
Repositories with Public Data about Software
Development

Jesus M. Gonzalez-Barahona,
Megan Squire, Daniel Izquierdo-Cortazar

Universidad Rey Juan Carlos, Elon University
{jgb,dizquierdo}@gsyc.es, msquire@elon.edu

May 11, 2010

Abstract

Empirical research on software development based on data obtained from project repos-
itories and code forges is increasingly gaining attention in the software engineering research
community. The studies in this area typically start by retrieving or monitoring some subset
of data found in the repository or forge, and this data is later analyzed to find interesting
patterns. However, retrieving information from these locations can be a challenging task.
Meta-repositories providing public information about software development are useful tools
that can simplify and streamline the research process. Public data repositories that collect
and clean the data from other project repositories or code forges can help ensure that research
studies are based on good quality data. This paper provides some insight as to how these meta-
repositories (sometimes called a ”repository of repositories”, RoR) of data about open source
projects should be used to help researchers. It describes in detail two of the most widely used
collections of data about software development: FLOSSmole and FLOSSMetrics.

1 Introduction
Nowadays, most software development projects use a variety of software tools and online sys-
tems for coordinating their work. This is true of both proprietary software projects and free, libre,
and open source (FLOSS) projects. These tools include centralized web download areas, discus-
sion forums, IRC channels, email mailing lists, source code control systems, bug trackers, wikis,
etc [Fogel, 2005]. A project team may choose to manage their own tools, perhaps on their own
web site, or the team may also choose to use a suite of tools provided by one of many online code
forges. (An example of this could be SourceForge 1, Savannah 2 or RubyForge 3).

1http://sourceforge.net/
2http://savannah.gnu.org/
3http://rubyforge.org/



Regardless of whether the team chooses to host its own repository or to be part of a code forge,
the project tools and systems will leave a detailed trace about the activities and products of the
project, which can be analyzed by researchers. Because the end product of a FLOSS project is
source code that is freely available, the development for the projects is often done in the open as
well. When tools like issue trackers or email mailing lists are used for software development on
a FLOSS project, the data they produce is very often left open to the public. The result is a very
large amount of publicly-available data about software development. For example, the archives
of an email mailing list will serve as a record of the discussions between developers on a project.
This will be searchable by anyone seeking a history of how decisions were made on a project. An
online issue tracking system can show the list of features requested or bugs reported in a project,
as well as the record of how the feature or bug was handled by the development team. The issue
tracking software produces logs that are searchable by anyone wanting to know more about this
process.

This public record of activity should make it possible for researchers to develop empirical
studies based on data retrieved from these systems or, to be more precise, from the code forges
and project repositories that support those systems [Dyba et al., 2005], [Kitchenham et al., 2002].
However, researchers often discover that even when the data is publicly available (such as it is with
most FLOSS projects), the task is made more complicated by the large size and scope of the project
repositories or code forges, and the heterogeneity of the projects being studied [Howison and Crowston, 2004], [Robles
Making sense of all this data for a research study can be a large challenge, especially for large col-
lections of projects, or for small numbers of projects that have been in existence for a long time.

In this paper, we will outline what kind of data is available from the project repositories or code
forges, and what each “repository of repositories” (or RoR) is doing to collect, aggregate, and clean
the targeted repository or forge data. We will provide examples from two RoRs, FLOSSMetrics
and FLOSSmole, showing what data is available on the original repository or forge, and how that
RoR makes this data available to researchers. We also discuss the advantage presented to the
researcher for using these RoRs: the researcher does not need to collect data independently. This
is an important advantage as it can help the entire research community leverage the work done by
others, thus freeing up time and effort to analyze the data rather than to collect it. Finally, we show
some example research questions that can be answered using FLOSSMetrics and FLOSSmole
data. We conclude our paper with some general observations about the future direction of the
RoRs, given the needs of the research community.

2 Data retrieval: the first step
In this section we discuss what data is available and how this data can be organized for ease-of-use
by the researcher. The large volume of data in public software repositories is usually comprised
of:

• Metadata about software projects. Projects, particularly when they are hosted in develop-
ment forges, are usually annotated with some metadata which is potentially interesting for
researchers. Examples of that metadata are: descriptions of the project, list of developers,



rankings (according to some metrics maintained by the forge), licensing schemas, program-
ming language(s) used, language(s) into which the software has been translated, etc.

