
Extracting Source Code from E-Mails

Alberto Bacchelli, Marco D’Ambros, Michele Lanza
REVEAL@ Faculty of Informatics - University of Lugano, Switzerland

Abstract—E-mails, used by developers and system users to
communicate over a broad range of topics, offer a valuable
source of information. If archived, e-mails can be mined to
support program comprehension activities and to provide views
of a software system that are alternative and complementary
to those offered by the source code.

However, e-mails are written in natural language, and
therefore contain noise that makes it difficult to retrieve the
important data. Thus, before conducting an effective system
analysis and extracting data for program comprehension, it is
necessary to select the relevant messages, and to expose only
the meaningful information.

In this work we focus both on classifying e-mails that hold
fragments of the source code of a system, and on extracting the
source code pieces inside the e-mail. We devised and analyzed a
number of lightweight techniques to accomplish these tasks. To
assess the validity of our techniques, we manually inspected and
annotated a statistically significant number of e-mails from five
unrelated open source software systems written in Java. With
such a benchmark in place, we measured the effectiveness of
each technique in terms of precision and recall.

I. INTRODUCTION

The evolution of a software system involves the creation
and the growth of a number of different artifacts that revolve
around the source code and the development process, such
as system documentation, design documents, bug reports, e-
mail messages, wikis, forums, chat logs etc. The information
stored in these artifacts is valuable for various tasks related
to software evolution analysis and program comprehension,
as different types of artifacts emphasize different aspects
of the system’s evolution. Even though some artifacts are
logically related, e.g., source code and documentation, they
tend to drift apart over time increasing the inconsistencies
between the information they contain [18].

LaToza et al. conducted a study at Microsoft, finding
that developers cannot find up-to-date models of the system
in artifacts that form the official documentation of the
software they build [14]. Programmers who need to know
the design rationale behind an implementation (which is
the most common information need for a developer [13])
have to directly communicate with other developers. This
induces developers to form their own implicit mental models
of the system, which do not end up stored in appropriate
documents. Indeed, developers prefer face-to-face meetings
to communicate on a system [13], but when such meetings
cannot be held (e.g., in distributed development teams), they
favor e-mail communication. Consequently, e-mail archives
offer an up-to-date and significant source of information

about a system. E-mails are used to discuss issues ranging
from low-level decisions (e.g., implementation strategies, bug
fixing) up to high-level considerations (e.g., design rationale,
future planning). Our goal is to use this kind of artifacts to
enhance program comprehension and analysis.

We already devised techniques to recover the traceability
links between source code entities and e-mails [4]. However,
such ties can only be retrieved by knowing the entities of
the system in advance, i.e., by having the model of the
system generated from the source code. In this paper we
tackle a different problem: We want to extract source code
fragments from e-mail messages. To do this, we first need
to select e-mails that contain source code fragments, and
then we extract such fragments from the content in which
they are enclosed. Separating source code from natural
language in e-mail messages brings several benefits: The
access to structured data (1) facilitates the reconstruction
of the system model and (2) can be employed to improve
e-mail recommender systems based on machine learning (e.g.,
[12]), and (3) source code fragments provide examples on the
usage of entities, complementing the information expressed
in natural language.

However, reliably extracting system models from e-mail
archives is a non-trivial task: Not only are e-mails written in
free-form natural language, but they can also contain noise
(e.g., discussions not related to the development) that makes
it difficult to retrieve the relevant data. As a consequence, the
extraction of the information from e-mail archives requires
more refinements: (1) E-mails not containing source code
snippets must be filtered out, (2) lines that include source
code must be detected in the remaining e-mails, and (3)
the specific source code fragments must be separated from
natural language. For this reason, we conduct our analysis at
three different levels, and evaluate the effectiveness of our
methods for each of them.

To evaluate the accuracy of our techniques, we manually
build a statistically significant benchmark taking sample e-
mails from five unrelated open source Java software systems.

Structure of the paper. In Section II we discuss the
related work. In Section III we explain how we set up
our benchmark and present the infrastructure we devised
to support its creation. In Section IV we detail the different
approaches we tested. In Section V we discuss how they
perform with respect to our benchmark. Section VI concludes
the work by summarizing our findings and discussing possible
extensions of our approach.

II. RELATED WORK

Our research is influenced by the seminal work of
Murphy and Notkin [17]. They proposed a lightweight
lexical approach, based on regular expressions, to extract
models of a software system from different software artifacts.
Software engineers can obtain consistent models from any
kind of textual artifacts concerning software with such
approach. The engineer must follow three steps: (1) define
patterns (using regular expressions) that describe source code
constructs of interest in a software artifact, e.g., function calls
or definitions; (2) establish the operations to be executed
whenever a pattern is matched in an artifact being scanned;
and (3) implement post-processing operations for combining
information extracted from individual files into a global
model. Although this approach is lightweight, flexible, and
tolerant, the first step is non-trivial, especially when dealing
with unstructured artifacts written in natural language, such
as e-mails. Choosing the best approach to expose source
code fragments of interest requires an accurate analysis
of the advantages and drawbacks that the different regular
expressions offer. Practitioners could find it difficult to
perform this task through the iterative trial and error process
proposed by Murphy and Notkin.

