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Abstract

The last few years have seen a rapid increase in the number of Free/Libre Open Source Software (FLOSS) 
projects. Some of these projects, such as Linux and the Apache web server, have become phenomenally 
successful. However, for every successful FLOSS project there are dozens of FLOSS projects which never 
succeed. These projects fail to attract developers and/or consumers and, as a result, never get off the 
ground. The aim of this research is to better understand why some FLOSS projects flourish while others 
wither and die. This article presents a simple agent-based model that is calibrated on key patterns of data 
from SourceForge, the largest online site hosting open source projects. The calibrated model provides 
insight into the conditions necessary for FLOSS success and might be used for scenario analysis of future 
developments of FLOSS. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords:	 Agent-Based Model; Emergent Properties; FLOSS; Open Source; Prediction Success; 
Simulation

Although the concept of Free/Libre Open 
Source Software (FLOSS) has been around 
for many years, it has recently increased in 
popularity as well as received media attention, 
not without good reason. Certain characteristics 
of FLOSS are highly desirable: some FLOSS 
projects have been shown to be of very high 
quality (Analysis of the Linux Kernel, 2004; 
Linux Kernel Software, 2004) and to have low 

defect counts (Chelf, 2006); FLOSS is able to 
exploit parallelism in the software engineering 
process, resulting in rapid development (Kogut 
& Metiu, 2001); FLOSS sometimes violates 
Brooks’ law (Rossi, 2004), which states that 
“adding manpower to a late software product 
makes it later” (Brooks, 1975); and FLOSS 
development thrives on an increasing user- and 
developer-base (Rossi, 2004). 
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As open source has become a prominent 
player in the software market, more people and 
companies are faced with the possibility of us-
ing open source products, which often are seen 
as free or low-cost solutions to software needs. 
However, choosing to use open source software 
is risky business, partly because it is unclear 
which FLOSS will succeed. To choose an open 
source project, only to find it stagnates or fails in 
the near future, could be disastrous, and is cited 
as a concern by IT managers (T. Smith, 2002). 
Accurate prediction of a project’s likelihood to 
succeed/fail would therefore benefit those who 
choose to use FLOSS, allowing more informed 
selection of open source projects. 

This article presents an initial step towards 
the development of an agent-based model that 
simulates the development of open source proj-
ects. Findings from a diverse set of empirical 
studies of FLOSS projects have been used to 
formulate the model, which is then calibrated 
on empirical data from SourceForge, the largest 
online site hosting open source projects. Such a 
model can be used for scenario and sensitivity 
analysis to explore the conditions necessary for 
the success of FLOSS projects. 

BACKGROUND

There have been a limited number of attempts 
to simulate various parts of the open source 
development process (Dalle & David, 2004). 
For example, Dalle and David (2004) use agent-
based modeling to create SimCode, a simula-
tor that attempts to model where developers 
will focus their contributions within a single 
project. However, in order to predict the suc-
cess/failure of a single FLOSS project, other 
existing FLOSS projects, which are vying for a 
limited pool of developers and users, may need 
to be considered. This is especially true when 
multiple FLOSS projects are competing for a 
limited market share (e.g., two driver projects 
for the same piece of hardware or rival desktop 
environments such as GNOME and the KDE). 
Wagstrom, Herbsleb, and Carley (2005) created 
OSSim, an agent-based model containing us-

ers, developers, and projects that is driven by 
social networks. While this model allows for 
multiple competing projects, the published 
experiments include a maximum of only four 
projects (Wagstrom et al., 2005). Preliminary 
work on modeling competition among projects 
is currently being explored by Katsamakas and 
Georgantzas (2007) using a system dynamics 
framework. By using a population of projects, 
it is possible to consider factors between the 
projects, e.g., the relative popularity of a project 
with respect to other projects as a factor that 
attracts developers and users to a particular 
project. Therefore, our model pioneers new 
territory by attempting to simulate across a 
large landscape of FLOSS with agent-based 
modeling. 

