

“A bit of code”:
How the Stack Overflow Community Creates Quality Postings

Megan Squire

Elon University
msquire@elon.edu

Christian Funkhouser
christian.funkhouser@gmail.com

Abstract

1. Introduction

Stack Overflow [1] is a web site for programmers to
ask and answer technical questions. The guidance for
prospective authors on the Frequently Asked Questions
page in answer to the question “What kind of questions
can I ask here?” is as follows:

Stack Overflow is for professional and

enthusiast programmers, people who write code
because they love it. We feel the best Stack Overflow
questions have a bit of source code in them…[2]

The purpose of this portion of the FAQ is to

encourage the authors to write the best possible
questions, so as to receive the most satisfying answers
that will help themselves and others facing the same
technical problem. This is a social community created
around high quality, highly technical Q-and-A. One of
the main artifacts of the programming process is source
code, but the assumption in this FAQ is that most
questions and answers will also include sentences
written (in the English language [3]) to accompany and

clarify the code. Some guidance is therefore given in
the FAQ for how much of that source code to include.

Our paper examines, in detail, two of the important
phrases used in that FAQ: “best” as it refers to the
quality of questions, and “bit of” as it refers to an
amount of source code that should be present in
questions in order to make them effective. What might
these terms “best” and “a bit of” mean in practice? How
can contributors to this site understand the advice given
in the FAQ, so as to write the “best” Stack Overflow
questions and answers to help the community of users?

To answer these questions, this paper presents an
analysis of a publicly-available data set containing all
content from the Stack Overflow web site. This data set
includes all posted questions, answers, scores, and most
(non-private) user information. We clean and store the
data, then we apply a range of analyses and
visualization techniques, in order to shed light on the
way the community uses text to produce quality
postings.

Section 2 gives relevant background information for
how the Stack Overflow community works, including
terminology and its mechanisms for encouraging
quality in postings. Section 3 enumerates our research
questions. Section 4 examines the data set we used to
answer these research questions. Section 5 discusses the
analyses and findings for our research questions.
Section 6 gives some ideas for future work. Section 7
summarizes our conclusions.

2. Stack Overflow Background

Stack Overflow was created in 2008 by software
developers Jeff Atwood and Joel Spolsky. As of this
writing, the site has 2.3 million registered users who
have asked each other more than 5.6 million questions.
There are now more than 100 topic-specific sites in the
Stack Exchange network. (Stack Overflow is the only
one of these sites we will be discussing in this paper.)
Alexa.com shows that StackOverflow.com is in the top
80 most visited web sites in the world (top 65 in the
USA and top 20 in India). Within the software
development community, it is an extremely popular
site.

The Stack Overflow web site is an online
community where programmers can ask and
answer one another’s questions, earning points and
badges. The site offers guidance in the form of a
Frequently Asked Questions (FAQ), beginning with
“What kind of questions can I ask here?” The
answer explains that “the best Stack Overflow
questions have a bit of source code in them”. This
paper explores the role of source code and non-
source code text on Stack Overflow in both
questions and answers. The primary contribution of
this paper is to provide a more detailed
understanding of whether the presence of source
code (and how much) actually will produce the
“best” Stack Overflow questions or answers. A
second contribution of this paper is to determine
how the non-code portions of the text might also
contribute the “best” Stack Overflow postings.

Megan Squire
Please cite as:
Squire, M. and Funkhouser, C. (2014).
"A Bit of Code": How the Stack Overflow Community Creates Quality Postings.
In Proceedings of the 47th Hawai'i International Conference on System Sciences (HICSS47).
IEEE. Big Island, HI, USA. 1425-1434.
DOI: 10.1109/HICSS.2014.185

Stack Overflow uses a particular vocabulary to
describe its artifacts that users of other social media
tools will recognize. Some terms are highlighted here.

Posts: A post or posting is either a question, or an
answer to a question. Posts are given a unique ID
number on the Stack Overflow site, and each post has
an identifier for its type (for example, type 1 is a
question, type 2 is an answer).

