
International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 1

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

The last few years have seen a rapid increase in the number of Free/Libre Open Source Software (FLOSS)
projects. Some of these projects, such as Linux and the Apache web server, have become phenomenally
successful. However, for every successful FLOSS project there are dozens of FLOSS projects which never
succeed. These projects fail to attract developers and/or consumers and, as a result, never get off the
ground. The aim of this research is to better understand why some FLOSS projects flourish while others
wither and die. This article presents a simple agent-based model that is calibrated on key patterns of data
from SourceForge, the largest online site hosting open source projects. The calibrated model provides
insight into the conditions necessary for FLOSS success and might be used for scenario analysis of future
developments of FLOSS. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords:	 Agent-Based Model; Emergent Properties; FLOSS; Open Source; Prediction Success;
Simulation

Although the concept of Free/Libre Open
Source Software (FLOSS) has been around
for many years, it has recently increased in
popularity as well as received media attention,
not without good reason. Certain characteristics
of FLOSS are highly desirable: some FLOSS
projects have been shown to be of very high
quality (Analysis of the Linux Kernel, 2004;
Linux Kernel Software, 2004) and to have low

defect counts (Chelf, 2006); FLOSS is able to
exploit parallelism in the software engineering
process, resulting in rapid development (Kogut
& Metiu, 2001); FLOSS sometimes violates
Brooks’ law (Rossi, 2004), which states that
“adding manpower to a late software product
makes it later” (Brooks, 1975); and FLOSS
development thrives on an increasing user- and
developer-base (Rossi, 2004).

What Makes Free/Libre Open
Source Software (FLOSS)

Projects Successful?
An Agent-Based Model of FLOSS Projects

Nicholas P. Radtke, Arizona State University, USA

Marco A. Janssen, Arizona State University, USA

James S. Collofello, Arizona State University, USA

2 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

As open source has become a prominent
player in the software market, more people and
companies are faced with the possibility of us-
ing open source products, which often are seen
as free or low-cost solutions to software needs.
However, choosing to use open source software
is risky business, partly because it is unclear
which FLOSS will succeed. To choose an open
source project, only to find it stagnates or fails in
the near future, could be disastrous, and is cited
as a concern by IT managers (T. Smith, 2002).
Accurate prediction of a project’s likelihood to
succeed/fail would therefore benefit those who
choose to use FLOSS, allowing more informed
selection of open source projects.

This article presents an initial step towards
the development of an agent-based model that
simulates the development of open source proj-
ects. Findings from a diverse set of empirical
studies of FLOSS projects have been used to
formulate the model, which is then calibrated
on empirical data from SourceForge, the largest
online site hosting open source projects. Such a
model can be used for scenario and sensitivity
analysis to explore the conditions necessary for
the success of FLOSS projects.

BACKGROUND

There have been a limited number of attempts
to simulate various parts of the open source
development process (Dalle & David, 2004).
For example, Dalle and David (2004) use agent-
based modeling to create SimCode, a simula-
tor that attempts to model where developers
will focus their contributions within a single
project. However, in order to predict the suc-
cess/failure of a single FLOSS project, other
existing FLOSS projects, which are vying for a
limited pool of developers and users, may need
to be considered. This is especially true when
multiple FLOSS projects are competing for a
limited market share (e.g., two driver projects
for the same piece of hardware or rival desktop
environments such as GNOME and the KDE).
Wagstrom, Herbsleb, and Carley (2005) created
OSSim, an agent-based model containing us-

ers, developers, and projects that is driven by
social networks. While this model allows for
multiple competing projects, the published
experiments include a maximum of only four
projects (Wagstrom et al., 2005). Preliminary
work on modeling competition among projects
is currently being explored by Katsamakas and
Georgantzas (2007) using a system dynamics
framework. By using a population of projects,
it is possible to consider factors between the
projects, e.g., the relative popularity of a project
with respect to other projects as a factor that
attracts developers and users to a particular
project. Therefore, our model pioneers new
territory by attempting to simulate across a
large landscape of FLOSS with agent-based
modeling.