Gao, Madey, and Freeh (2005) approach 
modeling and simulating the FLOSS com-
munity via social network theory, focusing on 
the relationships between FLOSS developers. 
While they also use empirical data from the 
online FLOSS repository SourceForge to cali-
brate their model, they are mostly interested 
in replicating the network structure and use 
network metrics for validation purposes (e.g. 
network diameter and degree). Our model at-
tempts to replicate other emergent properties 
of FLOSS development without including the 
complexities of social networking. However, 
both teams consider some similar indicators, 
such as the number of developers working on 
a project, when evaluating the performance of 
the models. 

In addition, there have been attempts to 
identify factors that influence FLOSS. These 
have ranged from pure speculation (Raymond’s 
(2000) gift giving culture postulates) to surveys 
of developers (Rossi, 2004) to case studies us-
ing data mined from SourceForge (Michlmayr, 
2005). Wang (2007) demonstrates specific 
factors can be used for predicting the success 
of FLOSS projects via K-Means clustering. 
However, this form of machine learning offers 
no insight into the actual underlying process 
that causes projects to succeed. Therefore, the 
research presented here approaches simulating 
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the FLOSS development process using agent-
based modeling instead of machine learning. 

To encourage more simulation of the 
FLOSS development process, Antoniades, Sa-
moladas, Stamelos, Angelis, and Bleris (2005) 
created a general framework for FLOSS models. 
The model presented here follows some of the 
recommendations and best practices suggested 
in this framework. In addition, Antoniades 
et al. (2005) developed an initial dynamical 
simulation model of FLOSS. Although the 
model presented here is agent-based, many of 
the techniques, including calibration, valida-
tion, and addressing the stochastic nature of 
the modeling process, are similar between the 
two models. One difference is the empirical 
data used for validation: Antoniades et al.’s 
(2005) model uses mostly code-level metrics 
from specific projects while the model presented 
here uses higher project-level statistics gathered 
across many projects. 

IDENTIFYING AND SELECTING 
INFLUENTIAL FACTORS

Factors which are most likely to influence the 
success/failure of FLOSS must first be identified 
and then incorporated into the model. Many 
papers have been published in regards to this, 
but most of the literature simply speculates on 
what factors might affect the success and offers 
reasons why. Note that measuring the success 
of a FLOSS project is still an open problem: 
some metrics have been proposed and used but 
unlike for commercial software, no standards 
have been established. Some possible success 
indicators are: 

•	 Completion of the project (Crowston, 
Howison, & Annabi, 2006) 

•	 Progression through maturity stages (Crow-
ston & Scozzi, 2002) 

•	 Number of developers 
•	 Level of activity (i.e., bug fixes, new feature 

implementations, mailing list) 
•	 Time between releases 
•	 Project outdegree (Wang, 2007) 

•	 Active developer count change trends 
(Wang, 2007)

English and Schweik (2007) asked eight 
developers how they defined success and failure 
of an open source project. Answers varied for 
success, but all agreed that a project with a lack 
of users was a failure. Thus having a sufficient 
user-base may be another metric for success. 

Papers that consider factors influencing 
success fall into two categories: those that look 
at factors that directly affect a project’s success 
(Michlmayr, 2005; Stewart, Ammeter, & Mar-
uping, 2006; S. C. Smith & Sidorova, 2003) and 
those that look for factors that attract developers 
to a project (and thus indirectly affect the success 
of a project) (Bitzer & Schröder, 2005; Rossi, 
2004; Raymond, 2000; Lerner & Tirole, 2005). 
A few go a step further and perform statistical 
analyses to discover if there is a correlation 
between certain factors and a project’s success/
failure (Lerner & Tirole, 2005; Michlmayr, 
2005), and Kowalczykiewicz (2005) uses 
trends for prediction purposes. Wang (2007) 
demonstrates that certain factors can be used 
for accurate prediction using machine learning 
techniques. Koch (2008) considers factors af-
fecting efficiency after first using data envelop-
ment analysis to show that successful projects 
tend to have higher efficiencies. 