Bettenburg et al. proposed four filtering techniques to
extract patches, stack traces, source code snippets, and
enumerations from the textual descriptions that accompany
bug reports [7]. The authors report results only on the
effectiveness of their techniques in differentiating documents
that contain source code snippets from those that do not
contain source code. In this task, using island parsing [16],
they reached almost perfect results, i.e., a precision value of
0.98 and recall of 0.99. Since using a parser requires a high
computational effort and scaling up to archives containing
tens of thousands of documents can be problematic, we
propose fast and lightweight techniques, based on regular
expressions and pattern matching. In addition, we consider
development mailing list archives as our natural language
documents, which are more prone to noise not related to
system development, if compared to bug reports. Finally, we
evaluate the effectiveness of our techniques in detecting not
only e-mails that contain source code, but also lines, and in
extracting the fragments.

Bird et al. proposed an approach to measure the acceptance
rate of patches submitted via e-mail in open source software
projects [8]. They have been able to classify e-mails contain-
ing source code patches. However, since e-mail classification
was not the focus of the work, the authors provided little
information about their extraction techniques and no details
on the benchmark they used to assess their effectiveness.

Dekhtyar et al. discussed the opportunities and challenges
for text mining applied to software artifacts written in natural
language [10].

A number of approaches in the information retrieval field

are related to our work. Tang et al. addressed the issue of
cleaning the e-mail data for subsequent text mining [20].
They propose a cascaded approach to clean e-mails in four
passes: (1) non-text filtering, (2) paragraph, (3) sentence, and
(4) word normalization. In the first pass, what they consider
non-text are actually e-mail headers, signatures, and source
code snippets. They randomly chose a total of 5,459 emails
from 14 unrelated sources (e.g., development newsgroups at
Google) and created 14 data sets in which they manually
labeled headers, signatures, quotations, and program codes.
They used an approach based on Support Vector Machines
(SVM) to detect source code fragments. They evaluated
the effectiveness of the method at line level, and achieved
reasonable results, i.e., 0.93 in precision, and 0.72 in recall.
These findings are promising, and in the data mining field,
much research is devoted to extract information that has
specific patterns using methods based on probabilistic and
machine learning models (e.g., Maximum Entropy Models [6]
or Hidden Markov Models [5]). However, such approaches
require extensive expertise and effort, also for data collection,
that could discourage an utilization by practitioners.

For this reason, we devised lightweight approaches based
on simple methods to extract source code fragments from e-
mails. Our approaches use lightweight and easy to implement
techniques based on regular expressions that exploit intrinsic
characteristics of source code elements.

III. EVALUATION BENCHMARK

While surveying the related work reported in the previous
section, we noted that there is a gap between the validation
approaches used by the software engineering researchers and
the ones used in information retrieval: For instance, the work
by Tang et al. is supported by an extensive and statistically
significant benchmark against which their techniques were
evaluated. This does not hold for the software engineering
approaches.

This faulty trend in software engineering was first reported
by Sim et al. [19]. They stressed the importance of widely
used and reliable benchmarks to assess the quality of research
findings, and challenged the software engineering research
community to define appropriate benchmarks. We share the
concern raised by Sim et al.. Since no previous benchmark
has been devised for the issues we tackle with our work,
besides presenting and discussing a set of techniques, we
also create a statistically significant, and publicly available
benchmark, against which to verify them.

Our benchmark for extracting source code fragments can
be employed for further analysis of different techniques. The
obtained results can be compared to show the strengths and
drawbacks of several approaches on the same data set. We
designed this benchmark to require no special infrastructure
to be used and to be easily extensible with additional data.

Sample E-mails

E-Mails Number with Code

ArgoUML
argouml.tigris.org

Freenet
freenetproject.org

JMeter
jakarta.apache.org/jmeter

System
URL

A UML modeling tool developed over the
course of approximately 9 years.

A peer-to-peer software for anonymous file
sharing, and for browsing and publishing
"freesites" (web sites accessible only
through Freenet).

A desktop application designed for load and
stress testing of Web Applications. The first
release was done in 1999.

Jan 2000

Apr 2000

Feb 2001

Description
Inception

Mailing Lists

Mina
org.apache.mina.dev

A realtime 3D engine for Flash, written in
ActionScript, an object-oriented
programming language compliant with the
ECMAScript Language Specification.

May 2007

OpenJPA
org.apache.openjpa.dev

A network application framework which
provides an abstract event-driven
asynchronous API over various transports
such as TCP/IP and UDP/IP via Java NIO.

Oct 2006

24,876

22,095

21,637

18,565

14,992

Name

org.tigris.argouml.
dev

org.freenetproject.
devl

org.apache.jakarta.
jmeter-dev

org.apache.mina.
dev

org.apache.openjpa.
dev

Filtered

24,876

22,095

9,810

12,869

6,328

378

379

370

363

374

48

35

105

101

97

Table I
THE SOFTWARE SYSTEMS CONSIDERED FOR THE BENCHMARK

A. Subjects of the experiment
Table I shows the five open source Java projects we

considered to create our benchmark. We selected unrelated
software systems emerging from the context of different free
software communities, i.e., Apache, ArgoUML, and Freenet.
The development environment, the usage of the mailing lists,
and the development paradigms are all likely to differ among
the systems, providing a good test for the adaptability of our
lightweight approaches to a wide variety of systems, and
helping to assess their effectiveness.