• Source code, including metadata about how it changed. Nowadays software projects com-
monly use a source code management system such as Subversion, git, or CVS. When this
source code management system is public, as it is with FLOSS projects, not only all the
versions of all the source code files can be obtained, but also metadata about who performed
all the changes to that code, and when they did it (sometimes ’why’ can be ascertained as
well). Metrics can be obtained about all releases of files, and about snapshots of the source
code tree. Source code metadata can be used to better understand the actors and artifacts
involved in the development of the final products of the project.

• Issue tracking information. Issue tracking systems include not only information about bug
reports, and how they are fixed, but also about feature requests, wish lists, recommendations
and even comments about the functionality of the software products. In some cases, the issue
tracking system is also used as a scheduling tool for the project, or a separate system is used
to keep that information.

• Discussions (usually in mailing lists, blogs or forums). Most of the decisions projects are
carried though open discussions in many projects. Suggestions, comments and requirements
are also subject to threads in these systems.

• Documentation (usually in the form of a wiki or blog). Documentation cover most aspects of
how to use the software, as well as descriptions of what features are added in each version,
known issues in the software, basic facts about the development team, the motivation of the
development team in making the software, and may also explain how interested parties can
get involved in the project.

In most cases, historical data for each of these categories is also available, letting researchers
reconstruct the state of the project at any given point, and its evolution over time.

It is clear that the activity trail and metadata found at these project repositories and code forges
can prove to be very useful for researchers wishing to understand the process of FLOSS develop-
ment. However, the extraction of useful information out of the forge or repository is not always a
simple task. Some of the common problems found by researchers when willing to use information
from software repositories are:

• Different systems, with different APIs for accessing the information. For example, and only
in the area of source code management systems, there is a good collection of systems used by
projects: CVS, Subversion, git, Bazaar, Mercurial (to mention just some of the most used).
Each of them has a different API, and requires different means to obtain information. In
other domains, the problem is similar, in some cases increased by the fact that only web-
based interfaces, designed to be accessed only by browsers, are available, which leads to the
need of sophisticated spidering technologies.



• Different representation of the same kind of information. Even if tools for retrieving the
data are available, the representation of the data can be different, either semantically, syn-
tactically, or both. For example, the semantics of a commit in CVS, Subversion and git is
different enough to need different treatment in most research studies. Another well known
example is the representation of a bug report. The bug-fix cycle in different issue tracking
systems can be quite different, even between different flavors of the same system, such as is
the case of Bugzilla.

• Performance issues, in particular when performing studies on a large number of projects, or
on projects that are large themselves. Retrieving the whole history of tens of millions of lines
of code from source code repositories, or millions of issues from issue tracking systems,
or millions of mailing list messages from every project on a code forge is a difficult and
time consuming task. To be productive, researchers can implement checkpoint and rollback
procedures, and incremental downloading of data. Many times these have to be engineered
with APIs not designed for that. The actual downloads and metrics calculation for a large
collection of projects can take months, even with advanced tools.

• Lost data. In some cases, data from a software repository is lost. This is common in cases of
transitions to new tools, such as in the recent years as many projects make a migration from
older version control systems like CVS to Subversion or other modern decentralized source
code management systems. In some cases the project team carefully migrates all the history
of its source code. However, in other cases, the old information is only available from the
original repository, and over time this data can disappear partially or completely.

• Damage to project infrastructure. In most cases, software development repositories are not
designed to provide data to researchers, nor are they optimized to be queried in the way
that researchers need. When researchers use the repository for data collection purposes,
this can lead to performance problems in the repository infrastructure as it is tasked with
answering requests from researchers rather than its primary user, the FLOSS development
team. A common example of this might be when a researcher writes a data collection script
to quickly spider a whole issue tracking system. There have been times that a code forge has
banned access to machines used by a researcher, because the forge administrators perceive
repeated research requests as a denial of service attack on its servers.

