
The Linux Managing Model

By Federico Iannacci

Department of Information Systems, London School of Economics

Houghton Street, London WC2A 2AE

Tel. +44 (0)20 7955 7655; Fax +44 (0)20 7955 7385

Email: F.Iannacci@lse.ac.uk

Abstract:

This study focuses on the distinguishing traits of the Linux managing model. It introduces the

concept of process to capture the idea of impermanence, dissolvability and change. Far from

being a predictable flow of programming, assembling and releasing activities, it is suggested

that the Linux development process displays a stream of activities that keep feeding back into

each other, thus creating a complex and unpredictable outcome. The paper further introduces

the concept of contingent response patterns to investigate the interaction flows occurring on

the Linux mailing lists and subsume patch postings, bug reports and the associated reviewing

and debugging activities under its umbrella. The enactment-selection-retention (ESR) model

is subsequently brought forward to conceptualize this process as enactment of programming

skills subject to selection activities conducted by Torvalds who retains the selected features

and feeds them back to the developers’ pool to undergo further enactment activities. Key

managerial decisions concerning portability and modularity are, subsequently, analyzed

through the lenses of the ESR model to show that Linux features an unconventional decision-

making process whereby decisions follow rather than precede actions. Finally, Torvalds’

beliefs are investigated in the Bitkeeper context to argue that the Linux managing model leans

toward adaptability rather than adaptation.

Key words: process, change, retrospective sensemaking, strategy, adaptability;

Type of submission: Social.

2

1 Introduction: overview and research objectives

The use of metaphors in the open source landscape is predominant. Linux, to date one of the

most successful open source projects, has been depicted as a babbling bazaar of different

agendas and approaches to be contrasted to cathedral-like styles of software development

(Raymond 2001).

This paper analyzes the Linux development process by conflating such apparently antithetical

views on software development. It makes use of the evolutionary metaphor (Kuwabara 2000)

to propose an alternative managing model: a model that thrives on intuition rather than

forecasting, on opportunities rather than constraints and serendipity rather than plans. Time

and again, the data collected will show that the Linux development process is not the outcome

of planned design but of retrospective sensemaking, not the result of ordered change but of

random almost chaotic enactments.

The reminder of this paper unfolds as follows: section two introduces the open source

development process in general and the Linux development model in particular; section three

highlights the Enactment-Selection-Retention (ESR) framework in use; section four attempts

to suggest that adaptability is a better way of tackling random enactments than adaptation.

Finally, section five draws some preliminary conclusions concerning this alternative

managing model.

2 Open source development and Linux development

Traditional software development processes are based upon a four-stage cycle involving: a)

Planning; b) Analysis; c) Design; d) Implementation. The open source development process,

on the contrary, does not incorporate the first three stages being entirely premised on

implementation (Feller and Fitzgerald 2002).

3

Although several scholars have investigated the open source development process, Feller and

Fitzgerald (2002) claim that JØrgensen’s (2001) model appears to be the most detailed. By

analyzing the FreeBSD project, JØrgensen (2001) has identified six fundamental steps,

namely: a) Code; b) Review; c) Pre-commit test; d) Development release; e) Parallel

debugging; f) Production release.

According to JØrgensen (2001), the most straightforward aspect of the code stage is

represented by the astonishing rate of software developers contributing high quality code.

Parallel review of such code constitutes the next stage. Paradoxically, even though more

complex code would benefit from peer reviewing, it turns out that the simpler the code is, the

more feedback contributors obtain; this is an outcome that is consistent with our findings

considering, for instance, the following comments on the Linux kernel mailing list:

[] Start small, because for small patches people will have the few

minutes needed to teach you. The bigger a patch, the harder it is to

review it, and the less likely it happens []1.