Even though all the systems offer multiple mailing lists
that can be analyzed, we focus on the development mailing
lists, as they provide the highest density of information
related to software development. We excluded from our
benchmark messages automatically generated by the bug
tracking system and the revision control system, since they
contain only a reduced amount of natural language text. In
the exceptional case of JMeter, we decided to also include
part of the messages generated by the revision control system,
to see their effect in the outcome of our experiments.

The section “Mailing Lists” of Table I provides details on
the mailing list name, the total number of e-mails imported,
and the number of e-mails in the set after filtering out the
automatically generated ones.

E-Mails sample set size: Since we could not afford to
manually annotated the entire set of nearly 75,000 emails,
we extracted a sample. Due to the lack of any knowledge
about the considered mailing lists, we employ simple random
sampling [21] to extract the e-mails to be included in our
benchmark.

We used the following formula to determine the number n

of e-mails that must be sampled from the populations [21]:

n =
N · p̂q̂

(
zα/2

)2
(N − 1)E2 + p̂q̂

(
zα/2

)2
In the formula, p̂ is a value between 0 and 1 that represents

the proportion of e-mails containing a source code fragment,
while q̂ is the proportion of e-mails not containing source
code, i.e., q̂ = 1− p̂. Since previous work dealing with the
same data is unavailable, it is not possible to know a-priori
the proportion (p̂) of the e-mails including source code, thus
we consider the worst scenario –in which p̂ and q̂ have the
same value, so p̂ · q̂ = 0.25. As we are dealing with small
populations from a statistical point of view (i.e., 75,000 e-
mails), the formula also considers their size (N). We took the
standard confidence level of 95%, and error (E) of 5%. This
resulted in the values for the sample sets reported in Table I.
If source code fragments are present in the f% of the sample
set e-mails, we are 95% confident they will be present in the
f% ± 5% of the population messages. This only validates
the quality of this sample set as an exemplification of the
populations, and is not related to the precision and recall
values presented later.

B. Benchmark creation

To evaluate our source code extraction methods, we
manually built the benchmark by reading all the e-mails and
annotating them with the source code fragments they contain.
We inspected the entire sample set, and then randomly
selected and re-inspected 10% of the e-mails to verify the
quality of the annotations. Figure 1 shows the excerpt of an
e-mail that contains source code.

1

2

3

4

5

Figure 2. Web Application: E-Mail annotation of source code fragments

(1) Hi Bob,

(2) I have used swidget version add(LabelledLayout.getSeperator()); from
(3) org.argouml.uml.ui.LabelledLayout earlier and it worked fine.
(4) There is another class LabelledLayout in org.tigris.swidgets that has method
(5) getSeperator(), but it also does not work.
(6) However, after transfer to new ArgoUML version there was no error
(7) in code, but elements were not arranged in two columns any more.
(8) Here is the code I have implemented:

(9) import javax.swing.ImageIcon;
[...]
(10) private static String orientation =
(11) Configuration.getString(Configuration
(12) .makeKey("layout", "tabdocumentation"));

(13) //make new column with LabelledLayout
(14) add(LabelledLayout.getSeperator());

(15) consequences = new UMLTextArea2(
(16) new
(17) UMLModelElementValue(DepthsArgo.CONSEQUENCES_TAG));

(18) Could you help me, please?

(19) Thanks,
(20) Zoran

Figure 1. An e-mail excerpt containing source code fragments

The red parts in a monospaced font are those we would
have marked as source fragments in our benchmark. We
consider the method call in line 2 as valid (it is actual source
code that can be part of a method), but we do not consider
the class, package, and method names, written in blue, in
lines from 3 to 5, as they are part of the discussion and are
simply used as names. We exclude commented lines of code
(Line 13).

We developed a custom web application, named Miler, to
assist this particular task. A detailed description of Miler,
the infrastructure we created to analyze mailing lists, is
described in [2]. Here, we limit ourselves to summarize the

most important aspects and the extensions we implemented
for this benchmark1.

Figure 2 shows the main page of the web application
presented after the user log-in. It is composed by a number
of panels: The Systems (1) shows the list of the software
systems loaded in the application that must be analyzed
for creating the benchmark; the Mails (2) keeps the user
updated on the number of e-mails for each system that have
been read over the total number of e-mails to analyze; the
Navigation (3) lets the user retrieve any e-mail by its unique
ID (displayed in the e-mail header); the Main (4) contains
the e-mail header (i.e., subject, author, date, mailing list) and
its body. Sentences quoted from other e-mails are colored
according to the quotation level: This increases the e-mail
readability and the quality of the analysis; the Code Snippets
(5) contains the annotated code fragments. The user can
add detected source code fragments either by copying and
paste them in the appropriate text area in the Code Snippets
panel, or simply selecting them with the mouse and using a
keyboard shortcut to add them in the annotations.

Despite the repetitiveness of the annotating task, we
decided not to ease it adding features that could have
influenced the results. For example, it would have been
possible to highlight pieces of text containing Java keywords.
However, this could have influenced the reader of the mail,
who could have only skimmed the e-mail content in search
of highlighted text, without paying attention to the meaning.

