th IEEE Int. Conf. on Program Comprehension (ICPC 2010). 24-33.

[A66] Toral, S.L., Martinez-Torres, M.R., & Barrero, F. (2010). Analysis of virtual
communities supporting OSS projects using social network analysis. Information and
Software Technology, 52. 296-303. DOI=10.1016/j.infsof.2009.10.007

[A67] Prechelt, L. & Oezbek, C. (2011). The search for a research method for studying
OSS process innovation. Empirical Software Engineering, 16(4). 514-537.
DOI=10.1007/s10664-011-9160-1

[A68] Rigby, P. & Storey, M.-A. (2011). Understanding broadcast based peer review on
open source software projects. In Proc. 33rd Int. Conf. on Software Engineering (ICSE
2011). 541-550. DOI=10.1145/1985793.1985867

[A69] Oezbek, C., Prechelt L., & Thiel F. (2010). The onion has cancer: some social
network analysis visualizations of open source project communication. In Proc. 3rd Intl.
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development (FLOSS 2010). 5-10. DOI=10.1145/1833272.1833274

[A70] Kuechler, V., Gilbertson, C., & Jensen, C. (2012). Gender Differences in Early
Free and Open Source Software Joining Process. In Proc. 8th Int. Conf. on Open Source
Systems (OSS 2012). 78-93.

[A71] Barham, A. (2012). The impact of formal QA practices on FLOSS communities -
The case of Mozilla. In Proc. 8th Int. Conf. on Open Source Systems (OSS 2012). 262-
267.

[A72] Lanzara & Morner. (2004). Making and sharing knowledge at electronic
crossroads: the evolutionary ecology of open source. In Proc. 5th European Conference
on Organizational Knowledge, Learning and Capabilities. Innskbruck 2-3 April.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 http://gmane.org	

2	
 http://markmail.org	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 http://marc.info	

4	
 All the papers are listed in Appendix A. In this paper, when we refer to one of these 72
items, we will use a parenthetical like [A36] to indicate which paper we are discussing.
Papers that describe the development of tools to handle email were not included.	

5	
 http://flosshub.org	

6	
 Software	
 for	
 generating	
 parallel	
 sets	
 from	
 categorical	
 data	
 can	
 be	
 found	
 at	

http://eagereyes.org/parallel-­‐sets	