• Lack of expertise. Researchers may lack expertise in navigating the repositories and code
forges, or they may not be able to write the best software needed to efficiently and effectively
extract data from code repositories. They are experts in the analysis of data from a certain
point of view, but not necessarily on dealing with the many APIs and spidering technologies
needed to actually collect that data.

Collection of the data is a very important first step for many research studies, but data collection
also requires researchers to work with engineering problems outside of their primary research
area. In some cases, this leads to researchers having to devote significant amounts of time and
effort to master the data retrieval process, an unnecessary extra burden on their research. In other



cases, a researcher may lack the background or means for gathering the data they really need, so
they are forced to use only a fraction of the data they would want. In still other cases, they may
reject an entire line of research when they perceive that the data is too difficult to collect. In fact,
from anecdotal experience, we think that many researchers, especially those not in the software
engineering fields, do not attempt this kind of empirical, quantitative research because, while they
may have an interesting research question to answer, it is also really difficult to identify and access
the data they need to answer that question.

3 RoRs: Releasing researchers from the burden of data collec-
tion

Repositories for researchers (or repositories of repositories, RoRs) with data about software de-
velopment are the answer that the research community has produced during the last few years to
address the aforementioned problems.

These RoRs usually hold data collected from project repositories, and some of them also store
some analysis and metrics calculated on the retrieved data. The results (raw data, summary data,
and / or analyses) will be stored in a database and accessible to the rest of the research community.
In some cases, the database is directly accessible to researchers via a direct query method. In
the case of large RoRs, it is also common that database ”dumps” are provided. Researchers can
download these large data files, and insert the data into their own database or statistical tools.
Database dumps can be provided in several formats, including SQL statements (used to re-create
a local copy of all or part of the RoR database), or comma-separated value (CSV) files, used for
importing the data into spreadsheets or statistical packages. In both cases, a web site serves as the
user interface for selecting the data to query or the dump to download.

To be useful to the research community, the databases collected by RoRs have to meet some
conditions:

• Accuracy

• Traceability

• Reproducibility

• Completeness (no hiding of information)

• Respect to privacy

In addition, it is important that the retrieval process does not cause performance penalties on
the infrastructure of the involved project repositories or code forges.

When using an RoR, the two phases of data retrieval and preparation and the analysis of the
retrieved data can be clearly separated and performed by different teams. Researchers interested
only in the analysis of data which is already provided by the repositories can benefit from the RoR
in several ways.



• No need of data retrieval engineering. Researchers do not need to devote time to sometimes
complex programming, dealing with the peculiarities of the infrastructure supporting the
repositories and the APIs to access them. They can just download the database dumps, and
start from there, being confident that the data was properly downloaded. Additionally, the
process followed by the RoR is traceable and reproducible. Researchers are also, in some
cases, freed from integrating heterogeneous data from multiple project repositories. For
example, researchers interested in the evolution of some particular metric in source code can
obtain data from a RoR for many projects using different SCMs. Or, a researcher interested
in software licensing can easily see the most popular license types on many different code
forges without being limited to a single project or a single forge.

• No need to wait for the data. Downloading the data, and especially for large datasets, is not
only a matter of having the appropriate tools: it is also a matter of waiting. In many cases,
days, or even months, are needed to obtain information from large collections of repositories.
By using RoRs, the only time involved is the download of the database dumps, which usually
is quite short compared to getting it from the project repositories.

• Huge amounts of data available. Even investing the time to develop retrieval tools and wait-
ing for the data to be downloaded, it is difficult to obtain data from large collections of
software projects, and even more difficult if those projects are in different forges. Worse,
after completing the retrieval, the researcher may notice that the set of projects selected was
not good for the research goals, or that the data retrieved is incomplete. This will further
delay the process of actually analyzing the data. When using a RoR, doing preliminary anal-
ysis with large quantities of projects involved is easy, and finding the proper projects for
specific studies is much more easy, since their data can be quickly retrieved, and verified for
the purposes of the study.