Pre-commit test follows next. The FreeBSD project differs from Linux insofar as commit

privileges are concerned. Whereas Linux exemplifies a case where just one individual is in

control of the main repository, the FreeBSD project epitomizes a case where as many as 200

developers are delegated the right to commit (i.e. check in) changes into the main tree (i.e. the

repository). This, in turn, is due to the fact that Linus Torvalds does not make use of the

Concurrent Versions System (CVS) to maintain the official kernel tree. What is CVS? CVS is

a version control tool that allows developers to work concurrently on the same repository

(Fogel and Bar 2001). Basically, it grants developers the ability to download or check out

code from the main tree and, subsequently, modify it. When the developer is satisfied with the

changes, he can commit (i.e. check in) the changes back into the main tree. This model of

software development is defined as copy-modify-merge because developers download their

1 Source: http://www.uwsg.iu.edu/hypermail/linux/kernel/0201.3/1146.html

4

working copy from the CVS tree, modify it and commit it back into the CVS tree. Since CVS

as opposed to other tools, namely BitKeeper (BK)2, does not allow developers to remove

committed patches unless a reversed-patch operation is performed, the FreeBSD project

requires developers to perform pre-commit testing before committing their changes to the

main tree; unfortunately, such reversed operations cannot be performed when it comes to

extracting lines of code out of the middle of the source code which have already been built

upon for more code3.

Development release follows next. The FreeBSD project as much as Linux features two

distinct releases, namely development and production release. The former refers to

experimental releases, the latter to more stable releases. Experimental releases are, normally,

odd-numbered releases; stable releases are even-numbered ones. In the FreeBSD project,

developers committing changes to the main tree are indeed performing the act of releasing

new code, since a new release is the effect of a commit to the development branch (JØrgensen

2001). In the Linux environment, otherwise, developers are not allowed to release

experimental versions since Torvalds is in charge of the development branch. Linux,

moreover, features the following release policy: the first integer represents a major release;

the second one denotes a minor release, whereas the third indicates the patch level of the

release. Unstable releases are indicated by odd minor release numbers, while stable releases

are denoted by even minor release numbers (Erenkrantz 2003).

Parallel debugging constitutes the next stage. Whereas parallel development refers to the fact

that developers are working in parallel on different versions of the source code and/or

different reusable software components (i.e. modules), parallel debugging assumes that the

larger the number of developers working on the same release, the more bugs (i.e. software

misbehaviors) turn shallow (Raymond 2001).

2 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0201.3/1987.html
3 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0112.3/0474.html

5

The final stage, production release, is achieved whenever bug fixes previously submitted to

the development tree are merged into the latest stable production branch. This step is

performed in different ways in different projects. The FreeBSD project, for instance, makes

use of a core team’s release engineer who announces code freezes both in the production and

the development stages during which all changes are rejected other than severe bug fixes.

Linux, otherwise, sports feature and code freezes preceding forthcoming stable releases. A

feature freeze announces that all changes will be rejected and that only bug fixes will be

accepted; a code freeze is stricter because it only accepts severe bug fixes. Additionally,

production releases encompass coding, reviewing and debugging operations as much as

development releases, thus requiring managing activities in their own right.

Based on JØrgensen’s (2001) open source development process, we have adapted his model to

suit the Linux kernel development process, thus identifying the following stages:

Figure 1: The Linux Development Process

 Development

 Production

Notice that the use of gerunds instead of nouns is not accidental; we intend to pay as much

attention as possible to the word ‘process’ because we want to convey an idea of

impermanence, dissolvability and (disordered) change. The process imagery evokes the idea

of flow, flux and stream. It displays a flow of random programming and nonrandom

assembling and releasing activities that keep feeding back into each other, thus creating a

complex and unpredictable outcome. These ideas, however, require a new organizational

Coding

(Parallel)
Reviewing

(Parallel)
Debugging

Releasing

6

metaphor; a model where individuals act on intuition instead of following orders from above;

a model that values reactive strategies rather than proactive plans and admits novel actions

rather than pre-defined uses.

Ultimately, the above remarks raise a penetrating question: how does Torvalds cope with

random enactments that trigger disordered change? The next sections will draw on Weick’s

(1979) work to argue that the Linux managing model resorts to adaptability rather than

adaptation to cope with random enactments.