Users: A user is a registered member of the Stack
Overflow web site. In terms of the analysis in this
paper, users are participants in the Stack Overflow
community. They write posts, write comments, vote on
posts, edit posts, etc. In the Stack Overflow community,
users do not “friend” each other or “follow” each other
or the like. The main interaction between users is to ask
or answer each other’s questions, or to comment on a
posting written by another user.

Reputation: A user builds up reputation points by
posing questions, issuing answers, and editing posts.
Different actions on the site require different levels of
reputation points. As the FAQ explains, “Reputation is
a rough measurement of how much the community
trusts you.” Reputation is an important aspect of the
Stack Overflow site, as users compete to build large
reputation scores and gain privileges.

Votes: A user with enough reputation points can
extend a vote in favor of a posting (called an upvote) or
against a posting (called a downvote). Votes reflect the
user’s opinion of the usefulness of a question or the
merit of an answer. Voting is a privileged action; in
order to begin voting on posts, a user must have built up
enough reputation to earn this privilege.

Scores: A score is calculated for a post based on a
number of upvotes (+1) and downvotes (-1) given by
users who vote on a post. Posts (both questions and
answers) with high scores yield reputation points to
their authors. Posts with low scores will actually lower
the author’s reputation points. There is an evolving
formula determining how scores affect reputation [4].

Accepted answer: A user who poses a question to
the site has the ability to choose one of the submitted
answers to be the accepted answer. This presumably
reflects that this is the “best” answer, as judged by the
original asker.

Favorite: A user can select a question (but not an
answer or comment) as a “favorite”. This is sort of like
bookmarking or saving the question for later. No
reputation is conferred when a question is selected as a
favorite.

Badges: A user can earn named badges for
completing particular actions on the site. These badges
appear on the user profile, and a count of different types
of badges appear next to the user’s name in all postings.
An example of a badge is “Copy Editor” (editing more
than 500 questions on the site, a gold level badge) or

“Yearling” (Active member for a year, earning at least
200 reputation, a silver level badge). There are more
than 75 different badges available as of this writing, in
gold, silver, and bronze categories. [5]

3. Research Questions

We have organized our work around 5 research
questions, all designed to tease out what “best” and “a
bit of source code” mean in the Stack Overflow FAQ.
The goal is to provide an additional level of detail to
users of this site for how to ask and answer high-quality
questions.

Q1. Do higher scoring questions include more
source code? What about higher scoring
answers?

Q2. Do questions with high favorite counts have
more source code?

Q3. Do answers chosen as “accepted answers”
have more source code than answers not
chosen?

The following questions are designed to try to
understand what other factors in the non-code portion
of the text may make a posting popular (where
popularity results in a high score or a high favorite
count).

Q4. Do the “best” questions (those with high
scores or high favorite counts) also have high
scores for readability?

Q5. Do the “best” questions (those with high
scores or high favorite counts) also have high
scores for sentiment or mood?

4. Data Set

The data collected for this project was the August
2012 XML dump provided by Stack Overflow on the
web site. The data was read into a MySQL database for
ease of processing. (Stack Overflow releases a dump
like this every month.)

The data dump provided includes all the questions,
answers, comments, tags, scores, and much (but not all)
of the user information. In addition, the data dump
comes with pre-computed counts for favorites, upvotes,
and downvotes. Figure 1 (next page) shows the data
model for the six tables most relevant to this paper.

4.1. Tables

The main table we used for this study was the posts
table, which includes the following attributes:

• id: a unique number for a posting;

• post_type_id: one of seven types,
concentrating especially on 1 and 2
(1=question and 2=answer);

• accepted_answer_id: the post “id” chosen
by the original asker as the best (this
column uses the “id” column as a foreign
key);

• score: the number of upvotes and
downvotes for a post;

• body: the content of the posting (including
code, text, images, links);

• answer_count: how many answers did this
question get?

• favorite_count: how many users selected
this question as a favorite?