• Easy and quick evaluation of the parameters available for analysis. Software development
repositories include a lot of information, and using homegrown tools usually means retriev-
ing only the information that is thought to be needed for some specific study. Time and effort
constraints usually result in a no-frills program design, which means that only the specific
parameters thought to be needed are retrieved. If later in the research process researchers
notice that some important parameter is missing, a new retrieval loop has to be started. Con-
trariwise, RoRs are usually interested in retrieving as much information as possible. This
means that most, if not all, of the parameters are already in the dumps. If the researcher has
to extend the range of parameters considered from one iteration of the research study to the
next, there is no issue with retrieving new data from the RoR.

• No need of specific agreements with forges. In some cases, there are data points which are
difficult or impossible to obtain through the usual API, and specific agreements with forges
are needed. For an independent researcher, this is just another barrier to the final results. If
the data is obtained from a RoR, these agreements are largely transparent to the researcher.
A good example of this case is the Notre Dame agreement with SourceForge, which let
researchers use data which would have been difficult to obtain without that agreement.



• Homogeneous data between research teams. The peculiarities of the data retrieval process
can make it difficult to compare results between research groups. Usually, different param-
eters are chosen by the different teams, preprocessing methods are different, and in many
cases, even the original project repositories are no longer available. Using dumps from a
RoR makes it easier to do these comparisons and reproductions, since the data are labeled,
homogenized, and expected to be available for long periods of time.

• Focus on the analysis phase. Most researchers in this domain want to be focused on the
analysis phase, which is also where they are most productive. Retrieving the data is just a
tedious burden. If they had a resource that provided the data in a reliable and trustworthy
format, it is generally preferable for them to just get the data and start analyzing it. This is of
paramount importance in the cases of researchers who do not have the time, the resources,
or the skills needed to retrieve the data from the projects repositories. Using RoRs, they
can just get the data, devote some time to understanding it, and start right away with their
analyses.

• Availability of cooked data. Many RoRs maintain not only raw data as obtained form the
original repositories, but also ’cooked’ or summary data, obtained by performing some kind
of analysis on it. For example, in addition to having all the commit records from a SCM
repository, a RoR may offer some per-month or per-week metrics of important parameters,
based on those, which could be enough for some study on software evolution. Or, a RoR
may collect the registration dates for projects on a code forge and summarize these on a
graph showing growth in number of projects on a forge over time. These kinds of summaries
may simplify the process of learning how to use the RoR, showing what data is available,
ultimately making it possible for researchers to jump into their analysis more quickly and
with more confidence in the data.

One growing area of interest with the RoRs is that small communities of users of the data in
these repositories are starting to emerge. These communities allow for the exchange of experiences
between users, or in this case, researchers. In the future, it is expected that these communities will
help to speed up the learning process of using the data, and develop their own common expertise
about best ways to analyze it.

4 Repositories with data targeted to researchers
There are already several RoRs of potential interest to researchers. In this section, we will present
some of the most popular, among those specifically targeted to them.

4.1 FLOSSmole
FLOSSmole is a collection of datasets summarizing known information about free, libre, and open
source software (FLOSS) development. This project was started in 2004 and is still active, with
approximately 30-50 gigabytes of data added each month. The FLOSSmole project team writes



software to collect most of the data in the collection, but the project also accepts data donations
from related project teams, and works collaboratively with teams that collect similar data. Most of
the data in FLOSSmole is actually metadata describing various facts about FLOSS development
projects housed on software forges such as Sourceforge, Rubyforge, Tigris, or Google Code, or
listed in directories such as Freshmeat or the Free Software Foundation directory.

Code forges and directories provide a valuable resource for the software user community to find
and download relevant software, but they also provide a wealth of data that can help researchers
answer questions about the current state of FLOSS development: howmany projects are there, how
many people have downloaded the software, what are the programming languages or operating
systems that are most common, how are the teams organized, what types of problems are being
solved with open source software, what development methods are being used?