As we wanted our benchmark data to be easily accessible
without the need of a specific framework, we stored the
e-mails and the corresponding annotations in a PostgreSQL

1A demo and the entire dataset are available at http://miler.inf.usi.ch/code.

http://miler.inf.usi.ch/code

database, from which they can be retrieved and exported.

C. Evaluation

To evaluate the techniques to detect documents and lines
containing source code fragments, we use the two well-
known IR metrics precision (Precision = |TP |

|TP+FP |) and

recall (Recall = |TP |
|TP+FN |) [15]. True Positives (TP) are

elements that are correctly retrieved by the approach under
analysis (e.g., e-mails reported as containing source code
fragments by the evaluated methods, that are also present in
the benchmark). False Positives (FP) are elements that are
wrongly retrieved by the approach under analysis (i.e., lines
in the e-mails reported as containing source code fragments
by the methods, but not classified as containing source code
in the benchmark). False Negatives (FN) are elements that
are not retrieved by the approach under analysis (i.e., e-mails
with source code fragments only classified in the benchmark).

Considering an e-mail containing source code fragments
among its lines, the union of TP and FN constitutes the set
of lines labeled as containing code in the benchmark, while
the union of TP and FP constitutes the set of lines labeled
as containing code by our approach. In short, precision is
the fraction of the retrieved lines that contain code, while
recall is the fraction of the correct lines retrieved.

There is a number of e-mails in the benchmark that do
not contain source code, therefore the union of TP and
FN is empty. In these cases, the denominator in the recall
formula is zero and the recall value cannot be calculated.
Analogously, it is possible for our approach to find no source
code fragments inside an e-mail: In this case, the precision
value cannot be evaluated because the denominator in the
corresponding formula is equal to zero. To overcome these
issues, we calculate the average of TP , FP , and FN on the
entire dataset, and we measure average precision and recall
from those values. This solution also considers the impact
of false positives on precision, when the set of benchmark
lines is empty. Antoniol et al. used a similar approach [1].

Precision (P) and recall (R) trade off against one another:
It is possible to link each mail with all classes, reaching a
recall value of 1, at a cost of a very low precision. We also
compute the F-measure –the weighted harmonic mean of
precision and recall– with the following formula:

F =
1

α 1
P + (1− α) 1

R

, β2 =
1− α
α
−→ F =

(β2 + 1)PR

β2P +R

The weighting of precision and recall can be set through
the value of β. We decided to emphasize neither the recall
nor the precision, because our approaches can be used in
many different situations, and it is up to the engineer to
select the most appropriate one. Thus, we use a β value of
1 to obtain the default balanced F-measure.

To assess the effectiveness of our approach in extracting
fragments, we computed the Levenshtein distance [15] line

by line, between the text labeled as source code in the
benchmark and the extracted fragments. This function, also
called edit distance function, outputs the minimum number
of changes needed to transform one string into another. The
allowed transformation operations are deletion, insertion
and substitution, and they are given the same unitary cost.
As an example we consider the first source code fragment
labeled in Figure 1: add(LabelledLayout.getSeperator());. If
we evaluate Levenshtein distance between this fragment and
another candidate we obtain 0 if the two strings are identical,
otherwise a positive number that increases linearly with the
number of operations required to transform the candidate in
the correct string. For example, the distance between this
string and version add(LabelledLayout.getSeperator is 12.

Other edit distance functions, such as the Damerau-
Levenshtein distance [9] and the Hamming distance [11],
are not appropriate for our task as they add unnecessary
operations (such as transposition of two adjacent characters)
or do not provide enough flexibility, e.g., the Hamming
distance only applies to strings of the same size.

IV. EXPERIMENTS

We first tackle the problem of classifying e-mails that
contain source code, then we move to the line level, and we
conclude by showing how our methods can extract source
code fragments. We begin from the techniques based on the
simplest intuitions and we proceed to others based on more
refined concepts.

A. Classification of e-mails including source code fragments

1) Special characters and keywords: Special characters
(e.g., semicolon, curly brackets) and reserved keywords (e.g.,
public, static) are fundamental tokens with special meanings
to the programming language, and are necessary to write the
source code of any Java system. Even though some keywords
are common dictionary words (e.g., for) the presence of a
high number of occurrences of keywords or special characters
in a natural language text can be an evidence of an enclosed
source code fragment. However, the length of the e-mail
content could influence the necessary number of occurrences
to distinguish e-mails with source code fragments from those
without them. Thus, we devised two different approaches to
classify e-mails:

1) According to the number of occurrences of either Java
keywords or Java special characters, and

2) according to keywords or special characters frequen-
cies.

If the number of occurrences of keywords, or their
frequencies, is above a certain threshold, we classify an
e-mail as containing source code fragments. We evaluate the
results using several thresholds, to verify whether an optimal
value can be defined.

Implementation. The occurrences of java keywords in
an e-mail can be counted by dividing its content in words

through any space separator (e.g., end of lines, blanks) and
summing one for each keyword occurrence. For the special
characters, we do not divide the text in words, but we
only count the occurrences of characters. To compute the
frequencies we divide the number of occurrences by the total
number of words or characters.