The new_posts_meta table was created by us for use
on this project. It has a one-to-one relationship with the
posts table, since we did not want to modify the
structure or data of the original posts table, but we
wanted to add extra attributes for each record in the
posts table. We then wrote several scripts to process the
“body” column in the posts table, stripping out different
levels of code and calculating various scores, as
described below. This new table includes:

• The posts.body column as plaintext only
(html tags stripped out);

• The posts.body column as plaintext with
source code stripped out;

• The code-text ratio of the posts.body
column text (source code versus non-
source code);

• Readability scores of the plaintext (Flesch-
Kincaid Grade Level and Flesch-Kincaid
Reading Ease scores [6]) for plaintext
without any source code or markup;

• Sentiment scores [10] for plaintext without
source code or markup.

We describe more about readability and sentiment

scoring in Section 5.4 and 5.5.

4.2. Metrics

Some basic metrics about the Stack Overflow data

set are as follows:
• The data set is about 80GB.
• There are approximately 10.3 million rows

in each of the posts table and the
new_posts_meta table.

• The votes table has about 27 million rows
in it.

• The comments table has about 14 million
rows in it.

• The users table has about 1.1 million rows.
• The post_history table (users making

posts) has about 26.2 million rows.
• The range of (non-administrative) user

post counts goes from 0 (never posted) to
one user who has made 43,700 posts.

Figure 1. Stack Overflow Data Model

5. Analysis

In this section we describe our attempts to answer each
of our research questions described in Section 3, using
the data set from Section 4. In each case, we visualize
the data to help guide our conclusions.

5.1. Findings for Q1

The first research question was “Do higher scoring

questions have more source code? What about higher
scoring answers?” To answer this, we used our
new_posts_meta table with the plaintext_nocode_length
and plaintext_code_length columns. We then calculated
a code-text-ratio for each posting as a percentage of the
total post that is code. (Values of 0 are where a posting
was all text and no code, whereas a value of 1 is where
the posting was all code and no text).

For this analysis, we first determined that 95% of
question scores fall into a range of between -1 and 8,
whereas scores for answers are between 0 and 9.
(Lower scores are worse.) We then determined that
95% of all questions had a code-text-ratio of between 0
and .91, and answers had a code-text-ratio between 0
and .98. We then used these ranges to select the
reasonable set of scores (those that were like 95% of
cases) and code-text-ratios for questions and for
answers. Finally we visualized the ratios using boxplots
in Figure 2. The plots are shown with one box per score
(-1 through 8 for questions, 0 through 9 for answers).

With questions, as scores increase left to right on
the x-axis, the code-text-ratios decrease (with the
exception of the first jump from -1 to 0 score).

We can contrast this to what happens with answers
(on the right, in Figure 2). With answers, as we move
from left to right on x-axis, the higher scores also have
a higher code-text-ratio.

For answers, the ideal code-text-ratio seems to be
about 1:3. The highest scoring (typical) answers will
have one line of code for every 3 lines of non-code text.
(Or, 25% of the total post length is code.)

However, questions with large amounts of code are
scored lower. We show that the highest scoring
questions had a ratio of about 1:9, or one line of code
for every 9 lines of non-code text.

“Look at my code and tell me what is wrong with
it” types of questions may be considered less interesting
or less developed, and thus downvoted, whereas
answers are considered better when they have more
source code.

5.2. Findings for Q2

Our second research question was “Do questions
with higher favorite counts have more source code?”
Recall that favorites do not affect a user’s reputation,
but they could be considered a measure of social worth
of a question since people use the “favorite” as a way of
“bookmarking” the question for later perusal. Answers
do not have the ability to be favorites.

Code-Text-Ratio for Questions, by Score Code-Text-Ratio for Answers, by Score

Figure 2. Q1: Code-Text-Ratios (0-1) for Questions and Answers, with Scores (-1-8)

To answer Q2, we simply selected questions from
the posts table, (post_type_id = 1) and the favorite
count for each post, as given in the original data dump.
To ensure that we got really popular questions for this
analysis of “best” questions, we selected only posts
with a favorite count above 10. (More than 10 favorites
would be considered an extremely popular question,
since 95% of Stack Overflow posts have a favorite
count of 10 or less.)

