

Forge++: The Changing Landscape of FLOSS Development

Megan Squire
Elon University

 msquire@elon.edu

Abstract
Software forges are centralized online systems that

provide useful tools to help distributed development
teams work together, especially in free, libre, and open
source software (FLOSS). Forge-provided tools may
include web space, version control systems, mailing
lists and communication forums, bug tracking systems,
file downloads, wikis, and the like. Empirical software
engineering researchers can mine the artifacts from
these tools to better understand how FLOSS is made.
As the landscape of distributed software development
has grown and changed, the tools needed to make
FLOSS have changed as well. There are three newer
tools at the center of FLOSS development today:
distributed version control based forges (like Github),
programmer question-and-answer communities (like
Stack Overflow), and pastebin tools (like Gist or
Pastebin.com). These tools are extending and changing
the toolset used for FLOSS development, and
redefining what a software forge looks like. The main
contributions of this paper are to describe each of
these tools, to identify the data and artifacts available
for mining from these tools, and to outline some of the
ways researchers can use these artifacts to continue to
understand how FLOSS is made.

1. Introduction

First emerging in the late 1990s out of the pairing
of web hosting and free, libre, and open source
software (FLOSS) development, software forges are
centralized online systems that provide useful tools to
help distributed development teams work together.
Distributed development teams may find the tools
provided by a software forge to be convenient to use,
removing some of the administrative overhead of
configuring and maintaining all those separate software
packages. Instead, the development team can outsource
those tasks to a software forge, and focus its limited
time on writing code.

Tools provided by software forges can include
version control systems, file download tracking,
mailing lists and communication forums, bug tracking
systems, web hosting space, etc. Many software forges

were originally created with the needs of decentralized
and highly-transparent FLOSS teams in mind. Early
forges included Sourceforge and Savannah, later joined
by special-purpose forges such as Rubyforge and
Launchpad, and even later by the very large players
such as Google Code and CodePlex (Microsoft). The
work done by [1] shows a timeline of forge creation as
well as a matrix of features provided by each of 24
separate forges during the period 1999-2011.

Public software forges are appealing for FLOSS
studies because having access to the artifacts and
metadata from lots of projects, all formatted similarly,
makes them much easier to compare to one another
(and to themselves over time). Software artifacts, in the
form of source code, bug reports, communication
archives (e.g. mailing list messages), and project
metadata are available from the FLOSS software
forges, and have been the basis for hundreds of FLOSS
studies and the successful Mining Software
Repositories working conference [2], now in its 10th
year.

Given this history of forges being used for FLOSS
research, the purpose of this paper is to describe three
important developments that have occurred in the way
FLOSS is made that will impact the use of forges and
their importance going forward. First is the rise of
distributed version control systems (DVCS) like git
and related code repositories like Github. Second is the
growth of community-oriented question-and-answer
sites like Stack Overflow. Third is the increasing usage
of pastebin tools like Pastebin.com and Github's Gist.

Each of these tools has changed how FLOSS is
developed, and each has artifacts of its own that may
be able to be mined for understanding about the
software development process. Sections Two-Four will
describe each of these three tools in turn. Each section
will describe the purpose of the tool, the artifacts
available for mining, and some ways to collect the
interesting data. Because the focus of this paper is on
FLOSS development, each section includes a
discussion of site-specific issues with regard to
"openness" (including both code and content
licensing).

Megan Squire
Please cite:
Squire, M. (2014). Forge++: The Changing Landscape of FLOSS Development.
In Proceedings of the 47th Hawai'i International Conference on System Sciences (HICSS47).
IEEE. Big Island, HI, USA. 3266-3275. DOI: 10.1109/HICSS.2014.405

2. Github

Github (github.com) was started in 2009 as a
hosted software forge for projects that use the Git
distributed version control system, or DVCS. VCS-
specific forges are not new; for example, Launchpad
(launchpad.net) was begun in 2004 to host projects
using the GNU Bazaar distributed VCS. When git was
released, web sites like Github and Gitorious
(gitorious.org) were created to serve as wrappers; they
helped mask the complexity of git and ease the
transition to this new tool.