3 Open source, mutual equivalence structure and the ESR model

The open source model portrays a new way of developing software products whereby the

source code is made available on-line to anyone to view, modify and distribute. In his much

celebrated work, Raymond (2001) argues that the open source model epitomizes a gift

economy where developers engage in gift exchanges to maximize their own reputation.

Such exchanges have been further labeled as network, generalized exchanges where the

contributor is not necessarily reciprocated by the recipient of his contribution but by some

other actor(s) in the network (Yamagishi and Cook 1993). To further clarify this point,

consider a situation where a programmer volunteers an answer to a tricky programming

question posted on the mailing list. He may have no expectation of being helped in return by

the recipient of his contribution. However, he may expect to receive help from some other

member(s) of the network who, in turn, might be reciprocated by yet some other actor(s)

(Kollock 1999).

Network, generalized exchanges can be viewed as contingent response patterns encompassing

cycles consisting of double interacts. Consider, for instance, a bug report. Developer A posts

a bug report on the kernel mailing list in order to get the bug fixed. Developer B provides the

7

bug fix and is, in turn, reciprocated by developer C when he posts his own bug report. Posting

the bug report is instrumental to obtaining a bug fix and, subsequently, enjoying a non-

misbehaving program. Thus, we can distinguish two different types of activities: instrumental

and consummatory activities. The former always precede the latter by providing the

conditions under which the pleasurable consummatory activities can occur. We define each

cycle consisting of instrumental and consummatory activities as a double interact to highlight

the fact that there are two interlocked behaviors, namely an instrumental activity (i.e. the bug

posting activity) being interlocked into an original activity (i.e. the scrutinizing activity) and a

consummatory activity (i.e. enjoying a non-misbehaving program) being contingent onto the

bug fixing activity. Throughout this work, these contingent response patterns will represent

our unit of analysis (Weick 1979).

Besides enacting their programming skills by posting bug reports, developers can also post

new features (i.e. patches) on-line to obtain feedback from other developers. Whereas in such

circumstances developers are not bracketing areas of the source code to further scrutinize

them, they are, in a way, producing ecological changes that translate into new programming

features. Moreover, the aforementioned logic of double interacts holds once again to the

extent that posting a certain feature is an instrumental activity to actually obtaining a patch

review.

In sum, enactment activities consist of cycles of double interacts and may imply novel uses of

the software program. In addition, such activities create a mutual equivalence structure based

upon mutual prediction not mutual sharing. This, in turn, means that each developer’s ability

to engage in consummatory activities (i.e. obtaining a patch review and/or a bug fix) depends

on the behavior of others (i.e. someone posting a patch review and/or a bug fix) which, in

turn, is contingent on the former developer’s willingness to actually enact a preliminary

coding activity and post its outcome on a mailing list. Furthermore, the developer’s

performance of his patch reviewing and/or bug fixing acts has the function of eliciting the

8

other(s)’ patch reviewing and/or bug fixing activities. And to preserve this structure,

developers need to repeatedly perform such patch reviewing and/or bug fixing acts.

Enactment is followed by selection. Influential open source members need, at this stage, to

select a subset of cycles out of the pool of all possible cycles. Selection always works

backward and is behind because the only thing which can be selected is an enacted

environment that is already there. Selection can be viewed as applying a certain set of rules to

assemble a subset of cycles out of the poll of all possible cycles. Such rules, to be labeled as

assembly rules, are procedures, instructions or guides being used by influential organizational

members to create the process. Torvalds and his army of trusted lieutenants, for instance,

seem to apply criteria of relevance, enhancement and success.

Relevance refers to the fact that Torvalds and his lieutenants are used to selecting patches (i.e.

feedback loops) against a specific development and/or production tree. Enhancement,

otherwise, refers to the fact that Torvalds and the other official tree maintainers automatically

accept bug fixes (i.e. interacts) that enhance their latest releases. While relevance and

enhancement seem to apply both to production and development releases, success only refers

to development trees and points to the fact that patches need to be used by a great number of

users not developers as the LKCD [Linux Kernel Crash Dump] example shows:

“[] I will merge it [i.e. the LKCD patch set] when there are real users who want it -

usually as a result of having gotten used to it through a vendor who supports it. (And

by "support" I do not mean "maintain the patches", but "actively uses it"

to work out the users problems or whatever). Horse before the cart and all that thing.