Results. Figure 3 shows the F-Measure results among all
the systems, when considering occurrences of keywords.

1000 10 20 30 40 50 60 70 80 90

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

F-
M

ea
su

re

ArgoUML

JMeter

Mina

Freenet

OpenJPA

275

Best Thresholds

Threshold for the number of occurrences of keywords

Figure 3. E-Mail classification on occurrences of keywords

The maximum values obtained vary significantly between
systems: from 0.31 for Freenet up to 0.63 for JMeter. The
best threshold spans between distant values: 5 and 27. As
an example, Figure 4 details OpenJPA showing precision,
recall, and F-Measure.

1000 10 20 30 40 50 60 70 80 90

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision

Recall

F-Measure

Threshold for the number of occurrences of keywords

Figure 4. OpenJPA: E-Mail classification based on occurrences of keywords

Precision and recall trade off one against the other, but
a very low value in one of them does not automatically
guarantee a extremely high value for the other: Both of them
can be low. The relevant feature of this simple approach is
that, by varying the threshold, we can obtain either almost
perfect recall or perfect precision, according to our needs.

We obtained similar but more consistent results using
special characters occurrences as our discriminator: the best F-

Measure values vary between 0.50, for Freenet, and 0.63, for
JMeter. The best threshold spans between less distant values:
200 and 600 occurrences of special characters. The curves
have trends equivalent to those in Figure 3 and Figure 4.

Figure 5 shows the F-Measure values when considering
frequencies of characters.

0.250 0.05 0.1 0.15 0.2

0.65

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Threshold for the frequency of special characters

F-
M

ea
su

re

FreenetFreenetFreenet
Freenet

JMeter

OpenJPA

Mina

ArgoUML

Best Thresholds

Best Thresholds

Figure 5. E-Mail classification based on frequencies of special characters

In this case, the best thresholds span between more distant
values and the F-Measure values do not show significant
improvements compared to the simple occurrence count. For
the single system, the curves still show a trend near to those
in Figure 4.

2) End of lines: Taking the lines of code in Figure 1 as an
example, we note a peculiarity present in many programming
languages (e.g., Java, C, C#, Perl): The developer must end
each statement with a semicolon. In the e-mail, we note
that this happens in lines 9,12,14,17, and also in the code
enclosed in line 2. Based on this intuition, this approach
verifies whether the text contains lines whose last character
is a semicolon. Since a natural language text line does not
often end with such a character, it can be a significant hint
on the presence of source code fragments. To build a more
comprehensive approach, we also consider that a source
code line can end with a curly bracket, mainly used to open
or close a block. This approach can be parametrized on a
threshold that represents the number of lines that must end
with the special convention.

Implementation. Even though this approach still classifies
e-mails and not lines of code, we consider the presence of
peculiar lines in the text. The implementation consists in
analyzing the e-mail content line by line and verifying if the
last character is a semicolon or a curly bracket.

Results. Figure 6 shows the F-Measure for each system:
the best values are significantly better than the previous
approach: They vary from 0.74 to 0.92. Moreover, the best
threshold is a single value (i.e., one) that is the same for all
the systems. Two lines ending with a semicolon are always

the best indicator of the presence of source code fragments
with this approach.

500 5 10 15 20 25 30 35 40 45

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold for the number of lines with special ending

F-
M

ea
su

re JMeter

OpenJPA
Freenet

ArgoUML

Mina

1

Best Threshold

Figure 6. E-Mail classification based on end of lines

Taking Freenet as a sample system (Figure 7), we show that
the approach can quickly achieve the maximum precision,
while maintaining the recall value higher than 0.60. All
the systems show similar results. Even in the worst case,
ArgoUML, at the second step of the threshold the precision
is 1 and the recall is higher than 0.50.

500 5 10 15 20 25 30 35 40 45

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold for the number of lines with special ending

Precision

Recall

F-Measure

Figure 7. Freenet: E-Mail classification based on end of lines

3) End of lines and regular expression: Even though the
previous approach reaches significantly high values, the recall
can still be improved. Analyzing the false negatives, we noted
that the method does not consider a common pattern in the
Java programming language: the method call pattern. This
pattern usually ends with a semicolon, but a method call
can be split in multiple lines (as can be seen in line 11 of
Figure 1), or used without semicolon in a stack trace. Our
intuition is to raise the recall by checking this pattern in
lines without a final semicolon.

Implementation. This approach extends the previous one,
adding the check on the method call pattern. If a line does
not end with any character specified in the previous method,
it checks if it matches the method call pattern. The most

effective technique to match such a regular pattern is using
regular expressions. We implemented our regular expression,
according the IEEE POSIX Basic Regular Expressions (BRE)
standard, as in the following code (in multiple lines for
convenience):

(1) (.*)
(2) ([[:alnum:]]+\.)+
(3) ([[:alnum:]]|<[[:alnum:]]+>)+
(4) \(
(5) (.*)

Lines 1 and 5 allow the match to be found without
requirements on characters that follow or precede it. Lines 2
to 3 require one or more occurrences of a character followed
by a single dot, e.g., foo., boo., boo.foo. are valid sequences.
After this pattern, there must be another alphanumeric string
enclosed, or not, in angle brackets, e.g., foo, or <foo>.
Finally, there must be an open parenthesis (line 4). This
regular expression correctly matches the example code in
line 11, Figure 1. Such code would have been matched,
even though the part after the open parenthesis was spread
out over multiple lines.