Figure 3 shows a simple scatter plot with code-text
ratios on x-axis and favorite counts on y-axis (log
scale).

Among these very “best” questions, Figure 3 shows
that it is slightly more unusual to have a high favorite
count and a very high code-text ratio (above .8 or so).
Thus, these results are very similar to the results for Q1
with questions.

It is common for the highest “favorites” to have a
low code-text ratio. There is also a number of posts
with a code-text ratio of 0 that have a high favorite
count. These tend to be lists of things, such as books

about programming or web sites on a certain
programming topic.

5.3. Findings for Q3

Our third question was “Do accepted answers have

more source code than non-accepted answers?” For this
analysis, we again selected the code-text ratios for two
groups: the answers that were accepted as “best” by the
original authors, and the rest of the answers. Figure 4
(next page) shows the density distributions of the
answers in each of these two groups.

As Figure 4 shows, it is most probable that both
accepted and non-accepted answers have low code-text
ratios, thus the tall spike on the left. However, among
those answers that do include code (moving away from
0 on the x-axis) it is less likely (density is more
negative) that non-“accepted” answers will have a high
code-text ratio, and more likely that “accepted” answers
will have a high code-text ratio. This agrees with
findings from Q1 and Q2.

Figure 3. Q2: Code-Text-Ratios (0-1) for Questions and Answers, with Scores (-1-8)

Figure 4. Q3: Code-Text-Ratios for Accepted and Non-Accepted Answers

From these analyses in sections 5.1-5.3, we

determine that the presence of source code plays some
role in how a user will score a question and an answer.
In general it appears that users like to see a smaller
amount of code in questions, and a larger amount in
answers.

Following this, we became curious what other
textual factors could also result in the “best” questions
or answers. We were especially interested in factors that
could be affected by code-text ratio. In other words,
what are authors doing with the non-code portion of
their posting? Is the non-code portion of a good post
more readable? Is the sentiment of a good post
particularly positive or upbeat? Is humor worth
anything in getting a good score? Q4 and Q5 attempt to
illuminate this aspect of formulating the “best” postings
on Stack Overflow.

5.4. Findings for Q4

The Flesch-Kincaid Reading Ease (FKRE) [6]

metric is a simple measure of the alleged readability of
a piece of text. (As a metric, it has some flaws, which

are outlined in [7].) It is calculated using the following
formula, for example as shown in [8]:

206.835 − 1.015 !"#$%"&'(

!"#$"#%"&'(#$ − 84.6 !"##$%#&'()*+
!"#$%"&'(

In the FKRE results, lower scores are more difficult

to read, and higher scores equate to more ease in
reading the document. Scores of less than 30 are an
indication of university-level reading. Scores of 90-100
are used to indicate readings appropriate to a 10-year
old child.

We used this formula on the plaintext_no_code
column in our new_posts_meta table, and saved the
results as a new column in the new_posts_meta table.

The following simple, one-line Stack Overflow
answer scored a 108.2 on the FKRE:

Could you make it cookie-based?

The next question is an example of text that scored a

middle-of-the-road 45.75 on the FKRE:

What's the simplest way in Ruby to group an
array of arrays by element order? In other
words, to get all the 0th elements, then all
the 1th elements, etc.

The following answer to a question garnered a very

low FKRE score of 5.1:

I used NSGA-II in a multi-objective
evolutionary approach to optimize an
artificial neural network that corresponds to
a computational model of a part of the brain
which is supposed to be a low-level system for
action selection. If you are interested you
may find more information on

http://francky.me/publications.php#mRF2011
Note that any other Pareto-compliant ranking
method would have probably worked.

The biggest difference between these postings is the

number of words per sentence and the number of
syllables per word.

Figure 5 shows the “favorite post” counts plotted
against readability for the top 1000 most favorite
questions. The easier-to-read questions will approach
100. Harder-to-read questions may even have a
negative score. Figure 6 shows scores plotted against
FKRE for the top 1000 highest scoring posts.