People have to realize that my kernel is not for random new features. The

stuff I consider important are things that people use on their own, or

stuff that is the base for other work. Quite often I want vendors to merge

9

patches _they_ care about long long before I will merge them (examples of

this are quite common, things like reiserfs and ext3 etc).

THAT is what I mean by vendor-driven. If vendors decide they really want

the patches, and I actually start seeing noises on linux-kernel or getting

requests for it being merged from _users_ rather than developers, then

that means that the vendor is on to something”4.

It is worth noting that, broadly speaking, selection is not the outcome of planned design but of

retrospective sensemaking whereby Torvalds is attempting to discover a world on which he

has already imposed what he believes. This, in turn, requires an organizing model that

corroborates the idea of acting before thinking where strategy comes after development not

before it. Linux kernel developers, in other words, develop whatever feature suits their

interests and needs and Torvalds, subsequently, decides whether to select such features.

Retention represents the last stage of the ESR model. The selected feedback loops and the

associated enhancements are stored together with the memory rules used to assemble these

cycles. To be sure, patches may always be removed from the official trees but removal rarely

happens:

“[] If you really believed the stuff you say you'd put it [i.e. the LKCD patch set]

in and promise to take it out if people didn't find it useful or there were inherent

limitations []”5.

Bill Davidsen commented on Linus Torvalds’ refusal to apply the LKCD patch set into his

tree. And Torvalds voiced back:

4 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0210.3/2062.html
5 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0211.0/0011.html

10

“This never works. Be honest. Nobody takes out features, they are stuck

once they get in. Which is exactly why my job is to say "no", and why

there is no "accepted unless proven bad []"6.

Once retained, development and production branches are fed back to the developers’ pool to

undergo further enactment activities. The assembly rules, otherwise, affect the selection

process by framing the criteria whereby cycles are to be chosen and, subsequently, inputted to

retention. Thus, each stage of the ESR model consists of a flow of inputs and outputs (i.e. a

process); moreover, the assembly rules are to be intended as the criteria by which the

development and production processes are constructed.

Even though conceptually simple, the ESR model portrays the pivotal role that selection plays

in accommodating the antithetical pressures stemming from enactment and retention.

Whereas enactment spurs ecological changes that make development and production releases

in tune with fleeting environments, retention lags behind these changes because it hinges on

stored memory rules that suit past environments. This, in turn, implies that although

enactment stimulates adaptability, retention propels adaptation. The purpose of the following

section is to show that the Linux managing model in general and its selection process in

particular lean toward adaptability rather than adaptation.

4 The Linux managing model

This section attempts to apply the ESR model to the Linux case study in order to highlight the

dynamics of its managing style. By using a qualitative content analysis, this section focuses

on analyzing data extrapolated from the Linux mailing lists. It is worth reminding the reader

that such a case study was selected because, even though it is vastly studied in the literature,

we felt that its managing issues have not yet been modeled after a dynamic framework. To be

6 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0211.0/0014.html

11

sure, Kuwabara (2000) has already resorted to the evolutionary metaphor to account for the

dynamics of the Linux operating system as a whole. The present work, on the contrary,

elaborates on Torvalds’ beliefs to argue that they epitomize a case where random enactments

are retrospectively being dealt with adaptability rather than adaptation. Moreover,

Kuwabara’s (2000) study is focused on mimetics rather than contingent response patterns, on

incremental changes rather than deviation-amplifying feedback loops, on discarding the

military metaphor rather than complementing it and, subsequently, on self-organization rather

than top-down strategizing. Thus, in our view, Kuwabara (2000) fails to appreciate the

essence of our argument, namely that strategy in Linux comes after development not before it

and consists of adaptability not adaptation. After all, it is as though the Linux managing style

reifies a model of acting before thinking where meaning is imposed after the fact, not before

it.