Gao, Madey, and Freeh (2005) approach
modeling and simulating the FLOSS com-
munity via social network theory, focusing on
the relationships between FLOSS developers.
While they also use empirical data from the
online FLOSS repository SourceForge to cali-
brate their model, they are mostly interested
in replicating the network structure and use
network metrics for validation purposes (e.g.
network diameter and degree). Our model at-
tempts to replicate other emergent properties
of FLOSS development without including the
complexities of social networking. However,
both teams consider some similar indicators,
such as the number of developers working on
a project, when evaluating the performance of
the models.

In addition, there have been attempts to
identify factors that influence FLOSS. These
have ranged from pure speculation (Raymond’s
(2000) gift giving culture postulates) to surveys
of developers (Rossi, 2004) to case studies us-
ing data mined from SourceForge (Michlmayr,
2005). Wang (2007) demonstrates specific
factors can be used for predicting the success
of FLOSS projects via K-Means clustering.
However, this form of machine learning offers
no insight into the actual underlying process
that causes projects to succeed. Therefore, the
research presented here approaches simulating

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 3

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the FLOSS development process using agent-
based modeling instead of machine learning.

To encourage more simulation of the
FLOSS development process, Antoniades, Sa-
moladas, Stamelos, Angelis, and Bleris (2005)
created a general framework for FLOSS models.
The model presented here follows some of the
recommendations and best practices suggested
in this framework. In addition, Antoniades
et al. (2005) developed an initial dynamical
simulation model of FLOSS. Although the
model presented here is agent-based, many of
the techniques, including calibration, valida-
tion, and addressing the stochastic nature of
the modeling process, are similar between the
two models. One difference is the empirical
data used for validation: Antoniades et al.’s
(2005) model uses mostly code-level metrics
from specific projects while the model presented
here uses higher project-level statistics gathered
across many projects.

IDENTIFYING AND SELECTING
INFLUENTIAL FACTORS

Factors which are most likely to influence the
success/failure of FLOSS must first be identified
and then incorporated into the model. Many
papers have been published in regards to this,
but most of the literature simply speculates on
what factors might affect the success and offers
reasons why. Note that measuring the success
of a FLOSS project is still an open problem:
some metrics have been proposed and used but
unlike for commercial software, no standards
have been established. Some possible success
indicators are:

•	 Completion of the project (Crowston,
Howison, & Annabi, 2006)

•	 Progression through maturity stages (Crow-
ston & Scozzi, 2002)

•	 Number of developers
•	 Level of activity (i.e., bug fixes, new feature

implementations, mailing list)
•	 Time between releases
•	 Project outdegree (Wang, 2007)

•	 Active developer count change trends
(Wang, 2007)

English and Schweik (2007) asked eight
developers how they defined success and failure
of an open source project. Answers varied for
success, but all agreed that a project with a lack
of users was a failure. Thus having a sufficient
user-base may be another metric for success.

Papers that consider factors influencing
success fall into two categories: those that look
at factors that directly affect a project’s success
(Michlmayr, 2005; Stewart, Ammeter, & Mar-
uping, 2006; S. C. Smith & Sidorova, 2003) and
those that look for factors that attract developers
to a project (and thus indirectly affect the success
of a project) (Bitzer & Schröder, 2005; Rossi,
2004; Raymond, 2000; Lerner & Tirole, 2005).
A few go a step further and perform statistical
analyses to discover if there is a correlation
between certain factors and a project’s success/
failure (Lerner & Tirole, 2005; Michlmayr,
2005), and Kowalczykiewicz (2005) uses
trends for prediction purposes. Wang (2007)
demonstrates that certain factors can be used
for accurate prediction using machine learning
techniques. Koch (2008) considers factors af-
fecting efficiency after first using data envelop-
ment analysis to show that successful projects
tend to have higher efficiencies.

In general, factors affecting FLOSS proj-
ects fall into two categories: technical factors
and social factors. Technical factors are aspects
that relate directly to a project and its develop-
ment and are typically both objective and easy to
measure. Examples of technical factors include
lines of code and number of developers.

The second category is social factors.
Social factors pertain to aspects that personally
motivate individuals to engage in open source
development/use. Examples of social factors
include reputation from working on a project,
matching interests between the project and the
developer/user, popularity of the project with
other developers/users, and perceived impor-
tance of the code being written (e.g., core versus
fringe development (Dalle & David, 2004)).
Most of the social factors are subjective and

4 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

rather difficult, if not impossible, to measure.
Despite this, it is hard to deny that these might
influence the success/failure of a project and
therefore social factors are considered in the
model. Fortunately, the social factors being
considered fall under the domain of public
goods, for which there is already a large body
of work published (e.g., Ostrom, Gardner, &
Walker, 1994; Jerdee & Rosen, 1974; Tajfel,
1981; Axelrod, 1984; Fox & Guyer, 1977).
Most of this work is not specific to FLOSS, but
in general it explores why people volunteer to
contribute to public goods and what contextual
factors increase these contributions.