In both figures, there is a tight cluster of expected
readability values for most of the postings (between 30-
80), and even the highest scoring/most favorite postings
fall into this same readability range.

For those top 1000 favorite posts, the range of
favorite counts is 5894 at the high end and 71 at the low
end. For the top 1000 scoring posts, the range of scores
is 2499 at the high end to 126 at the low end.

After seeing this, we became interested in the very-
low-readability (difficult) postings that still get high
favorite counts or high scores. What does an
unreadable-but-still-great post look like? Can finding
these odd postings help us find out whether there is
something wrong with the readability metric?

Upon manually inspecting these unreadable-but-
still-great posts, it appears that most are of these main
types:

(1) postings that are long lists of communally-edited
resources, such as lists of books or web sites, and

 (2) postings that are quite long and cover topics
with odd syntax, such as design of programming
languages, the use of regular expressions, or methods
for text analysis, and

(3) postings that include long lists of filenames or
URLs, or error messages pasted in as text.

For (1), the titles of books or blogs will rarely be
complete sentences, thus lowering the denominator in
the first part of the FKRE equation. For (2) and (3),

posts on these topics tend to have partial words, word
stems, and sequences of punctuation and characters that
are not considered “readable” (yet they are also not
“source code” either). This can explain the low FKRE
scores for these popular postings since the simple
FKRE algorithm could become confused.

Figure 5. Q4: Readability scores for the top 1000
most favorite posts

Figure 6. Q4: Readability scores for the top 1000
highest scoring posts

5.5. Findings for Q5

The purpose of Q5 is to discern whether “best”

questions (those with high scores or high favorite
counts) also have high scores for sentiment. To
calculate sentiment, we used a popular lexicon [9]
described in [10] that organizes words into positive and
negative lists. We calculated the sentiment of a
plaintext / no-code body of text with a simple system
(similar to the way Stack Overflow calculates its own
scores for posts): +1 for positive words and -1 for
negative words. Zero is a neutral score. More positive
postings will have positive integers. Negative sentiment
postings will have a negative score.

Below are three examples of Stack Overflow
questions and their associated sentiment scores. Each of
these postings appeared on the “top 1000” list of
favorite postings.

Here is an example of a question that received a
score of 0 for sentiment (includes zero positive or
negative words):

Task: Print numbers from 1 to 1000 without
using any loop or conditional statements.
Don't just write the printf() or cout
statement 1000 times. How would you do that
using C or C++?

Below is an example of a question that scored a 3

for sentiment (includes three positive words: like, free,
hope; includes zero negative words):

I would like to know how I can find the memory
used on my Android application,
programmatically.

I hope there is a way to do it. Plus I would
like to understand how to get the free memory
of the phone too.

Finally, here is an example of a posting with a score

of -4 for sentiment (includes six negative words:
strangest, forced, strangest (again), worst, odd, ill;
includes two positive words: please, funniest):

What was the strangest coding standard rule
that you were ever forced to follow? And by
strangest I mean funniest, or worst, or just
plain odd. In each answer, please mention
which language, what your team size was, and
which ill effects it caused you and your team.

Figure 7 shows the favorite counts plotted against

sentiment for the top 1000 most often “favorite”
questions. Figure 8 shows scores plotted against
sentiment for the top 1000 highest scoring posts.

Figure 7. Q5: Sentiment scores for the top 1000
most favorite posts

Figure 8. Q5: Sentiment scores for the top 1000
highest scoring posts

In both figures, there is a tight cluster of postings
with neutral sentiment values (near 0). We observe that
even the highest scoring/highest favorite postings fall
into this same sentiment range near 0.

However, we also observe a few postings with very
high sentiment values. Upon manually inspecting these
posts, it appears that the very high sentiment postings
are usually relatively long and they describe one of the
following items: (a) contests or challenges that the
original author is trying to get people to participate in,
(b) lists of recommended resources or books that have
been well-reviewed for a particular topic, or (c)
summaries of effective programming techniques. Some
of the non-code-related postings (for example contests
and lists of books) have since been closed for new
comments/scores/answers by site moderators for not
following the intent of the site, but these posts are still
able to keep their high scores that they earned while
they were still active.