In general, factors affecting FLOSS proj-
ects fall into two categories: technical factors 
and social factors. Technical factors are aspects 
that relate directly to a project and its develop-
ment and are typically both objective and easy to 
measure. Examples of technical factors include 
lines of code and number of developers. 

The second category is social factors. 
Social factors pertain to aspects that personally 
motivate individuals to engage in open source 
development/use. Examples of social factors 
include reputation from working on a project, 
matching interests between the project and the 
developer/user, popularity of the project with 
other developers/users, and perceived impor-
tance of the code being written (e.g., core versus 
fringe development (Dalle & David, 2004)). 
Most of the social factors are subjective and 
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rather difficult, if not impossible, to measure. 
Despite this, it is hard to deny that these might 
influence the success/failure of a project and 
therefore social factors are considered in the 
model. Fortunately, the social factors being 
considered fall under the domain of public 
goods, for which there is already a large body 
of work published (e.g., Ostrom, Gardner, & 
Walker, 1994; Jerdee & Rosen, 1974; Tajfel, 
1981; Axelrod, 1984; Fox & Guyer, 1977). 
Most of this work is not specific to FLOSS, but 
in general it explores why people volunteer to 
contribute to public goods and what contextual 
factors increase these contributions. 

The findings of this literature are applied 
when designing the model, as are findings 
from publications investigating how FLOSS 
works, extensive surveys of developers asking 
why they participate in FLOSS (e.g., Ghosh, 
Krieger, Glott, & Robles, 2002), and com-
ments and opinions of FLOSS users (e.g., T. 
Smith, 2002). 

INITIAL MODEL

The model universe consists of agents and 
FLOSS projects. Agents may choose to con-
tribute to or not contribute to, and to consume 
(i.e. download) or not consume FLOSS projects. 
At time zero, FLOSS projects are seeded in 

the model universe. These initial projects vary 
randomly in the amount of resources that will 
be required to complete them. At any time, 
agents may belong to zero, one, or more than 
one of the FLOSS projects. The simulation is 
run with a time step (t) equal to one (40 hour) 
workweek. 

Table 1 contains the properties of agents. 
Table 2 contains the properties of projects. 

At each time step, agents choose to produce 
or consume based on their producer and con-
sumer numbers, values between 0.0 and 1.0 that 
represent probabilities that an agent will produce 
or consume. Producer and consumer numbers 
are statically assigned when agents are created 
and are drawn from a normal distribution. If 
producing or consuming, an agent calculates 
a utility score for each project in its memory, 
which contains a subset of all available projects. 
The utility function is shown in Box 1.

Each term in the utility function repre-
sents a weighted factor that attracts agents to 
a project, where w1 through w5 are weights that 
control the importance of each factor, with 0.0 
≤ w1,w2,w3,w4,w5 ≤ 1.0 and 5

1 1.0i= iw =Σ . Factors 
were selected based on both FLOSS literature 
and our own understanding of the FLOSS de-
velopment process. Keeping it simple, a linear 
utility equation is used for this version of the 
model. The first term represents the similarity 
between the interests of an agent and the direc-

Property Description Type/Range 

Consumer number Propensity of an agent to consume (use) 
FLOSS. 

Real [0.0, 1.0] 

Producer number Propensity of an agent to contribute to 
(develop) FLOSS. 

Real [0.0, 1.0] 

Needs vector A vector representing the interests of the 
agent. 

Each scalar in vector 
is real  [0.0, 1.0] 

Resources number A value representing the amount of work 
an agent can put into FLOSS projects on 
a weekly basis. A value of 1.0 represents 
40 hours. 

Real [0.0, 1.5] 

Memory A list of projects the agent knows exist.