The findings of this literature are applied
when designing the model, as are findings
from publications investigating how FLOSS
works, extensive surveys of developers asking
why they participate in FLOSS (e.g., Ghosh,
Krieger, Glott, & Robles, 2002), and com-
ments and opinions of FLOSS users (e.g., T.
Smith, 2002).

INITIAL MODEL

The model universe consists of agents and
FLOSS projects. Agents may choose to con-
tribute to or not contribute to, and to consume
(i.e. download) or not consume FLOSS projects.
At time zero, FLOSS projects are seeded in

the model universe. These initial projects vary
randomly in the amount of resources that will
be required to complete them. At any time,
agents may belong to zero, one, or more than
one of the FLOSS projects. The simulation is
run with a time step (t) equal to one (40 hour)
workweek.

Table 1 contains the properties of agents.
Table 2 contains the properties of projects.

At each time step, agents choose to produce
or consume based on their producer and con-
sumer numbers, values between 0.0 and 1.0 that
represent probabilities that an agent will produce
or consume. Producer and consumer numbers
are statically assigned when agents are created
and are drawn from a normal distribution. If
producing or consuming, an agent calculates
a utility score for each project in its memory,
which contains a subset of all available projects.
The utility function is shown in Box 1.

Each term in the utility function repre-
sents a weighted factor that attracts agents to
a project, where w1 through w5 are weights that
control the importance of each factor, with 0.0
≤ w1,w2,w3,w4,w5 ≤ 1.0 and 5

1 1.0i= iw =Σ . Factors
were selected based on both FLOSS literature
and our own understanding of the FLOSS de-
velopment process. Keeping it simple, a linear
utility equation is used for this version of the
model. The first term represents the similarity
between the interests of an agent and the direc-

Property Description Type/Range

Consumer number Propensity of an agent to consume (use)
FLOSS.

Real [0.0, 1.0]

Producer number Propensity of an agent to contribute to
(develop) FLOSS.

Real [0.0, 1.0]

Needs vector A vector representing the interests of the
agent.

Each scalar in vector
is real [0.0, 1.0]

Resources number A value representing the amount of work
an agent can put into FLOSS projects on
a weekly basis. A value of 1.0 represents
40 hours.

Real [0.0, 1.5]

Memory A list of projects the agent knows exist.

Table 1. Agent properties

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 5

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tion of a project; it is currently calculated using
cosine similarity between the agent’s and proj-
ect’s needs vectors. The second term captures
the current popularity of the project and the
third term the size of the project implemented
so far. The fourth term captures the popular-
ity of a project with consumers based on the
cumulative number of downloads a project has
received. The fifth term captures the maturity
stage of the project. Values with the subscript
“norm” have been normalized (e.g., download-
snorm is a project’s download count divided by
the maximum number of downloads that any
project has received). The discreet function
f maps each of the six maturity stages into a
value between 0.0 and 1.0, corresponding to the
importance of each maturity stage in attracting
developers. Since all terms are normalized, the

utility score is always a value between 0.0 and
1.0. Both consumers and producers use the
same utility function. This is logical, as most
FLOSS developers are also users of FLOSS.
For consumers that are not producers, arguably
the terms represented in the utility function are
still of interest when selecting a project. There
is relatively little research published on users
compared to developers of FLOSS, so it is un-
clear if selection criteria are different between
the two groups.

It is possible that some of the terms in-
cluded in the utility function are redundant or
irrelevant. Part of the model exploration is to
determine which of these factors are relevant.
See the Calibrating the Model and Results
sections below.

Property Description Type/Range

Current resources
The amount of resources or work being
contributed to the project during the cur-
rent time interval.

Real

Cumulative resources The sum, over time increments, of all
resources contributed to the project. Real

Resources for comple-
tion

The total number of resources required to
complete the project. Real

Download count The number of times the project has been
downloaded.