In several occasions Torvalds has engaged in discussions concerning the Linux development

philosophy. Let us look at the following excerpt concerning the design of Linux:

[] Let’s just be honest, and admit that it wasn't designed. Sure, there's design too - the

design of UNIX made a scaffolding for the system, and more importantly it made it

easier for people to communicate because people had a mental _model_ for what the

system was like, which means that it's much easier to discuss changes. But that's like

saying that you know that you're going to build a car with four wheels and headlights -

it's true, but the real bitch is in the details. And I know better than most that what I

envisioned 10 years ago has _nothing_ in common with what Linux is today. There

was certainly no premeditated design there. And I will claim that nobody else

"designed" Linux any more than I did, and I doubt I'll have many people disagreeing. It

12

grew. It grew with a lot of mutations - and because the mutations were less than

random, they were faster and more directed than alpha-particles in DNA []7.

Here Torvalds is arguing that Linux did not grow out of a pre-defined design. This argument

is further corroborated by the fact that modularity itself was not on Torvalds’ mind at the

beginning. The Linux kernel is a monolithic kernel. With a monolithic kernel, memory is

divided into user space and kernel space. Whereas kernel space refers to the space where

kernel code is loaded and memory is allocated for kernel level operations, user space includes

those processes that are separated from the kernel and need to communicate with the kernel

through message passing. Kernel operations include scheduling, process management,

signaling, device Input/Output, paging and swapping. These are the core operations that other

programs need to rely on to execute. Because such core operations are not abstracted from

kernel space, monolithic kernels are specific to the particular hardware architecture they are

interacting with. The alternative is a microkernel-based system where most of the operating

system runs as separate processes, mostly outside of the kernel. In other words, a microkernel

performs a much smaller set of operations in more limited form in kernel space. Such

operations include: interprocess communication, limited process management, scheduling and

low level input/output. Microkernels appear to be less hardware specific because basic

operations are pushed into user space in order to abstract the details of process control,

memory allocation and resource allocation and, therefore, allow for ports to other hardware

architectures. At the time Torvalds started work on Linux, researchers believed that

microkernels were superior to monolithic kernels because they could be ported and

modularized more easily. Their argument was that, due to their intrinsic design, microkernels’

basic functions could be transformed into modules and, thus, loaded and unloaded as needed.

Monolithic kernels, otherwise, could not be modularized as easily because, according to their

theory, it was more difficult to remove functions from kernel space and, subsequently,

7 Source: http://kt.zork.net/kernel-traffic/kt20011217_146.html#1

13

transform them into loadable modules. Yet in 1995 Torvalds released version 1.2 and

announced loadable kernel modules:

“Helsinki, Finalnds—March 8, 1995 –Linus Torvalds announced the release of version

1.2 of the popular Linux operating system. [] Linux is a full-featured Unix operating

system for PCs (386 or higher) which supports true multitasking, 32-bit virtual

memory, shared libraries and executables, demand paging, advanced memory

management, dynamically linked libraries and TCP/IP networking. Linux v1.2 adds to

this list: performance enhancements, loadable kernel modules, increased portability

support for many more peripherals, PCI support, PCMCIA support, EIDE support, an

increasing variety of network protocols, support for ELF-format binaries, and more []8”

To be sure, this decision did not happen in a vacuum. A year before Peter MacDonald

announced loadable kernel module patches against Linux 99p14 f:

“This is to announce patches against Linux 99p14f that convert nearly all Linux

devices and facilities into loadable modules []9”

Other kernel developers, however, started this conversion to modularization in cloned Linux

trees including Bas Laarhoven, who is currently listed in the credits file for contributing

loadable modules and ftape drivers, Jon Tombs, Jacques Gelinas, Jeremy Fitzhardinge and

Björn Ekwall (Welsh 1995). Bas Laarhoven, in particular, while working on the ftape driver

releases, developed a system call that allows the root to load/unload code10. Thus, Torvalds

decided to introduce loadable kernel modules in his tree to make sure that developers from

around the world could work in parallel and add changes and enhancements at run time

without frequent kernel builds and reboots (deGoyeneche and deSousa 1999). This, in turn,