Results. Table II shows the results for each system.

System Precision Recall F-Measure
ArgoUML 0.92 0.71 0.80
Freenet 0.97 0.91 0.94
JMeter 0.91 0.96 0.94
Mina 1.00 0.80 0.89
OpenJPA 0.89 0.88 0.88
Average 0.94 0.85 0.89

Table II
END OF LINE AND REGULAR EXPRESSION APPROACH RESULTS

We report the results obtained with the threshold of one,
which is still the most effective, confirming the previous
results. With this addition we included cases that were not
correctly retrieved by using only the checking on the end of
line. We significantly increased the recall, at the cost of a
very small decrement in the precision. Overall, the results
are promising: On average our lightweight approach retrieves
85% of the e-mails containing source code, and provides a
correct classification in 94% of the cases.

B. Classification of text lines including source code fragments
1) Special characters and keywords: Our first method,

which uses occurrence or frequency of special characters and
keywords on the complete e-mail content, has the advantage
of retrieving all the e-mails with source code fragments,
and still providing results with reasonable precision. This
approach uses the same idea on the finer granularity of lines:
a line having many occurrences, or a high frequency, of
keywords or special characters probably contains a code
fragment. We apply the classification on different thresholds
to find the optimal one.

Implementation. This approach has a similar implemen-
tation to its equivalent for e-mail classification, except that
we split the text into lines and we count keyword and special
character occurrences per line. We divide the occurrences by
the number of words in the line to obtain frequencies. If a
value passes the threshold, we classify the line positively.

System Threshold Precision Recall F-Measure

ArgoUML 1 0.11 1.00 0.20
4 0.19 0.62 0.29

Freenet 1 0.05 0.99 0.09
5 0.17 0.40 0.24

JMeter 1 0.22 0.98 0.35

Mina 1 0.14 0.98 0.25
4 0.30 0.58 0.40

OpenJPA 1 0.16 0.95 0.28
4 0.25 0.66 0.36

Average 1 0.14 0.98 0.24
best 0.22 0.65 0.33

Table III
LINE CLASSIFICATION BY OCCURRENCES OF CHARACTERS

Results. Table III shows the result obtained using the
occurrence of characters for the line classification. It reports
both the value with a threshold of one, which provides the
best recall, and the threshold for the best F-Measure (if
different from one). We note that the best threshold values
vary less than in the approach for the e-mail classification:
between 4 or 5 for all the systems, except for JMeter. The
results obtained using the frequency of special characters
are similar but have lower values. Interestingly, for the line
classification, both the occurrence and the frequency of
keywords produce significantly lower results. In Figure 1 we
see the reason: Eight lines out of the nine with source code
fragments include, at least, one special character, while only
four lines contain a keyword.

2) End of line and regular expression: We use the
approach for text classification for line classification: Each
line that ends with a semicolon, a open -or closed- curly
bracket, or that matches the regular expression described
previously, is classified positively. The presence of code
comments in a complete text can be evidence of a larger
source code fragment, for this reason, we did not remove
comments in the e-mail classification approach. However, we
do not consider comments as actual source code fragments,
thus we remove them from lines during the classification.
A threshold is not necessary: either a line does or does not
respect the conditions. For the OpenJPA system, we also
consider annotations as code fragments, since they are a
relevant aspect of that Java persistence library.

Implementation. The implementation is similar to the
complete text approach, but it classifies line by line, instead
of the whole content. As a first pass, from each line, we
remove the leading and trailing whitespace and the comments,

We detect OpenJPA annotations by checking whether the
first character of a line is a “@”.

System Precision Recall F-Measure
ArgoUML 0.93 0.89 0.91
Freenet 0.94 0.88 0.91
JMeter 0.97 0.86 0.91
Mina 0.90 0.84 0.87
OpenJPA 0.93 0.73 0.82
Average 0.93 0.84 0.88

Table IV
LINE CLASSIFICATION BY END OF LINE AND REGULAR EXPRESSION

Results. Table IV shows the results obtained, by system.
The approach provides a very high precision (0.93 on

average), keeping a substantial recall. For OpenJPA, the
recall below the average is caused by the fragmentation of
e-mail lines: Many of the words are truncated and split over
different lines. A text normalization [20] would alleviates
this problem, probably providing the approach with results
obtained for the other systems.

3) Beginning of block: Even though the previous approach
results meet a high target, we manually inspected all the false
negatives to increase the recall. Lines with a class or method
declaration are the most common problem: Methods and
classes are usually defined in a single line, e.g., public class
Foo(), however, the curly bracket that starts the subsequent
block is in a new line. Since our previous approach does
not consider these cases, we also check them. The simple
intuition is to check whether a line begins with a keyword:
We see a partial example of this in Figure 1, line 10.

Implementation. The implementation, similar to the
previous one, now also verifies if the first word is a keyword.

Results. As expected, this approach increases the recall
value of all the systems, of at least two points (Table V).
The high values already obtained with the previous approach,
make it interesting for the practitioner who wants more
matches, with a lower precision.