Integer

Maturity Six ordered stages a project progresses
through from creation to completion.

{planning, pre-alpha,
alpha, beta, stable,
mature}

Needs vector
An evolving vector representing the
interests of the developers involved in the
project.

Each scalar in vector
is real [0.0, 1.0]

Table 2. Project properties

()

()

1

2 norm

3 norm

4 norm

5

= similarity
+
+
+
+ (1)f

utility w agentNeeds, projectNeeds
w currentResources
w cumulativeResources
w downloads
w maturity

⋅

⋅
⋅
⋅

⋅

Box 1.

6 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Agents use utility scores in combination
with a multinominal logit equation to probabi-
listically select projects. The multinominal logit
allows for imperfect choice, i.e., not always
selecting the projects with the highest utility.

There is no explicit formulation of com-
munication between agents included in the
model; implicitly it is assumed that agents
share information about other projects and thus
agents know characteristics of projects they are
not currently consuming/producing. At each
time step, agents update their memory. With a
certain probability an agent will be informed
of a project and add it to its memory, simulat-
ing discovering new projects. Likewise, with
a certain probability an agent will remove a
project from its memory, simulating forgetting
about or losing interest in old projects. Thus,
over time an agent’s memory may expand and
contract.

Projects update their needs vector at each
iteration using a decaying equation, where the
new vector is partially based on the project’s
previous vector and partially on the needs vec-
tors of the agents currently contributing to the
project. An agent’s influence on the project’s
vector is directly proportional to the amount
of work the agent is contributing to the project
with respect to other agents working on the same
project. This represents the direction of a project
being influenced by the developers working on
it. Finally, project maturity stages are computed
based on percent complete threshold values.

VALIDATION METHOD

Creating a model that successfully predicts
the success or failure of FLOSS projects is
a complicated matter. To aid in the iterative
development process, the model is first cali-
brated to reproduce a set of known, emergent
properties from real world FLOSS data. For
example, Weiss (2005) surveyed the distribution
of projects at SourceForge in each of six devel-
opment categories: planning, pre-alpha, alpha,
beta, stable, and mature. Therefore, the model
will need to produce a distribution of projects

in each stage similar to that measured by Weiss.
In addition, two other emergent properties were
chosen to validate the initial model:

•	 Number of developers per FLOSS proj-
ect.

•	 Number of FLOSS projects per devel-
oper.

•	 By creating a model that mimics a number
of key patterns of the data, confidence is
derived about the model.

CALIBRATING THE MODEL

The model has a number of parameters that
must be assigned values. A small subset of these
can be set to likely values based on statistics
gathered from surveys or mined from FLOSS
repository databases. For the remaining param-
eters, a search of the parameter space must be
performed to find the combination that allows
the model to most closely match the empirical
data. Since an exhaustive search is not practical,
the use of genetic algorithms from evolutionary
computation is used to explore the parameter
space (Kicinger, Arciszewski, & De Jong, 2005).
This is done as follows: an initial population
of model parameter sets is created randomly.
The model is run with each of the parameter
sets and a fitness score is calculated based on
the similarity of the generated versus empiri-
cal data. The parameter values from these sets
are then mutated or crossed-over with other
parameter sets to create a new generation of
model parameter sets, with a bias for selecting
parameters sets that resulted in a high fitness;
then the new generation of parameter sets are
evaluated and the process repeated. In this
case, a genetic algorithm is being used for a
stochastic optimization problem for which it
is not known when a global optimum is found.
Genetic algorithms are appropriate for finding
well-performing solutions in a reasonably brief
amount of time. Reviewing the values of the
best performing parameters will help identify
which factors are important/influential in the
open source software development process.

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 7

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The fitness function chosen for the genetic
algorithm is based on the sum of the square of
errors between the simulated and empirical
data, as shown in Box 2.

Since there are three fitness values cal-
culated, one per empirical data set, the three
fitness values are averaged to provide a single
value for comparison purposes.

RESULTS

Since the model includes stochastic components,
multiple runs with a given parameter set were
performed and the results averaged. In this case,
four runs were performed for each parameter set
after initial experimentation showed very low
standard deviations even with small numbers
of runs. The averaged model results were then
compared to the empirical data.