8 Source: http://groups.google.com/groups?q =Linus+Torvalds+Loadable+Kernel +Modules&hl=
en&lr=&ie=UTF-8&selm=3kkdi5%243m0%40kruuna.helsinki.fi&rnum=4
9 Source: http://groups.google.com/groups?q=Linux+loadable+kernel+modules&hl=en&lr=&ie=UTF-
8&selm=2hhgek%243rm%40klaava.Helsinki.FI&rnum=1
10Source: http://groups.google.com/groups?q=modules+Jon+Tombs&hl=en&lr=&ie=UTF-8&selm=
1993Dec2.180207.8705%40lucrece.robots.ox.ac.uk&rnum=1

14

shows that Linux exemplifies an unconventional decision-making process where the

implementation of an explicit structure for creating loadable modules occurred after the

development of a set of features that allows to load/unload code.

Even porting the kernel to other platforms was not on Torvalds’ mind at the beginning. The

kernel underwent an unplanned major re-write in its early stages because of the developers’

effort to port it to other platforms other than the x86 architecture. Thus, Torvalds decided to

re-write the kernel code to make sure that it could be ported to other platforms in a common

code base (Torvalds 1999). To reiterate, this proves that the Linux kernel is the outcome of an

unconventional decision-making process whereby managing consists of making sense of

enactments that are already there. Torvalds, in other words, lets developers follow their

personal interests and needs. Once their enactments are in place, he looks back to impose his

own beliefs.

This reasoning, in turn, begs the question: what are Torvalds’ beliefs? The absence of design

and up-front planning implies no goal setting and, therefore, lack of general direction at a

macro level. Hence, the kernel development boils down to the developers’ personal interests

and needs and, to the extent that it ensures readiness for change, favors adaptability over

adaptation:

[] The impressive part is that Linux development could _look_ to anybody like it is that

organized. Yes, people read literature too, but that tends to be quite spotty. t's done

mainly for details like TCP congestion control timeouts etc - they are _important_

details, but at the same time we're talking about a few hundred lines out of 20

million. And no, I'm no tclaiming that the rest is "random". But I _am_ claiming that

there is no common goal, and that most development ends up being done for fairly

random reasons - one persons particular interest or similar.

15

It's "directed mutation" on a microscopic level, but there is very little macroscopic

direction. There are lots of individuals with some generic feeling about where they

want to take the system (and I'm obviously one of them), but in the end we're all a

bunch of people with not very good vision. And that is GOOD. A strong vision and a

sure hand sound like good things on paper. It's just that I have never _ever_ met a

technical person (including me) whom I would trust to know what is really the right

thing to do in the long run. Too strong a strong vision can kill you - you'll walk right

over the edge, firm in the knowledge of the path in front of you. I'd much rather have

"brownian motion", where a lot of microscopic directed improvements end up pushing

the system slowly in a direction that none of the individual developers really had the

vision to see on their own. And I'm a firm believer that in order for this to work _well_,

you have to have a development group that is fairly strange and random.

To get back to the original claim - where Larry idolizes the Sun engineering team for

their singlemindedness and strict control - and the claim that Linux seems ot get better

"by luck": I really believe this is important. The problem with "single-mindedness and

strict control" (or"design") is that it sure gets you from point A to point B in a much

straighter line, and with less expenditure of energy, but how the HELL are you going to

consistently know where you actually want to end up? It's not like we know

that B is our final destination.

In fact, most developers don't know even what the right _intermediate_

destinations are, much less the final one. And having somebody who shows

you the "one true path" may be very nice for getting a project done, but I

have this strong belief that while the "one true path" sometimes ends up

being the right one (and with an intelligent leader it may _mostly_ be the

right one), every once in a while it's definitely the wrong thing to do. And if you only

walk in single file, and in the same direction, you only need to make one mistake to die.

16

In contrast, if you walk in all directions at once, and kind of feel your

way around, you may not get to the point you _thought_ you wanted, but you

never make really bad mistakes, because you always ended up having to

satisfy a lot of _different_ opinions. You get a more balanced system []11.