Table 1. Agent properties
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tion of a project; it is currently calculated using 
cosine similarity between the agent’s and proj-
ect’s needs vectors. The second term captures 
the current popularity of the project and the 
third term the size of the project implemented 
so far. The fourth term captures the popular-
ity of a project with consumers based on the 
cumulative number of downloads a project has 
received. The fifth term captures the maturity 
stage of the project. Values with the subscript 
“norm” have been normalized (e.g., download-
snorm is a project’s download count divided by 
the maximum number of downloads that any 
project has received). The discreet function 
f maps each of the six maturity stages into a 
value between 0.0 and 1.0, corresponding to the 
importance of each maturity stage in attracting 
developers. Since all terms are normalized, the 

utility score is always a value between 0.0 and 
1.0. Both consumers and producers use the 
same utility function. This is logical, as most 
FLOSS developers are also users of FLOSS. 
For consumers that are not producers, arguably 
the terms represented in the utility function are 
still of interest when selecting a project. There 
is relatively little research published on users 
compared to developers of FLOSS, so it is un-
clear if selection criteria are different between 
the two groups. 

It is possible that some of the terms in-
cluded in the utility function are redundant or 
irrelevant. Part of the model exploration is to 
determine which of these factors are relevant. 
See the Calibrating the Model and Results 
sections below. 

Property Description Type/Range 

Current resources 
The amount of resources or work being 
contributed to the project during the cur-
rent time interval. 

Real 

Cumulative resources The sum, over time increments, of all 
resources contributed to the project. Real 

Resources for comple-
tion 

The total number of resources required to 
complete the project. Real 

Download count The number of times the project has been 
downloaded. 

Integer 

Maturity Six ordered stages a project progresses 
through from creation to completion. 

{planning, pre-alpha, 
alpha, beta, stable, 
mature} 

Needs vector 
An evolving vector representing the 
interests of the developers involved in the 
project. 

Each scalar in vector 
is real [0.0, 1.0] 

Table 2. Project properties

( )

( )

1

2 norm

3 norm

4 norm

5

= similarity
+
+
+
+ (1)f

utility w agentNeeds, projectNeeds
w currentResources
w cumulativeResources
w downloads
w maturity

⋅

⋅
⋅
⋅

⋅

Box 1.
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Agents use utility scores in combination 
with a multinominal logit equation to probabi-
listically select projects. The multinominal logit 
allows for imperfect choice, i.e., not always 
selecting the projects with the highest utility. 

There is no explicit formulation of com-
munication between agents included in the 
model; implicitly it is assumed that agents 
share information about other projects and thus 
agents know characteristics of projects they are 
not currently consuming/producing. At each 
time step, agents update their memory. With a 
certain probability an agent will be informed 
of a project and add it to its memory, simulat-
ing discovering new projects. Likewise, with 
a certain probability an agent will remove a 
project from its memory, simulating forgetting 
about or losing interest in old projects. Thus, 
over time an agent’s memory may expand and 
contract. 

Projects update their needs vector at each 
iteration using a decaying equation, where the 
new vector is partially based on the project’s 
previous vector and partially on the needs vec-
tors of the agents currently contributing to the 
project. An agent’s influence on the project’s 
vector is directly proportional to the amount 
of work the agent is contributing to the project 
with respect to other agents working on the same 
project. This represents the direction of a project 
being influenced by the developers working on 
it. Finally, project maturity stages are computed 
based on percent complete threshold values. 

VALIDATION METHOD

Creating a model that successfully predicts 
the success or failure of FLOSS projects is 
a complicated matter. To aid in the iterative 
development process, the model is first cali-
brated to reproduce a set of known, emergent 
properties from real world FLOSS data. For 
example, Weiss (2005) surveyed the distribution 
of projects at SourceForge in each of six devel-
opment categories: planning, pre-alpha, alpha, 
beta, stable, and mature. Therefore, the model 
will need to produce a distribution of projects 

in each stage similar to that measured by Weiss. 
In addition, two other emergent properties were 
chosen to validate the initial model: 

•	 Number of developers per FLOSS proj-
ect. 

•	 Number of FLOSS projects per devel-
oper.

•	 By creating a model that mimics a number 
of key patterns of the data, confidence is 
derived about the model. 