In any case, our method of sentiment scoring is
easily affected by the length of the original posting, so
high sentiment posts will have a lot of happy/positive
words for their size. Examples include postings
enticing people to enter a programming contest that is
“fun”, “enjoyable”, “great”; or postings describing an
algorithm as “new”, “easy”, “quick”, and “fast”; or
those describing a list of tutorials that are “brilliant”,
“complete”, and “excellent”.

Some popular questions are negative, but the
negative questions are much less dramatic in their
sentiment scores. For instance, -11 was the lowest
sentiment score we saw for a top-1000 posting, but 67
was the highest. The average was 1.215. Upon
inspection, it seems that the negativity in these posts
comes from the original author bemoaning his or her
status as confused about some problem for which they
were seeking a solution, often for humorous effect,
exaggerating the story of what happened to them during
a programming experience. For a good example of this,
see [10], a humorous posting that has a very high score

of 1775 and 340 favorites, but a very low sentiment
score of -6. (It also happens to have a FKRE in the
middle of the pack, at 53.7.)

6. Limitations of the work

We have alluded to several shortcomings with the
FKRE and sentiment scoring algorithms. In this
section, we will summarize the limitations for each
piece of the project in turn. This includes identifying
issues with the data set itself, and with the methods of
analysis.

6.1. Limitations relating to the data set itself

Age. As described earlier in Section 3, the data set

we used for this paper was a snapshot created in
August 2012. The most obvious next step is to update
the analyses using a more recent data set. Next, we
would like to add some analyses that take into account
changes over time. Stack Overflow has existed since
2008, but has the use of language and especially source
code in questions and answers changed over time?
Were any of the questions that scored particularly high
or low closed after the August 2012 data was released?
What happened to the interesting questions over time?

Unused attributes. There were several available
attributes and tables in the data set that we did not use
in this study. For example, Stack Overflow allows
questions and answers to be tagged with keywords. We
did not look at whether or how posts varied in
language or source code usage between different tags.
We also did not look at user-specific variation,
demographic information, or edit counts. User
variation would probably be especially fruitful. Some
research has already been done in the evolution of
expertise on Stack Overflow [12]. Our work could be
extended to consider whether high reputation users
behave differently in terms of their use of source code
and non-source code text. Finally, we did not perform
any analysis on comments to posts, only on posts
themselves (questions and answers).

Size and speed. In the system we designed,
querying across so many large tables is fairly slow.
Were we to integrate multiple snapshots and currently
unused columns and tables into our analyses, the
queries would get even slower and more cumbersome.
We are open to suggestions, such as using a document-
oriented database and search engine technology for
some queries.

6.2. Limitations of code-text-ratio algorithms

Accuracy. The analyses shown in sections 5.1-5.3

depend on our accuracy in splitting source code from
text. The greatest threat to validity, then, for these
sections is that we might have misunderstood text as
code, or more likely, we may have missed some code
and called it text. The most likely reason this could
happen is that the original author may have written
source code and not used the Stack Overflow <code>
tag within the post editor to demarcate the lines of code
from the rest of the post body. The site does have the
ability for other users to edit posts to correct things like
this (earning reputation for doing so); as such, the
system is supposed to be self-correcting. However,
there are occasional posts that slip through with code
that is not using correct markup.

6.3. Limitations of the FKRE scoring

The main threats to validity in the readability

formulae come from mis-identifying sentences, words,
and syllables. As mentioned in 6.2, we rely on
plaintext only for calculating the FKRE. Any text that
is not source code (and marked as such with a <code>
tag) is going to be left in the plaintext. This seems
appropriate, until we consider the number of “other
things” that are in text that are not really code but are
not really text either (or at the very least are confusing
text that probably should be treated specially). URLs
and the content of error messages are the two most
common. A user may use a URL as a part of speech,
particularly as a noun. An error message may contain
extremely long “words” or strange punctuation and
very long sentences.