Adaptability, in turn, calls for an organizing system that rotates around minimal disruption of

the underlying enactment processes as the BK vs. CVS example shows. On January 28th,

2002, Rob Landley started a very intriguing thread entitled “A modest proposal: we need a

patch penguin”12. Notice the self-deprecation norm at work, if anyone needs be reminded of

the role norms play in the open source development. Since Torvalds was dropping way too

many patches, Landley’s proposed to introduce a further layer of authority between Torvalds

and his closest lieutenants to collect such patches. Torvalds’ reply, though, was rather

negative suggesting a “network of people approach” by using BK rather than CVS. What is

BK and why does it stimulate a “network of people approach”? Most importantly, why, in this

context, is a network of interpersonal bonds a better organizing strategy than introducing a

further layer of authority?

BK is a distributed, replicated source code management system that Landley has defined as “a

technical tool attempting to deal with a social problem”13. BK unlike CVS grants developers

write access to their own repository not the main repository, thus avoiding a situation where

the official tree becomes a chaotic mess of stuff that has not yet been filtered (Shaikh and

Cornford 2003). In other words, instead of allowing automatic acceptance of patches, BK

encourages developers not to dump their patches on other people’s trees and act as real

maintainers of their own trees14. This, in turn, creates a network of maintainers, each of whom

knows other maintainers15, that is characterized by a push/pull workflow from/to the shared

repository. BK, in other words, features a tracking repository and a shared repository:

11 Source: http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.0/0004.html
12 Source: http://www.uwsg.iu.edu/hypermail/linux/kernel/0201.3/1000.html
13 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0201.3/1072.html
14 Source: http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.3/0474.html
15 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0201.3/1087.html

17

whereas the former keeps track of external projects such as, for instance, an open source

project, the latter combines both external and localized work16. Suppose a maintainer, say Jeff

Garzik, imports open source patches into the tracking repository and pulls them into the

shared repository. At this stage, he can give commit privileges to a handful of local sub-

system maintainers he trusts. These, in turn, will clone the shared repository into personal

repositories, do their work and, subsequently, push their changes back into the shared

repository17. Local changes submitted to the shared repository can, subsequently, be pushed to

external projects as traditional patches by using the BK export command. In addition, these

sub-system maintainers may trust another handful of local developers to commit changes into

their own repositories. These developers, once again, will clone the sub-system maintainers’

shared repositories to do their work in their personal trees and will subsequently submit their

changes to them who, in turn, will submit them to Garzik provided that such changes have

been discussed on the mailing list(s) and have met their judgment criteria. This push/pull

workflow is depicted below:

Figure 2: The Tracking Workflow

16 Source: http://www.ussg.iu.edu/hypermail/linux/kernel/0201.3/1657.html
17 Such changes are called change sets (csets). Each cset is one or more changed files, bundled together.
On this point see the Linux documentation archive: http://lxr.linux.no/source/Documentation/BK-
usage/bk-kernel-howto.txt?v=2.5.56

BK
Import

Tracking
Repository

Grazik’s Shared
Repository

BK
Export

Sub-system
Maintainer’s
Repository

Sub-system
Maintainer’s
Repository

Developer’s
Repository Developer’s

Repository

18

This shows that BK spurs “a network of people approach” where developers need to rely on

each other to push their patches forward. BK, in addition, implies the acknowledgment that,

as the organizational size grows, it is a network of interpersonal bonds not single individuals

that guarantees minimal disruption of the underlying system of causal cycles. Ultimately, an

organizing model that leans toward adaptability admits that it is minimal disruption of the

enactment processes at work that ensures prompt reaction to changing contingencies.