As empirical investigations of FLOSS
evolution note, it takes approximately four
years for a project of medium size to reach

a mature stage (Krishnamurthy, 2002). Thus,
the model’s performance was evaluated by
running the model for 250 time steps, with a
time step of one week, for a total simulated
time equivalent of a little over five years. All
metrics were gathered immediately following
the 250th time step.

The averaged data (over 4 runs) from the
simulator’s best parameter set, along with the
empirical data, is shown in Figs. 1, 2, and 3.

Figure 1 shows the generated percentage of
projects in each maturity stage is a similar shape
to the empirical data, with the main difference
being the highs are too high and the lows are too
low in the simulated data. This disparity may be
a result of initial model startup conditions. At
time 0, the model starts with all projects in the
planning stage. This is obviously different than
SourceForge, where the projects were gradually
added over time, not all at once in the beginning.
While the model does add new projects each
time step, with a growth rate based on the rate of
increase of projects at SourceForge, it may take

Box 2.

sum of square of errors1 (2)
maximum possible sum of square of errors

fitness = −

Figure 1. Percentage of FLOSS projects in maturity stages. Empirical data from (Weiss, 2005)

Plan
ning

Pre-
alpha

Alpha Beta Stable Mature
0
5

10
15
20
25
30
35
40
45

Maturity Stages

Sim Average
Emp Value

Maturity Stage

P
er

ce
nt

8 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

more than 250 time steps for maturity stages to
stabilize after the differing initial condition. At
the end of the simulation run, just short of 60%
of the projects were created sometime during
the simulation while the remaining 40% were
created at time 0.

As shown in Figure 2, the number of de-
velopers per projects follows a near-exponential
distribution and the simulated data is similar,
especially for projects with fewer than seven
developers. Note that the data in Figure 2
uses a logarithmic scale to help with a visual
comparison between the two data sets. Beyond
seven developers, the values match less closely,
although this difference is visually amplified as
a result of the logarithmic scale and is actually
not as large as it might initially appear. Since
there are few projects with large numbers of
developers in the empirical data, the higher
values may be in the noise anyhow and thus
focus should be on the similarity of the lower
numbers.

Figure 3 shows the number of projects per
developer is a relatively good match between
the simulated and empirical data, with the main
difference being the number of developers work-
ing on one project. It is likely that this could

be corrected via additional experimentation
with parameters.

Table 3 contains the average fitness scores
for each of the emergent properties for the top
performing parameter set. These values provide
a quantitative mechanism for confirming the
visual comparisons made above: the maturity
stage fitness score is indeed lower than the other
two properties. The combined fitness is simply
the mean of the three fitness scores, although this
value could be calculated with uneven weights
if, say, matching each property was prioritized.
Doing so would affect how the genetic algorithm
explored the parameter space. It may be the case
that certain properties are easy to reproduce
in the model and work over a wide range of
parameter sets, in which case these properties
may be weighted less than properties that are
more difficult to match. Properties which are
always matched should be discarded from the
model for evolution purposes as they do not
discriminate against different parameter sets.

Finally, examining the evolved utility
weights of the top 10 performing parameter
sets provides insight into what factors are
important in the model for reproducing the
three properties examined. Table 4 contains
the averages and standard deviations for each

Figure 2. Percentage of projects with N developers. Empirical data from (Weiss, 2005)

0 5 10 15 20 25 30 35 40
-8

-6

-4

-2

0

2

4

6

Developers per Project

Sim Average
Emp Value

Developers per Project

ln
(p

er
ce

nt
)

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 9

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 3. Percentage of developers with N projects. Empirical data from (Ghosh et al., 2002)

0 1 2 3 4-5 6-7 8-1
0

11-
15

16-
20

>20
0

5

10

15

20

25

30

35

40

Projects per Developer

Sim Average
Emp Value

Projects per Developer

P
er

ce
nt

Emergent Property Fitness Score

Maturity stage 0.9679

Devs per project 0.9837

Projects per dev 0.9938

Combined 0.9818

Table 3. Averaged fitness scores for the best

Weight Mean Std.
Dev.

w1 (similarity) 0.1849 0.1137

w2 (current resources) 0.3964 0.1058

w3 (cumulative resources) 0.0003 0.0003

w4 (downloads) 0.0022 0.0039

w5 (maturity) 0.4163 0.1534

Table 4. Utility function weights from the best
10 param

of the weights. It appears that the cumulative
number of resources and download counts are
not important in reproducing the examined prop-
erties in the model. This conclusion is reached
by observing these weight’s small values (low
mean and small variance) in comparison to the
other weights (high means and larger variance).