FLOSSmole currently collects data from Sourceforge, Freshmeat, Rubyforge, ObjectWeb, the
Free Software Foundation, Tigris, Google Code, Github, and Savannah. Currently under de-
velopment are collectors for Launchpad and enhanced collectors for Google Code, and mailing
list collectors for Tigris and Sourceforge. Data is collected from the public web sites of these
forges/directories on a monthly or bimonthly basis, depending on the forge in question, and this
data is re-released through the FLOSSmole web site in a variety of formats: downloadable text
files (tab-delimited for import into Excel or other software), downloadable SQL files (CREATE
and INSERT statements suitable for import into a favorite database application), and through a live
query tool (free registration required to obtain a username and password).

The data available in the FLOSSmole project, while focused on metadata and facts, is varied
and plentiful. There are over 400 GB of data in the main database as of this writing, all of it
available for download or via live query. Each dataset is given a unique number indicating which
forge the data came from, and date on which the data was collected. There are currently 230
datasets in FLOSSmole, spanning over five years. It is possible to track the evolution of a project
over time by identifying the name of a project and tracing it through the years of datasets. It is also
possible to analyze the rate of growth in new projects and the death or waning of existing projects,
languages, or development paradigms.

4.2 FLOSSMetrics
FLOSSMetrics is a FP6 project [Herraiz et al., 2009] funded by the European Commission. Its
main goal is to provide a large scale database with information from FLOSS projects. It became
fully functional in 2009.

Data in FLOSSMetrics comes from the publicly available data sources found in FLOSS projects,
such as source code management systems, mailing lists, bug tracking systems and source code re-
leases. The data is retrieved, stores in an SQL database, and analyzed. Therefore, in addition to
having access to the raw data, the analysis performed on it may help to better understand the world
of libre software development, to obtain factual data to improve the software development process
and to identify interesting practices which could be used in other contexts.

Currently there are more than 2,800 projects analyzed, although the figure is continuously
increasing. In the case of the source code management system, there are around 2,000 projects
with data, around 1,400 issue tracking systems analyzed and around 600 mailing list repositories.



In FLOSSMetrics, the information is retrieved automatically, thanks to the Blackbird 4 system
developed for it, which integrates some mining tools such as:

• CVSAnalY: stores in a database (MySQL or SQLite) the parsing of a log file from several
SCMs such as CVS, Subversion and Git.

• Mailing List Stats: parses information from mailing lists in mbox format and stores it in a
MySQL database.

• Bicho: retrieves information from Bugzilla BTS (so far, it works with KDE, GNOME and
Apache communities) and also the SourceForge tracker and stores it in a MySQL database.

• CMetrics, CCCC, PyMetrics, PerlMetrics: offer complexity metrics for several program-
ming languages.

• SLOCCOunt: developed by David Wheeler, provides basic information related to number
of SLOC and a basic COCOMO model.

All the results of the retrieval and analysis processes are published in the Melquiades website 5,
which offers, for each project, several kinds of information:

• Description: summary description of the project.

• Results: general overview to the data available for the project, including the primary databases
obtained with the different mining tools aforementioned.

• Resources: URLs where the data sources were found.

• Charts: set of statistics and charts about the given project, for all the set of data sources
analyzed.

• Quality Indicators: based on the quality model proposed by the QualOSS 6 project.

• Dumps: each of the databases stored by FLOSSMetrics for this project.

4.3 Comparing FLOSSMole and FLOSSMetrics
As seen, the two presented RoRs are complementary since FLOSSMetrics is mainly focused on de-
veloper’s activity (source code management, mailing lists and bug tracking systems) while FLOSS-
Mole is a true RoR in the sense that this project collects any data provided by third parties. Thus,
FLOSSMole is not so interested in having all the possible data from a given project, but offers data
from several different repositories and even not only focused on developer’s activity. On the other
hand, FLOSSMetrics is deepening more in each analyzed project offering metrics and charts for

4http://git.libresoft.es/blackbird/
5http://melquiades.flossmetrics.org
6http://qualoss.eu



each of them. Thus, the difference between the two as one of breadth versus depth. FLOSSMetrics
is depth. FLOSSmole is breadth.