System Precision Recall F-Measure
ArgoUML 0.74 0.91 0.81
Freenet 0.60 0.90 0.72
JMeter 0.94 0.91 0.93
Mina 0.80 0.89 0.85
OpenJPA 0.77 0.74 0.75

Table V
LINE CLASSIFICATION BY MIXED APPROACH

C. Source code extraction

Considering the high results that our lightweight ap-
proaches achieved on line classification, we conducted a
statistical analysis on the benchmark to determine whether

devising additional methods for a finer code extraction is
necessary in practice.

Considering all the lines labelled as containing source
code fragments in the benchmark (i.e., 11,978), we evaluated
the Levenshtein distance of the complete content from the
source code part. More than 7,664 lines had a distance larger
than three (i.e., more than three operations are necessary to
transform the content in the source code). Analyzing these
lines, we noted that they are mainly composed of lines similar
to those reported in Figure 8.

(1) remove(LabelledLayout.getSeperator());

(2) at org.apache.maven.Maven.doExecute(DefaultMaven.java:336)

(3) + add(LabelledLayout.getSeperator());
(4) - remove(LabelledLayout.getSeperator());

Figure 8. Common lines with source code distant from the content

In line 1, the source code does not include leading and
trailing whitespaces, which is present in the complete content.
Line 2 starts with the “at” word used in stack traces, which
is not source code. Lines 3 and 4 are part of a patch and
start with “+” or “-” to mark added or deleted lines.

Removing these special cases and recomputing the Leven-
shtein distance, only 378 lines remained: the 3% on the total
number of lines with code fragments. Since we considered
statistically significant sample sets for the creation of our
benchmark, this 3% ratio is a value that is to be found also
in the whole mailing list populations.

Simply removing the special starting characters in Figure 8,
and trailing and leading whitespace, we can use the same
approaches explained for the line classification and obtain
the perfect extraction of the source code for all the lines,
except -at maximum- for those 3% that also include other not
relevant characters. Since we want to maintain our methods
fast and simple, we deem this result as acceptable.

V. DISCUSSION

We presented a number of approaches to detect e-mails
and lines that contain source code fragments. Table VI
summarizes the average effectiveness of the methods over
the 5 systems, in terms of precision, recall and F-Measure.

Method Precision Recall F-Measure
E-mail classification

Special characters and keywords 0.24 0.97 0.37
End of lines and reg. exp. 0.94 0.85 0.89

Line classification
Special characters and keywords 0.14 0.98 0.24
End of lines and reg. exp. 0.93 0.84 0.88
Beginning of block 0.77 0.87 0.81

Table VI
AVERAGE EFFECTIVENESS OF DETECTION METHODS

Since the methods vary with respect to the precision and
recall they achieve, choosing the most appropriate method
depends on the relative weight of precision and recall, for
a given task. If a practitioner wants to retrieve most of the
source code, at the cost of many e-mail lines without source
code (i.e., he wants a very high recall at the price of a lower
precision) the best method is the one based on the occurrences
of special character and keywords. On the other hand, if one is
interested in correctly retrieving only documents with source
code (e.g., for time reasons), at the price of not retrieving all
of the documents (i.e., favoring precision over recall), then
“end of lines with regular expression” is the most appropriate
method. It should be also selected when precision and recall
have the same importance, since it offers the highest F-
Measure. When good overall effectiveness (indicated by the
F-Measure) are required, the mixed method based on end of
lines, regular expression and keywords at the beginning of the
line, is to best choice. While the method based on occurrences
of special character and keywords does not represent a good
option, due to the low average F-Measure.

1) Comparison with similar approaches: In Section II we
reported two approaches tackling a similar problem, one by
Bettenburg et al. [7] and one by Tang et al. [20]. Bettenburg
et al. detected bug reports containing source code fragments
using an approach based on island parsing. Their technique
reached results better than ours, with a precision of 0.98 and a
recall of 0.99, an almost perfect classification. However, it is
difficult to compare the results of the approaches, as they are
applied on different data sets, with different characteristics
(bug archive and development mailing list). Moreover, our
methods have two main benefits over their approach: (1) they
are faster and more scalable than island parsing and (2) they
work correctly also at the line level.

Tang et al. applied a technique based on machine learning
to detect source code fragments in a data set similar to ours
but larger. In terms of precision, we reported similar results:
they reached a precision of 0.93 and our best is 0.94 at the
e-mail level and 0.93 at the line level. We achieved better
results in the recall value: 0.84 against 0.72.

2) Limitations: Due to strong developer cultures, the style
of e-mails in discussion lists can vary greatly. To alleviate this,
we considered five different open source software systems
emerging from different communities, in which the usage,
the participants, and the age of the mailing lists vary.

The main limitation of our experiment consists in consid-
ering only the Java programming language. However, we
devised methods that are based on characteristics available
in many different programming languages, e.g., keywords,
special characters, and peculiar end of lines. We plan to
analyze systems that use different programming languages
and conventions, to include them in our public benchmark.

We inspected accurately all the e-mails in the sample
sets. However, since human beings are involved, there is the
possibility that they made mistakes in the analysis. To avoid

this problem we devised a web application to ease the task,
and we manually re-inspected a relevant number of false
negatives and false positives generated by our approaches
during their construction, without finding errors.