5 Conclusions

“How can I know what I think ‘till I see what I say?” is the poignant epistemology of Weick’s

(1979) masterpiece. This paper, otherwise, is dominated by a slightly different epistemology:

how can I know what I think ‘till I see what they say? The use of the pronoun “they” as

opposed to “I” aims at emphasizing the fact that decision-making in Linux does occur but it

happens after development, not before it. In other words, contributors are free to develop

whatever features they like and Torvalds, subsequently, decides whether to implement them

or not. In our view, this subtle point has passed unnoticed for too long in the literature on

Linux: researchers and practitioners alike focus too much on the evolutionary nature of Linux,

thus missing its unconventional decision-making process. This paper attempts to fill this

theoretical gap by showing that the Linux managing model challenges conventional rational

wisdom by epitomizing a reversed managerial metaphor that corroborates the idea of acting

before thinking. Once we acknowledge a reactive strategy in Linux, the next conceptual

challenge is asking: what does this strategy consist of? This paper attempts to suggest a

reactive strategy that leans toward adaptability rather than adaptation, enactment rather than

retention, action rather than coordination (Yamaguchi, Yokozawa et al. 2000) and exploration

rather than exploitation (March 1991). After all, in the Linux case study, portability,

19

modularity and versioning tools (BK) all grant the same property, namely the ability to fit

changing environmental contingencies. Portability and modularity, in particular, grant the

ability to create a minimal kernel that is independent of the hardware setup whereas Bitkeeper

allows for scaling up and down as the organizational size changes.

Even though it is premised on the assumption that developers are driven by anticipated

reciprocation and overlooks the more stringent design requirements stemming from vertical

architectures, this study shows that organizing models a-la Linux are better suited to highly

volatile and unstable environments.

References18

deGoyeneche, J. M. and E. A. F. deSousa (1999). "Loadable Kernel Modules." IEEE
Software 15(1): 65-71.

Erenkrantz, J. R. (2003). Release Management within Open Source Projects. Taking
Stock of the Bazaar: Third Workshop on Open Source Software Engineering.

Feller, J. and B. Fitzgerald (2002). Understanding Open Source Software
Development. London, Addison-Wesley, Pearson Education Ltd.

Fogel, K. and M. Bar (2001). Open source development with CVS. Scottsdale, AZ :
Coriolis Group Books.

JØrgensen, N. (2001). "Putting it all in the trunk: incremental software development
in the FreeBSD Open Source project." Information Systems Journal 11(4).

Kollock, P. (1999). The Economies of Online Cooperation: Gifts and Public Goods in
Cyberspace. Communities in Cyberspace. M. Smith and P. Kollock. London,
Routledge.

Kuwabara, k. (2000). Linux: A Bazaar at the Edge of Chaos, First Monday: 5/3.
http://www.firstmonday.org/issues/issue5_3/kuwabara/, Accessed on 22/02/02.

March, J. G. (1991). "Exploration and Exploitation in Organizational Learning."
Organization Science 2(1): 71-87.

Raymond, E. S. (2001). The Cathedral and the Bazaar. Sebastopol, CA, O'Reilly.

18 Do not include data from the Linux mailing lists.

20

Shaikh, M. and T. Cornford (2003). Version Management Tools: CVS to BK in the
Linux Kernel. Taking Stock of the Bazaar: Third Workshop on Open Source Software
Engineering.

Torvalds, L. (1999). The Linux Edge. Open Sources: Voices from the Open Source
Revolution, O'Reilly and Associates.
http://www.oreilly.com/catalog/opensources/book/linus.html; Accessed 31/0/3/02.

Weick, K. E. (1979). The social psychology of organizing. Menlo Park, California,
Addison-Wesley Publishing Company.

Welsh, M. (1995). Implementing Loadable Kernel Modules for Linux.
http://www.ddj.com/documents/s=991/ddj9505a/9505a.htm#01c1_0087, Accessed
on 15/03/03.

Yamagishi, T. and K. S. Cook (1993). "Generalized Exchange and Social Dilemmas."
Social Psychology Quarterly 56(4): 235-248.

Yamaguchi, Y., M. Yokozawa, et al. (2000). Collaboration with lean media: how
open-source software succeeds. Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW '00), Philadelphia, PA.

Acknowledgments:
The author is indebted to Jannis Kallinikos, Maha Shaikh and Edgar Whitley for their
precious comments and support.