Unfortunately, the high variance of the remain-
ing three weights makes it difficult to rank them
in order of importance. Rather, the conclusion is
that similarity, current resources, and maturity
are all important in the model.

Another interesting set of values evolved by
the system are the parameters for the producer
and consumer numbers. While the producer
and consumer numbers are drawn from normal
distributions bounded by 0.0 and 1.0 inclusive,
neither the mean nor standard deviations of these
distributions are known. Therefore, these values
are evolved to find the best performing values.
Table 5 contains the evolved mean and stan-
dard deviation for the producer and consumer
numbers averaged from the top 10 parameter
sets. Notice that the mean producer number is
very high at 0.9801 and very stable across the
top 10 parameter sets, with a standard deviation
of 0.0079. Likewise, the standard deviation is
relatively low at 0.1104 and also stable with a
standard deviation of 0.0101. This indicates that
the top performing model runs had agents with
high propensities to develop. In other words hav-
ing most agents produce frequently (i.e., most
agents be developers) produces better matching
of the empirical data. This is in alignment with
the notion that FLOSS is a developer-driven

10 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

process. The evolved consumer number mean
is much lower and standard deviation is much
higher compared to the producer number.
Neither one of these parameters is particularly
stable, i.e., both have large standard deviations
over the top 10 parameter sets. This indicates
that the consumer number distribution has
little effect on matching the empirical data for
the top 10 parameter sets. Note that this is in
alignment with the evolved weight for down-
loads approaching 0.0 in the utility functions.
Consumers are not the driving force in matching
the empirical data in the model.

DISCUSSION

Once developers join a project, it is likely that
they will continue to work on the same project
in the future. This is especially evident in the
case of core developers, who typically work
on a project for an extended period of time.
Currently, the model attempts to reproduce
this characteristic by giving a boost (taking
the square root) of the utility function for
projects worked on in the previous time step.
In effect, this increases the probability of an
agent selecting the same projects to work on in
the subsequent time step. Improvements to the
model might include adding a switching cost
term to the utility function, representing the
extra effort required to become familiar with
another project. Gao et al. (2005) address this

issue by using probabilities based off data from
SourceForge to determine when developers con-
tinue with or leave a project they are currently
involved with in their FLOSS model.

The model’s needs vectors serve as an
abstraction for representing the interests and
corresponding functionalities of the agents and
projects respectively. Therefore, the needs vec-
tor is at the crux of handling the matching of
developers’ interests with appropriate projects.
For simplicity, initial needs vector values are
assigned via a uniform distribution, but explora-
tion of the effects of other distributions may be
interesting. For example, if a normal distribution
is used, projects with vector components near
the mean will have an easy time attracting agents
with similar interests. Projects with vector com-
ponents several standard deviations from the
mean may fail to attract any agents. A drawback
of a normal distribution is that it makes most
projects similar; in reality, projects are spread
over a wide spectrum (e.g., from operating
systems and drivers to business applications
and games), although the actual distribution is
unknown and difficult to measure.

Currently, needs vectors for projects and
agents are generated independently. This has
the problem of creating projects which have
no interest to any agents. An improvement
would be to have agents create projects; when
created, a project would clone its associated
agent’s needs vector (which would then evolve
as other agents joined and contributed to the
project). This behavior would more closely
match SourceForge, where a developer ini-
tially registers his/her project. By definition,
the project matches the developer’s interest at
time of registration.

For simplicity’s sake, currently the model
uses a single utility function for both produc-
ers and consumers. It is possible that these two
groups may attach different weights to factors
in the utility function or may even have two
completely different utility functions. However,
analysis of the model shows that developers are
the driving force to reproduce the empirical
data. Exploration of a simplified model without

Producer/Consumer Number

Parameter statistics
from top 10 param-
eter sets

Mean Std. Dev.

Producer number
Mean 0.9801 0.0079

Std. Dev. 0.1104 0.0101

Consumer
number

Mean 0.6368 0.1979

Std. Dev. 0.3475 0.3737

Table 5. Evolved producer/consumer number
distributions parameters

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

consumers may show that concerns about using
multiple utility functions are irrelevant.