In addition to version control, Github also has just a
few other capabilities of a traditional software forge,
namely issue tracking and user profiles. Like other
software forges, Github has users, but unlike other
forges, Github projects (called "repositories" or
"repos") only exist when users create them or fork
them from others. As such, they are always listed
underneath a particular user. Every public repo belongs
to a given user, and can be forked and changed by any
other user, at which point the changes can be accepted
for use by the original user or not. As a DVCS, git is
quite different from the VCSs that came before it, and
can be confusing to new users. However Github's web
interface lowers the barrier to entry for a transition to
git. In April 2013, the number of users registered on
Github had risen to 3.5 million, with 6 million
repositories. To help keep track of all these users and
repos, Github's social features include the ability to
follow the activity of other users, the ability to create
teams of users (called organizations), and the ability to
watch a project/repository. Github also offers a
pastebin type of service called Gist (pastebins are
discussed later in Section 4 of this paper) and Github
Pages, which turn repo text into viewable web pages.
Github does not have a few of the features found in
many traditional software forges, such as the mailing
list management software, forums, alternate VCS
systems, feature request systems, or task lists, but it
does have code reviews (in the form of commented
pull requests), wikis, and issue tracking. And with the
release of Gist and Pages, Github does seem to be
inching toward adding more features, as long as those
features can be conceived as a repository on the back-
end.

2.1. Github and "openness"

One of the important ideological ways that Github

differs from prior software forges is that a user can
start a public repo without specifying a software
license. Sourceforge, Google Code, and many other
FLOSS forges (large and small) that came before

Github required that software be assigned a
recognizable open source license at the project level, at
the time the project was created. This license was
intended cover any project code, including any code or
downloads that were (accidentally or otherwise)
released without a license. Some forges were no-cost
when used by FLOSS projects, but other forges
disallowed any non-FLOSS projects entirely. (See [1]
for an accounting of FLOSS requirements and features
by forge.)

On Github, this is not the case. Licenses can be
uploaded as files, or included inside source code files
that are then uploaded, but these actions are optional.
On Github a user is not required to select a FLOSS
license to apply to an entire project. In fact, a 2013
report by the Software Freedom Law Center [3]
asserted that only 15% of projects on Github included a
recognizable FLOSS license in their top-level
directories. Furthermore, of that 15%, the vast majority
used permissive, non-viral (or non-reciprocal) licenses
like MIT or BSD. In addition, many projects made up
their own licenses, or used license terms that were self-
contradictory. The Github Terms of Service (ToS)
includes no default license [4], so copyright provisions
are in effect. The result of this is that unlicensed code
is not legal to copy; using unlicensed code found on
Github (for example by forking a project using the
Github one-click interface) is a breach of copyright.
After Simon Phipps suggested several fixes for this
problem, the Github VP of Marketing, Brian Doll,
acknowledged that licensing may have to be part of the
project creation process in the future [5].

2.2. Github data

We have shown that Github differs in important

ways from the forges that came before it: in
functionality, in size, and perhaps in ideology.
Nonetheless, of the three tools mentioned in this paper,
Github is the most like a traditional software forge in
its artifacts and metadata.

Software artifacts and metadata about Github are
plentiful and easily available, starting with the API
available from Github itself [6]. Requests to the
developer API are limited to 60 per hour for
unauthenticated users, and 5000 per hour for
authenticated users. The API allows access to Github
events, projects (repositories), and users, as well as the
issues, pull requests, commits, blobs (files), and trees
(directory structure) inside of each repository.
Githubarchive [7] uses the public Github web page
about its API to create and archive a timeline of public
events, starting in February of 2012. The GHTorrent
toolset [8] uses a distributed web of clients to make the
maximum requests to the Github API itself, in order to

construct a mirrored collection of events, repositories,
and users. GHTorrent stores the data in a MySQL
server and provides a web interface for querying,
which we will use in Section 2.2.1 below.

Foreshadowing the rise of git and later Github,
Bird, et al. [9] issued a warning to researchers about
the differences between mining a distributed version
control system like git and the traditional VCS
(specifically, Subversion). They present lessons
learned through the process of analyzing the source
code in a DVCS, and while they do not specifically
mention Github, the paper is still applicable to the
source code artifacts there.

A number of software engineering research studies
have already used the artifacts from Github in
interesting ways, see [10][11][12][13]. These studies
are part of the research community's history of making
tools to study the "usual data sources" [14] of the
software development process. For example in [10] the
authors combine a social graph of Github users with
their commit and follow actions. They then use the
geographic data in the user profile to geolocate the
users and make inferences about influence in the
community. (We should note that these authors also
built a crawling infrastructure to collect additional user
profile data from what they uncovered with the Github-
provided social graph.)

2.2.1. Github example Here we explore the Github
metadata to get a sense of what is going on with the
site and how it is being used. GHTorrent [8] is
probably the easiest option for doing so, as of this
writing. We connect to GHTorrent and issue some
basic queries using a 'guest' login.

What are the top 10 programming languages in use on
Github, and how many of each project is using each
language?