CALIBRATING THE MODEL

The model has a number of parameters that 
must be assigned values. A small subset of these 
can be set to likely values based on statistics 
gathered from surveys or mined from FLOSS 
repository databases. For the remaining param-
eters, a search of the parameter space must be 
performed to find the combination that allows 
the model to most closely match the empirical 
data. Since an exhaustive search is not practical, 
the use of genetic algorithms from evolutionary 
computation is used to explore the parameter 
space (Kicinger, Arciszewski, & De Jong, 2005). 
This is done as follows: an initial population 
of model parameter sets is created randomly. 
The model is run with each of the parameter 
sets and a fitness score is calculated based on 
the similarity of the generated versus empiri-
cal data. The parameter values from these sets 
are then mutated or crossed-over with other 
parameter sets to create a new generation of 
model parameter sets, with a bias for selecting 
parameters sets that resulted in a high fitness; 
then the new generation of parameter sets are 
evaluated and the process repeated. In this 
case, a genetic algorithm is being used for a 
stochastic optimization problem for which it 
is not known when a global optimum is found. 
Genetic algorithms are appropriate for finding 
well-performing solutions in a reasonably brief 
amount of time. Reviewing the values of the 
best performing parameters will help identify 
which factors are important/influential in the 
open source software development process. 
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The fitness function chosen for the genetic 
algorithm is based on the sum of the square of 
errors between the simulated and empirical 
data, as shown in Box 2.

Since there are three fitness values cal-
culated, one per empirical data set, the three 
fitness values are averaged to provide a single 
value for comparison purposes. 

RESULTS

Since the model includes stochastic components, 
multiple runs with a given parameter set were 
performed and the results averaged. In this case, 
four runs were performed for each parameter set 
after initial experimentation showed very low 
standard deviations even with small numbers 
of runs. The averaged model results were then 
compared to the empirical data. 

As empirical investigations of FLOSS 
evolution note, it takes approximately four 
years for a project of medium size to reach 

a mature stage (Krishnamurthy, 2002). Thus, 
the model’s performance was evaluated by 
running the model for 250 time steps, with a 
time step of one week, for a total simulated 
time equivalent of a little over five years. All 
metrics were gathered immediately following 
the 250th time step. 

The averaged data (over 4 runs) from the 
simulator’s best parameter set, along with the 
empirical data, is shown in Figs. 1, 2, and 3. 

Figure 1 shows the generated percentage of 
projects in each maturity stage is a similar shape 
to the empirical data, with the main difference 
being the highs are too high and the lows are too 
low in the simulated data. This disparity may be 
a result of initial model startup conditions. At 
time 0, the model starts with all projects in the 
planning stage. This is obviously different than 
SourceForge, where the projects were gradually 
added over time, not all at once in the beginning. 
While the model does add new projects each 
time step, with a growth rate based on the rate of 
increase of projects at SourceForge, it may take 

Box 2.

sum of square of errors1      (2)
maximum possible sum of square of errors

fitness = −

Figure 1. Percentage of FLOSS projects in maturity stages. Empirical data from (Weiss, 2005)
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more than 250 time steps for maturity stages to 
stabilize after the differing initial condition. At 
the end of the simulation run, just short of 60% 
of the projects were created sometime during 
the simulation while the remaining 40% were 
created at time 0. 

As shown in Figure 2, the number of de-
velopers per projects follows a near-exponential 
distribution and the simulated data is similar, 
especially for projects with fewer than seven 
developers. Note that the data in Figure 2 
uses a logarithmic scale to help with a visual 
comparison between the two data sets. Beyond 
seven developers, the values match less closely, 
although this difference is visually amplified as 
a result of the logarithmic scale and is actually 
not as large as it might initially appear. Since 
there are few projects with large numbers of 
developers in the empirical data, the higher 
values may be in the noise anyhow and thus 
focus should be on the similarity of the lower 
numbers. 

Figure 3 shows the number of projects per 
developer is a relatively good match between 
the simulated and empirical data, with the main 
difference being the number of developers work-
ing on one project. It is likely that this could 

be corrected via additional experimentation 
with parameters. 