VI. CONCLUSION

In this work we tackled the issue of detecting and
extracting source code fragments in development e-mails,
at document level and at line level. We devised lightweight
techniques which, on the basis of simple text inspections,
exploiting characteristics of source code text, can detect
source code fragments in e-mails, fast and with a high
accuracy. A practitioner can precisely classify thousands
of e-mails, even at run-time. We also proposed novel
methods for classifying lines that enclose source code. Using
refined approaches, based on those used for the complete
document classification, our methods achieve performance
higher than the ones previously obtained through complex
machine learning techniques. Moreover, almost all methods
we developed can be configured with a threshold parameter
that allows choosing the best trade-off between precision and
recall, according to the user’s needs.

To assess our techniques, we created a statistically signifi-
cant and easily extensible and publicly available2 benchmark:
It features sets of sample e-mails, randomly extracted from
five unrelated Java software systems, which we analyzed
to label source code fragments. Using our benchmark, we
conducted a statistical analysis of the e-mail content and
assessed that the vast majority of source code fragments
are mentioned as lines separated from the natural language
text. Our work indicates that lightweight methods are to
be preferred to heavyweight techniques in detecting and
extracting source code fragments from development e-mails.

As a future work, we plan to add our lightweight techniques
in Remail [3], a plug-in we are building to integrate e-mail
communication, linking, and searching in the Eclipse IDE.

Acknowledgments We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for
the project “DiCoSA” (SNF Project No. 118063).

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.

[2] A. Bacchelli, M. Lanza, and M. D’Ambros. Miler - a tool
infrastructure to analyze mailing lists. In Proceedings of
FAMOOSr 2009 (3rd International Workshop on FAMIX and
Moose in Reengineering), 2009.

[3] A. Bacchelli, M. Lanza, and V. Humpa. Towards integrating e-
mail communication in the IDE. In Proceedings of SUITE 2010
(2nd International Workshop on Search-driven Development:
Users, Infrastructure, Tools and Evaluation), pages xxx–xxx,
2010.

2http://miler.inf.usi.ch/code

[4] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and
source code artifacts. In Proceedings of ICSE 2010 (32nd
International Conference on Software Engineering), pages
xxx–xxx, 2010.

[5] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. Factorial
hidden markov models. In Machine Learning, pages 29–245.
MIT Press, 1997.

[6] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A
maximum entropy approach to natural language processing.
Computational Linguistics, 22(1):39–71, 1996.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Extracting structural information from bug reports. In
Proceedings of MSR 2008 (5th IEEE Working Conference
on Mining Software Repositories), pages 27–30. ACM, 2008.

[8] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in OSS projects. In Proceedings
of MSR 2007 (4th International Workshop on Mining Software
Repositories), pages 26–29. IEEE Computer Society, 2007.

[9] F. J. Damerau. A technique for computer detection and
correction of spelling errors. Communications of the ACM,
7(3):171–176, 1964.

[10] A. Dekhtyar, J. H. Hayes, and T. Menzies. Text is software
too. In Proceedings of MSR 2004 (1st International Workshop
on Mining Software Repositories), pages 22–26, 2004.

[11] R. W. Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 26(2):147–160, 1950.

[12] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and
A. E. Hassan. Should i contribute to this discussion? In
Proceedings of MSR 2010 (7th IEEE Working Conference
on Mining Software Repositories), pages 181–190. IEEE CS,
2008.

[13] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proceedings
of ICSE 2007 (29th ACM/IEEE International Conference
on Software Engineering), pages 344–353. IEEE Computer
Society, 2007.

[14] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of
ICSE 2006 (28th ACM International Conference on Software
Engineering), pages 492–501. ACM, 2006.

[15] C. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[16] L. Moonen. Generating robust parsers using island grammars.
In Proceedings of WCRE 2001 (8th Working Conference on
Reverse Engineering), pages 13–22. IEEE CS, 2001.

[17] G. C. Murphy and D. Notkin. Lightweight lexical source
model extraction. ACM Transactions on Software Engineering
and Methodology, 5(3):262–292, 1996.

[18] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
reflexion models: Bridging the gap between design and
implementation. IEEE Transactions on Software Engineering,
27(4):364–380, 2001.

[19] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking
to advance research: a challenge to software engineering. In
Proceedings of ICSE 2003 (25th International Conference on
Software Engineering), pages 74–83. IEEE Computer Society,
2003.

[20] J. Tang, H. Li, Y. Cao, and Z. Tang. Email data cleaning. In
Proceedings of KDD 2005 (11th ACM SIGKDD international
conference on Knowledge discovery in data mining, pages
489–498. ACM, 2005.

[21] M. Triola. Elementary Statistics. Addison-Wesley, 10th edition,
2006.

http://miler.inf.usi.ch/code

	Introduction
	Related work
	Evaluation Benchmark
	Subjects of the experiment
	Benchmark creation
	Evaluation

	Experiments
	Classification of e-mails including source code fragments
	Special characters and keywords
	End of lines
	End of lines and regular expression

	Classification of text lines including source code fragments
	Special characters and keywords
	End of line and regular expression
	Beginning of block

	Source code extraction

	Discussion
	Comparison with similar approaches
	Limitations

	Conclusion
	References