One final complication with the model is
its internal representations versus reality. For
example, a suggested strategy for success in
open source projects is to release early and
release often (Raymond, 2000). Using this
method to determine successful projects within
the model is problematic because the model
includes no concept of releasing versions of
software. Augmenting the model to include a
reasonable representation of software releases
is non-trivial, if possible at all. Likewise, it is
difficult to compare findings of other work on
conditions leading to success that map into this
model. For example, Lerner and Tirole (2005)
consider licensing impacts while Michlmayr
(2005) consider version control systems,
mailing lists, documentation, portability, and
systematic testing policy differences between
successful and unsuccessful projects. Unfortu-
nately, none of these aspects easily map into the
model for comparison or validation purposes.

CONCLUSION

A better understanding of conditions that
contribute to the success of FLOSS projects
might be a valuable contribution to the future of
software engineering. The model is formulated
from empirical studies and calibrated using
SourceForge data. The calibrated version pro-
duces reasonable results for the three emergent
properties examined. From the calibrated data,
it is concluded that the similarity between a
developer and a project, the current resources
going towards a project, and the maturity stage
of a project are important factors. However, the
cumulative resources and number of downloads
a project has received are not important in
reproducing the emergent properties.

The model presented here aids in gaining
a better understanding of the conditions neces-
sary for open source projects to succeed. With
further iterations of development, including
supplementing the model with better data-based
values for parameters and adding additional

emergent properties for validation purposes, the
model could move into the realm of prediction.
In this case, it would be possible to feed real-life
conditions into the model and then observe a
given project as it progresses (or lack of pro-
gresses) in the FLOSS environment.

REFERENCES
Analysis of the linux kernel. (2004). Research report.
(Coverity Incorporated)

Antoniades, I., Samoladas, I., Stamelos, I., Angelis,
L., & Bleris, G. L. (2005). Dynamical simulation
models of the open source development process.
In S. Koch (Ed.), Free/open source software devel-
opment (pp. 174–202). Hershey, PA: Idea Group,
Incorporated.

Axelrod, R. (1984). The evolution of cooperation.
New York: Basic Books.

Bitzer, J., & Schröder, P. J. (2005, July). Bug-fixing
and code-writing: The private provision of open
source software. Information Economics and Policy,
17(3), 389-406.

Brooks, F. P. (1975). The mythical man-month:
Essays on software engineering. Reading, MA:
Addison-Wesley.

Chelf, B. (2006). Measuring software quality: a study
of open source software. Research report. (Coverity
Incorporated)

Crowston, K., Howison, J., & Annabi, H. (2006,
March/April). Information systems success in free
and open source software development: Theory
and measures. Software Process: Improvement and
Practice, 11(2), 123–148.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: compe-
tency rallying for software development. In IEE
proceedings software, 49, 3–17).

Dalle, J.-M., & David, P. A. (2004, November 1).
SimCode: Agent-based simulation modelling of
open-source software development (Industrial Or-
ganization). EconWPA.

English, R., & Schweik, C. M. (2007). Identifying
success and tragedy of FLOSS commons: A pre-
liminary classification of Sourceforge.net projects.

12 International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In FLOSS ’07: Proceedings of the first international
workshop on emerging trends in FLOSS research and
development (p. 11). Washington, DC, USA: IEEE
Computer Society.

Fox, J., & Guyer, M. (1977, June). Group size and
others’ strategy in an n-person game. Journal of
Conflict Resolution, 21(2), 323–338.

Gao, Y., Madey, G., & Freeh, V. (2005, April). Mod-
eling and simulation of the open source software
community. In Agent-Directed Simulation Confer-
ence (pp. 113–122). San Diego, CA.

Ghosh, R. A., Krieger, B., Glott, R., & Robles, G.
(2002, June). Part 4: Survey of developers. In Free/
libre and open source software: Survey and study.
Maastricht, The Netherlands: University of Maas-
tricht, The Netherlands.

Jerdee, T. H., & Rosen, B. (1974). Effects of oppor-
tunity to communicate and visibility of individual
decisions on behavior in the common interest. Journal
of Applied Psychology, 59(6), 712–716.

Katsamakas, E., & Georgantzas, N. (2007). Why most
open source development projects do not succeed?
In FLOSS ’07: Proceedings of the first international
workshop on emerging trends in FLOSS research and
development (p. 3). Washington, DC, USA: IEEE
Computer Society.