Table 3 contains the average fitness scores 
for each of the emergent properties for the top 
performing parameter set. These values provide 
a quantitative mechanism for confirming the 
visual comparisons made above: the maturity 
stage fitness score is indeed lower than the other 
two properties. The combined fitness is simply 
the mean of the three fitness scores, although this 
value could be calculated with uneven weights 
if, say, matching each property was prioritized. 
Doing so would affect how the genetic algorithm 
explored the parameter space. It may be the case 
that certain properties are easy to reproduce 
in the model and work over a wide range of 
parameter sets, in which case these properties 
may be weighted less than properties that are 
more difficult to match. Properties which are 
always matched should be discarded from the 
model for evolution purposes as they do not 
discriminate against different parameter sets. 

Finally, examining the evolved utility 
weights of the top 10 performing parameter 
sets provides insight into what factors are 
important in the model for reproducing the 
three properties examined. Table 4 contains 
the averages and standard deviations for each 

Figure 2. Percentage of projects with N developers. Empirical data from (Weiss, 2005)
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Figure 3. Percentage of developers with N projects. Empirical data from (Ghosh et al., 2002)
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Emergent Property Fitness Score 

Maturity stage 0.9679

Devs per project 0.9837 

Projects per dev 0.9938 

Combined 0.9818 

Table 3. Averaged fitness scores for the best

Weight Mean Std. 
Dev.

w1 (similarity) 0.1849 0.1137 

w2 (current resources) 0.3964 0.1058 

w3 (cumulative resources) 0.0003 0.0003 

w4 (downloads) 0.0022 0.0039 

w5 (maturity) 0.4163 0.1534 

Table 4. Utility function weights from the best 
10 param

of the weights. It appears that the cumulative 
number of resources and download counts are 
not important in reproducing the examined prop-
erties in the model. This conclusion is reached 
by observing these weight’s small values (low 
mean and small variance) in comparison to the 
other weights (high means and larger variance). 

Unfortunately, the high variance of the remain-
ing three weights makes it difficult to rank them 
in order of importance. Rather, the conclusion is 
that similarity, current resources, and maturity 
are all important in the model. 

Another interesting set of values evolved by 
the system are the parameters for the producer 
and consumer numbers. While the producer 
and consumer numbers are drawn from normal 
distributions bounded by 0.0 and 1.0 inclusive, 
neither the mean nor standard deviations of these 
distributions are known. Therefore, these values 
are evolved to find the best performing values. 
Table 5 contains the evolved mean and stan-
dard deviation for the producer and consumer 
numbers averaged from the top 10 parameter 
sets. Notice that the mean producer number is 
very high at 0.9801 and very stable across the 
top 10 parameter sets, with a standard deviation 
of 0.0079. Likewise, the standard deviation is 
relatively low at 0.1104 and also stable with a 
standard deviation of 0.0101. This indicates that 
the top performing model runs had agents with 
high propensities to develop. In other words hav-
ing most agents produce frequently (i.e., most 
agents be developers) produces better matching 
of the empirical data. This is in alignment with 
the notion that FLOSS is a developer-driven 
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process. The evolved consumer number mean 
is much lower and standard deviation is much 
higher compared to the producer number. 
Neither one of these parameters is particularly 
stable, i.e., both have large standard deviations 
over the top 10 parameter sets. This indicates 
that the consumer number distribution has 
little effect on matching the empirical data for 
the top 10 parameter sets. Note that this is in 
alignment with the evolved weight for down-
loads approaching 0.0 in the utility functions. 
Consumers are not the driving force in matching 
the empirical data in the model. 

DISCUSSION

Once developers join a project, it is likely that 
they will continue to work on the same project 
in the future. This is especially evident in the 
case of core developers, who typically work 
on a project for an extended period of time. 
Currently, the model attempts to reproduce 
this characteristic by giving a boost (taking 
the square root) of the utility function for 
projects worked on in the previous time step. 
In effect, this increases the probability of an 
agent selecting the same projects to work on in 
the subsequent time step. Improvements to the 
model might include adding a switching cost 
term to the utility function, representing the 
extra effort required to become familiar with 
another project. Gao et al. (2005) address this 

issue by using probabilities based off data from 
SourceForge to determine when developers con-
tinue with or leave a project they are currently 
involved with in their FLOSS model. 