In addition, FLOSSMole accepts donations of data from other projects where it will obtain a
reference entry (id number) and release (up to once per month) like any other data set. Hence, if
there is a donation of analysis across repositories this would be accepted inside the FLOSSMole
data sets. On the other hand, FLOSSMetrics has specific tools to retrieve data and to create metrics
per project or per FLOSS ecosystem. This complicates the fact of analyzing cross repositories and
this is something not expected in this RoR.

In other words, FLOSSMole would accept the analysis of FLOSSMetrics, but the analysis done
in FLOSSMole does not fit at all with the FLOSSMetrics data.

4.4 Some other RoRs
Some others RoRs currently in production worth mentioning are (the list does not pretend to be
exhaustive):

• SRDA. The Sourceforge Research Data Archive (SRDA) [Antwerp and Madey, 2008] lo-
cated at University of Notre Dame has several years worth of information donated directly
from Sourceforge. Data is available to university researchers who sign a license agreement.
SRDA has an ongoing cooperative relationship with FLOSSmole to share a community mail-
ing list, since both teams collect Sourceforge data and can benefit from each other’s knowl-
edge about that code forge.

• PROMISE Software Engineering Repository [Sayyad Shirabad and Menzies, 2005] This repos-
itory has several example data sets from the time period 2004-2006 covering some different
aspects of software engineering research questions, such data sets used to train defect pre-
diction or cost estimation algorithms.

5 Some examples
In this section we develop two simple case studies for two of the RoRs: FLOSSmole and FLOSS-
Metrics. We show how research questions can be answered easily with the data sets from these
RoRs.

5.1 Example of FLOSSmole usage
One reason that researchers like to study FLOSS projects is that they are curious as to whether the
FLOSS way of developing software will result in better software (where “better” is defined vari-
ously, depending on the research team and question). A university undergraduate student recently
asked the question of whether there is a Cope’s Rule for software development. He was referring
to the “rule” of evolutionary biology that states that animals will evolve to be larger over time. (In
biology, this “rule” is not as much a rule as it is a raging debate which is far beyond the scope



of this paper, but I point interested readers to [Gould, 1997] and [Alroy, 1998] to start finding
more information.) Using data in FLOSSmole, this student would like to show whether (1) over a
particular time, and (2) in particular code forges, (3) project team sizes and (4) did or did not grow
larger, and by what margins did this occur.

To answer this question, the student will identify one or more of the code forges in the FLOSS-
mole database, and he will extract the list of projects on the forge for each time we collected data.
For each data collection, and for each project on that collection, he will be interested in the project
registration date (start of each project) and the project team size. He will track the team size for
each project as it grows or shrinks (or stays the same) over time. He will then be able to add other
interesting questions, such as comparing change in team size to change in size of the code base.
Since FLOSSmole does not collect metrics about size of code base, he will either have to collect
this data and donate it to FLOSSmole or use one of the other RoRs that does collect this data (such
as FLOSSMetrics).

The specifics of gathering enough data to get started answering a question like this are fairly
easy in FLOSSmole. Within the FLOSSmole database, each data collection from a particular
forge on a particular date is given a unique number. We call these data sources. Examples: data
source 204 is the December, 2009 collection from the forge Savannah, and data source 205 is the
December, 2009 collection from the forge GitHub. Data source 206 is the February 2010 collection
from Sourceforge.

The student will need to identify which data sources (dates and forges) he is interested in. To
see all data sources, he will go to our database and run the query:

SELECT datasource_id, forge_id, friendly_name
FROM datasources;

This information about the various dates and forges for data sources is also available on the
FLOSSmole web site.

Next, the student will need to identify which forges look promising, and how far back he can
go for data in our RoR about that forge. Example, if he is interested in Sourceforge but wants to
know how many times we have collected there (more times means more data):

SELECT d.datasource_id, d.forge_id, f.forge_abbr, d.friendly_name
FROM datasources d INNER JOIN forges f ON d.forge_id= f.forge_id
WHERE f.forge_abbr = ’SF’;

Depending on which forge(s) he chooses, he will need to identify the correct location of the
developer count data for that forge. For Sourceforge, the developer count can most reliably be
found by counting the developers per project per data source:

For each datasource id, he will run:

SELECT dp.proj_unixname, count(dp.dev_loginname)
FROM developer_projects dp
WHERE dp.datasource_id = x
GROUP BY 1;



This will yield a count of developers listed for each project in that collection. Then, these
counts can be aggregated by project over time into a new table on the student’s own machine.
Example:

Project Name: abc Dev Count in January 2009 collection: 0 Dev Count in February 2009
collection: 2 Dev Count in March 2009 collection: 4

Project Name: mno Dev Count in January 2009 collection: 10 Dev Count in February 2009
collection: 10 Dev Count in February 2009 collection: 11

etc.
He can then analyze whether the projects seem to grow over time or not. He can modify his

original question to take into account growth of the source code base of a project in addition to the
developers working on the project, or any other growth metric that he may think would be fruitful.

5.2 Example of FLOSSMetrics usage
One of the common research topics in libre software is how to deal with the fact that communities
are lead by volunteers and check their real involvement in terms of effort and evolution of the
source code [Scacchi, 2006]. This is still work in progress, but using the FLOSSMetrics database
some initial questions are quickly resolved.

Not having access to the FLOSSMetrics database makes the process of retrieving data in some
cases too complex. Most of the information that could be retrieved to undertake these analysis is
found in the SCM by means of the log system. The relational database provides a way to easily
obtain answers for some questions.

For instance, two questions that are easily answered using the FLOSSMetrics database are
those related to the evolution of the developers team involved in the project and the number of files
which are being touched by those committers.

Then, we are able to match, for a given period, the number of committers with the number of
files per type of file. This provides a quick first glimpse about the number of people and quantity
of work done during its whole life. 7

5.2.1 Understanding the FLOSSMetrics website and Databases

All the databases offered by the FLOSSMetrics project can be found at the Melquiades website 8.
Thus, if we are interested in a given project, this is enough to look for it using the searching box
available. This will show a new web site with a set of dumps ordered by date and by type of data
source.

For this evolution analysis, we just need the CVSAnalY database. Specifically with the next
tables:

• scmlog: Every commit in the repository is represented by a record in this table. Main fields
are:

7More queries can be found at the Melquiades Wiki hosted by the FLOSSMetrics project: http://
melquiades.flossmetrics.org/wiki/doku.php?id=queries

8http://melquiades.flossmetrics.org/



– rev: This is the revision identifier in the repository. It is unique in every repository.
– date: The date when the commit was done.
– committer id: Committer identifier, that is, the identifier in the database of the person
who did the commit.

– author id: Author identifier. In some cases, the source control management system
makes a difference between the person who committed and the real author of that
change.

– message: The commit message written down by the committer.

• action: This table contains the different actions performed in every commit. In systems like
CVS, where a commit matches with a file, there is only one record for each commit. On the
other hand, most of the ”modern” systems, several files could be committed in each commit,
what is represented as several rows in this table per each revision.

– type: This is a single character which represents a type of action: added (A), modified
(M), deleted (D), renamed (V), copied (C) or replaced (R).

– commit id: This is an identifier of the commit where the action was performed. This is
a foreign key that references the id field of scmlog table.

– file id: Identified for each of the files handled in a given revision.

5.2.2 Number of distinct committers per unit of time:

This metric shows the number of active committers month. The FLOSSMetrics database provides
a table with each committer who has committed at least one change to the repository. Thus, it is
only necessary to take all the committers who have committed during each month:

SELECT date_format(s.date, ’%Y’) myyear,
date_format(s.date, ’%m’) mymonth,
COUNT(distinct s.committer_id) committer_author

FROM scmlog s
GROUP BY date_format(s.date,’%Y%m’);

5.2.3 Number of Files per Type and per Unit of Time

This metric aims to show the number of files touched by a given unit of time (month) and the kind
of file. This could show, for instance, months with a high activity in terms of translation for a given
project (for instance due to that a release is close to that date). It is calculated by retrieving the files
and their type month by month and showing the results ordered by year and month.