Here is an example of a tricky post to parse for
sentence count:

I wrote a very short program for an easy
programming competition problem with an online
judger
(http://acm.sgu.ru/problem.php?contest=0&probl
em=184) but for some reason I was getting a
runtime error on the 21st test (it doesn't
specify what exactly the runtime error is.) I
at first tried changing the BufferedReader to
Scanner in the nonworking code and using
in.nextLine() but that didn't work.

The sentence counting needs to be sophisticated

enough to recognize URLs, un-matching parenthesis,
as well as code snippets like in.nextLine() that are not
marked up with tags and have internal periods. Also
the FKRE formulae do not understand CamelCase such
as “BufferedReader” in the example above. This will
be considered a single, many-syllable word.

6.4. Limitations of the sentiment scoring

The threats to validity in sentiment analyzing

include choosing a bad list of words to start with, mis-
classifying words as “good” that are really “bad” in a
particular domain (or ignoring domain-specific words
that should be important). For example, the word list
we chose [9] is not domain specific. The word bug
does appear on the negative list (along with buggy and
bugged) but the synonym exception, used in the
software development domain, does not appear.
(However, exceptional and exceptionally do appear –
on the positive list!) So ideally, general-purpose
sentiment word lists will be augmented with important
words from the domain.

7. Conclusion

In this paper we performed five simple analyses
designed to provide more detail for the general advice
given on the Stack Overflow Frequently Asked
Questions for authors to include “a bit of source code”
when constructing a “good” question.

Although this analysis focuses mainly on the Stack
Overflow community of software developers, the
results of this analysis may be more broadly applicable
to other highly-technical communities, as well as to the
production of technical documentation in general.

We found that high scoring questions tend to have a
lower code-text ratio than do high scoring answers. We
found that among the most favorite questions, lower
source code-text ratios were more common. When
comparing accepted answers to non-accepted answers,
it was more probable that both would have low code-
text ratios. But when answers did include source code,
accepted answers tend to have more of it. The non-code
text portion of the “best” postings tended to be very
readable and contain lots of positive words. We
recommend that to construct a good posting on Stack
Overflow, the “bit of” source code should be higher in
answers than in questions, in relation to the non-text
portion of the posting. A ratio of about one part of code
to every three parts of text (1:3) in answers is ideal, and
a ratio of about 1:9 in questions is ideal. We further

recommend that the non-code text be geared toward a
Flesch reading score of 30-80, with an ideal range of
40-50. To accomplish this, use short sentences and
simple words. Finally, the tone of the “best” postings
should be positive, and the code and error message
portions should be pulled out into <code> blocks to
assist with readability (both human and machine).

8. References

[1] Stack Overflow. http://stackoverflow.com
[2] Frequently Asked Questions – Stack Overflow. http://

stackoverflow.com/faq
[3] Non-English Question Policy – Stack Overflow http://

blog.stackoverflow.com/2009/07/non-english-question-
policy/

[4] How does reputation work? – Stack Overflow
http://meta.stackoverflow.com/questions/7237/how-does
-reputation-work

[5] Badges – Stack Overflow. http://stackoverflow.com/
badges

[6] R. Flesch. “A new readability yardstick”. Journal of
Applied Psychology, 32(3):221-233. (1948).

[7] S. Kemper. “Measuring the inference load of a text.”
Journal of Educational Psychology, 75(3):391-401.
1983.

[8] Test your document’s readability – Word – Office.com.
http://office.microsoft.com/en-us/word-help/test-your-
document-s-readability-HP010148506.aspx

[9] http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-
English.rar

[10] M. Hu & B. Liu. "Mining and summarizing customer
reviews." Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining (KDD-2004), Seattle, Washington, USA,
Aug 22-25, 2004.

[11] Caching - Flash CS4 refuses to let go–Stack Overflow.
http:// stackoverflow.com/questions/2193953/flash-cs4-
refuses-to-let-go

[12] A. Pal, S. Chang, and J.A. Konstan. “Evolution of
Experts in Question Answering Communities”.
Proceedings of the Sixth International AAAI Conference
on Weblogs and Social Media. 2012. pp 274-281.