The model’s needs vectors serve as an 
abstraction for representing the interests and 
corresponding functionalities of the agents and 
projects respectively. Therefore, the needs vec-
tor is at the crux of handling the matching of 
developers’ interests with appropriate projects. 
For simplicity, initial needs vector values are 
assigned via a uniform distribution, but explora-
tion of the effects of other distributions may be 
interesting. For example, if a normal distribution 
is used, projects with vector components near 
the mean will have an easy time attracting agents 
with similar interests. Projects with vector com-
ponents several standard deviations from the 
mean may fail to attract any agents. A drawback 
of a normal distribution is that it makes most 
projects similar; in reality, projects are spread 
over a wide spectrum (e.g., from operating 
systems and drivers to business applications 
and games), although the actual distribution is 
unknown and difficult to measure. 

Currently, needs vectors for projects and 
agents are generated independently. This has 
the problem of creating projects which have 
no interest to any agents. An improvement 
would be to have agents create projects; when 
created, a project would clone its associated 
agent’s needs vector (which would then evolve 
as other agents joined and contributed to the 
project). This behavior would more closely 
match SourceForge, where a developer ini-
tially registers his/her project. By definition, 
the project matches the developer’s interest at 
time of registration. 

For simplicity’s sake, currently the model 
uses a single utility function for both produc-
ers and consumers. It is possible that these two 
groups may attach different weights to factors 
in the utility function or may even have two 
completely different utility functions. However, 
analysis of the model shows that developers are 
the driving force to reproduce the empirical 
data. Exploration of a simplified model without 

Producer/Consumer Number

Parameter statistics 
from top 10 param-
eter sets

Mean Std. Dev.

Producer number
Mean 0.9801 0.0079

Std. Dev. 0.1104 0.0101

Consumer 
number

Mean 0.6368 0.1979

Std. Dev. 0.3475 0.3737

Table 5. Evolved producer/consumer number 
distributions parameters



International Journal of Open Source Software & Processes, 1(2), 1-13, April-June 2009   11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

consumers may show that concerns about using 
multiple utility functions are irrelevant. 

One final complication with the model is 
its internal representations versus reality. For 
example, a suggested strategy for success in 
open source projects is to release early and 
release often (Raymond, 2000). Using this 
method to determine successful projects within 
the model is problematic because the model 
includes no concept of releasing versions of 
software. Augmenting the model to include a 
reasonable representation of software releases 
is non-trivial, if possible at all. Likewise, it is 
difficult to compare findings of other work on 
conditions leading to success that map into this 
model. For example, Lerner and Tirole (2005) 
consider licensing impacts while Michlmayr 
(2005) consider version control systems, 
mailing lists, documentation, portability, and 
systematic testing policy differences between 
successful and unsuccessful projects. Unfortu-
nately, none of these aspects easily map into the 
model for comparison or validation purposes. 

CONCLUSION

A better understanding of conditions that 
contribute to the success of FLOSS projects 
might be a valuable contribution to the future of 
software engineering. The model is formulated 
from empirical studies and calibrated using 
SourceForge data. The calibrated version pro-
duces reasonable results for the three emergent 
properties examined. From the calibrated data, 
it is concluded that the similarity between a 
developer and a project, the current resources 
going towards a project, and the maturity stage 
of a project are important factors. However, the 
cumulative resources and number of downloads 
a project has received are not important in 
reproducing the emergent properties. 

The model presented here aids in gaining 
a better understanding of the conditions neces-
sary for open source projects to succeed. With 
further iterations of development, including 
supplementing the model with better data-based 
values for parameters and adding additional 

emergent properties for validation purposes, the 
model could move into the realm of prediction. 
In this case, it would be possible to feed real-life 
conditions into the model and then observe a 
given project as it progresses (or lack of pro-
gresses) in the FLOSS environment. 
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