SELECT a.type,
date_format(s.date, ’%Y’) myyear,
date_format(s.date, ’%m’) mymonth,



COUNT (distinct a.file_id) numfiles
FROM scmlog s,

actions a
WHERE s.id=a.commit_id
GROUP BY a.type,

date_format(s.date,’%Y%m’);

6 Conclusions
RoRs represent an important linking piece between the copious amounts of raw data available
about FLOSS projects and the researchers who want to advance science and technology by ap-
plying that data to answer their own research questions. In this paper we have presented several
desired attributes of FLOSS repositories of repositories, and some advantages that RoRs convey
to the researchers when they are not tasked with collecting their own data. We have also out-
lined the features and contributions of FLOSSmole and FLOSSMetrics, two of the RoRs in active
development, explaining how to use these two RoRs by giving real-world examples of usage.

Each RoR has its own peculiarities which may create a wide range of solutions to work with
each of them. An example of this is the differences between the FLOSSmole and the FLOSSMet-
rics repositories: while the first one was initially thought as a place to store data from the projects
hosted in SourceForge, nowadays, it offers information from other RoRs or data sources (each one
with a different database schema). In the case of FLOSSMetrics, it is focused on the analysis of
the commonly found data sources, offering information with a similar schema for all of them, but
avoiding some other data sources such as those aforementioned. Thus, both offer a set of data,
interesting for researchers, but the methodology used to obtain data for each of them is totally
different.

In the future, it is expected that both FLOSSmole and FLOSSMetrics, and some other RoRs,
provide increasingly more data, and of better quality. It is also expected that researchers will
increasingly use them to avoid the cumbersome phases of data retrieval, at the same time being
able of performing large scale studies. However, only time will say whether they will become a
usual tool for the researchers in the different aspects of FLOSS development.

7 Acknowledgements
The work of Jesus M. Gonzalez-Barahona and Daniel Izquierdo has been funded in part by the
European Commission (QUALIPSO project, FP6-IST-034763) and by the Spanish Government
(project SobreSalto, TIN2007-66172).

The work of Megan Squire has been funded in part by the U.S. National Science Foundation
(CRI/CRD 07-08767).



References
[Alroy, 1998] Alroy, J. (1998). Cope’s rule and the dynamics of body mass evolution in north
american fossil mammals. Science, 280(5364):731–734.

[Antwerp and Madey, 2008] Antwerp, M. V. and Madey, G. (2008). Advances in the sourceforge
research data archive. InWoPDaSD.

[Dyba et al., 2005] Dyba, T., Kitchenham, B., and Jorgensen, M. (2005). Evidence-based software
engineering for practitioners. IEEE Software, 22(1):58–65.

[Fogel, 2005] Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Inc.

[Gould, 1997] Gould, S. (1997). Cope’s rule as psychological artefact. Nature, 385.

[Herraiz et al., 2009] Herraiz, I., Izquierdo-Cortazar, D., and Rivas-Hernández, F. (2009). Floss-
metrics: Free/libre/open source software metrics. In CSMR, pages 281–284.

[Howison and Crowston, 2004] Howison, J. and Crowston, K. (2004). The perils and pitfalls of
mining SourceForge. In Proceedings of the International Workshop on Mining Software Repos-
itories, pages 7–11, Edinburg, Scotland, UK.

[Kitchenham et al., 2002] Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D.,
El Emam, K., and Rosenberg, J. (2002). Preliminary guidelines for empirical research in soft-
ware engineering. IEEE Transactions on Software Engineering, pages 721–734.

[Robles et al., 2008] Robles, G., Gonzalez-Barahona, J. M., Izquierdo-Cortazar, D., and Herraiz,
I. (2008). Tools for the study of the usual data sources found in libre software projects. Inter-
national Journal on Open Source Software and Processes, 1(1).

[Sayyad Shirabad and Menzies, 2005] Sayyad Shirabad, J. and Menzies, T. (2005). The
PROMISE Repository of Software Engineering Databases. School of Information Technology
and Engineering, University of Ottawa, Canada.

[Scacchi, 2006] Scacchi, W. (2006). Understanding open source software evolution. In Nazim
H. Madhavji, Juan Fernandez-Ramil, D. E. P., editor, Software Evolution and Feedback: Theory
and Practice, pages 181–206. Wiley.