Kicinger, R., Arciszewski, T., & De Jong, K. A.
(2005). Evolutionary computation and structural
design: A survey of the state of the art. Computers
and Structures, 83(23-24), 1943-1978.

Koch, S. (2008). Exploring the effects of Source-
Forge.net coordination and communication tools
on the efficiency of open source projects using data
envelopment analysis. In S. Morasca (Ed.), Empirical
Software Engineering: Springer.

Kogut, B., & Metiu, A. (2001, Summer). Open-
source software development and distributed inno-
vation. Oxford Review of Economic Policy, 17(2),
248-264.

Kowalczykiewicz, K. (2005). Libre projects lifetime
profiles analysis. In Free and open source software
developers’ European meeting 2005. Brussels,
Belgium.

Krishnamurthy, S. (2002, June). Cave or community?:
An empirical examination of 100 mature open source
projects. First Monday, 7(6).

Lerner, J., & Tirole, J. (2005, April). The scope of
open source licensing. Journal of Law, Economics,
and Organization, 21(1), 20–56.

Linux kernel software quality and security better
than most proprietary enterprise software, 4-year
Coverity analysis finds. (2004). Press release. (Co-
verity Incorporated)

Michlmayr, M. (2005). Software process maturity and
the success of free software projects. In K. Zielinski
& T. Szmuc (Eds.), Software engineering: Evolu-
tion and emerging technologies (p. 3-14). Krakow,
Poland: IOS Press.

Ostrom, E., Gardner, R., & Walker, J. (1994). Rules,
games and common pool resources. Ann Arbor, MI:
University of Michigan Press.

Raymond, E. S. (2000, September 11). The cathe-
dral and the bazaar (Tech. Rep. No. 3.0). Thyrsus
Enterprises.

Rossi, M. A. (2004, April). Decoding the “Free/
Open Source(F/OSS) Software puzzle” a survey of
theoretical and empirical contributions (Quaderni
No. 424). Dipartimento di Economia Politica, Uni-
versità degli Studi di Siena.

Smith, S. C., & Sidorova, A. (2003). Survival of open-
source projects: A population ecology perspective. In
ICIS 2003. Proceedings of international conference
on information systems 2003. Seattle, WA.

Smith, T. (2002, October 1). Open source: En-
terprise ready – with qualifiers. theOpenEnter-
prise. (http://www.theopenenterprise.com/story/
TOE20020926S0002)

Stewart, K. J., Ammeter, A. P., & Maruping, L. M.
(2006, June). Impacts of license choice and organiza-
tional sponsorship on user interest and development
activity in open source software projects. Information
Systems Research, 17(2), 126–144.

Tajfel, H. (1981). Human groups and social catego-
ries: Studies in social psychology. Cambridge, UK:
Cambridge University Press.

Wagstrom, P., Herbsleb, J., & Carley, K. (2005). A
social network approach to free/open source software
simulation. In First international conference on open
source systems (pp. 16–23).

Wang, Y. (2007). Prediction of success in open source
software development. Master of science dissertation,
University of California, Davis, Davis, CA.

International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Weiss, D. (2005). Quantitative analysis of open
source projects on SourceForge. In M. Scotto & G.
Succi (Eds.), Proceedings of the first international

conference on open source systems (OSS 2005) (pp.
140–147). Genova, Italy.

Nicholas P. Radtke is a PhD candidate in computer science at Arizona State University. His research
focuses on understanding and modeling free/libre open source software engineering processes.

Marco A. Janssen is assistant professor on formal modeling of social and social-ecological systems within
the School of Human Evolution and Social Change at Arizona State University. He is also the associate
director of the Center for the Study of Institutional Diversity. His formal training is within the area of
operations research and applied mathematics. His current research focuses on the fit between behavioral,
institutional and ecological processes. In his research he combines agent-based models with laboratory
experiments and case study analysis. Janssen also performs research on diffusion processes of knowledge
and information, with applications in marketing and digital media.

James S. Collofello is currently computer science and engineering professor and associate dean for the
Engineering School at Arizona State University. He received his PhD in computer science from Northwestern
University. His teaching and research interests lie in the software engineering area with an emphasis on soft-
ware quality assurance, software project management and software process modeling and simulation.