SELECT language, count(*)
FROM projects
GROUP BY 1
ORDER BY 2 DESC
LIMIT 10;

Results:
language count(*)
JavaScript 796944
NULL 563479
Ruby 479615
Java 361543
Python 314553
PHP 304015
C 169361
Objective-C 149638
C++ 130660
Shell 85826

The programming language count is an appropriate
first query, given our focus on software forges. In
older, first-generation forges (e.g. Sourceforge in the
mid-2000s), project leaders were expected to self-
classify their project according to a "trove" of
keywords, which included each programming language
(and operating systems, licenses, intended audience,
and a whole host of other pre-designated categories).
Perhaps recognizing that the main weakness to this
self-categorization system is the need for project
owners to constantly re-classify themselves in order to
keep their trove categories up to date, Github instead
automatically reads the source files uploaded to the
project site and figures out the percentage of the
project devoted to each programming language. On the
page for each repository, a horizontal stacked single-
bar graph, (as shown in Figure 1) describes the current
language composition for any given project.

Figure 1. Github automatic programming
language calculation

This automatic language classification is reflected
in the above GHTorrent query through the
programming language listing in the projects table. For
example, the project shown in Figure 1 is in the
'projects' table next to its languages: JavaScript,
Python, and Shell. When we count projects using these
languages, the percentage of the codebase ("52.3%
Javascript") was not considered. Looking at the query
results, we see that Javascript is used in 796k projects,
but each one could (in theory) be using Javascript for
only 1% of its codebase. We further suspect that
"NULL" could be the second-most frequent language
because of README files (they exist in many projects
but are not written in any programming language).

3. Stack Overflow

Stack Overflow is a question-and-answer web site
started in 2008 by software developers Jeff Atwood
and Joel Spolsky. The salient features of Stack
Overflow are that anyone can post questions, answer
questions, edit questions or answers, and users gain
reputation points and badges for doing combinations of
those things. As such, Stack Overflow is not a software
forge. However, it does include an enormous amount

of source code, code examples, and solutions to
problems in multiple programming languages and
development frameworks. As of June 2013, Stack
Overflow contains 5.3 million questions with 10
million answers [15] from more than 2 million users. A
study tracking developer behavior in Android
estimated that software developers may be getting up
to 50% of their technical documentation on Stack
Overflow [16].

Even though Stack Overflow is not a software
forge, it is being used in some forge-like ways. One
example is how the Stack Overflow tagging system is
used by development teams (both FLOSS and non-
FLOSS) looking to outsource their developer support
forums. (Tags are optional keywords that a user can
add to his or her question to ensure that the question is
classified quickly, and that it is easy to find by
readers.) Some software development teams have
decided that they like Stack Overflow tagged questions
better for providing developer support than their own
homegrown support systems such as online forums.
For example, there is a Stack Overflow tag for the
Google BigQuery project. There are currently 473
questions tagged with "google-bigquery". The web site
for the Google BigQuery project [17] gives advice to
developers to use the Stack Overflow tag for technical
support with their API:

We support developers using the Google BigQuery

API on Stack Overflow. Google engineers monitor and
answer question with the tag google-bigquery. Please use
this tag when asking questions. We aim to answer all
questions in reasonable time.

The final posting [18] on the old BigQuery Google

Group for developer API support explains the rationale
for moving support to Stack Overflow on May 1, 2012:

We are moving technical discussion to Stack

Overflow because we think this will improve developer
support, increase the speed that questions get answered,
and improve the quality of answers.

Numerous other commercial projects have also

gone this route, including Facebook, Shopify, Youtube,
SoundCloud, and Foursquare.

Stack Overflow also has hundreds of tags for many
popular FLOSS platforms and tools: from languages
(python, R, ruby), to database tools (MySQL,
CouchDB, Hadoop), to operating systems (linux), and
development tools (svn, git). But because Stack
Overflow charges money to sponsor a tag to use it for
providing official support (as with the Google tags or
the Facebook tag), FLOSS projects without a budget
are probably not replacing their own forge-based or
homegrown developer support systems. Instead, Stack

Overflow represents another communication channel
for developers to collaborate and share knowledge. In
the next section we discuss more about the relationship
between Stack Overflow and the FLOSS ideology.

3.1. Stack Overflow and "openness"

We consider the "openness" of Stack Overflow in

two ways: through its licensing and through
community editing. First, in terms of licensing, Stack
Exchange (and thus its sub-site Stack Overflow) has a
default code license in place to govern sharing of any
materials found on the site. This is in contrast to
Github, which has no default license. The Stack
Exchange Terms of Service [19] state:

You agree that all Subscriber Content that You

contribute to the Network is perpetually and irrevocably
licensed to Stack Exchange under the Creative Commons
Attribution Share Alike license.

Thus the CC-by-SA license [20] allows sharing and

remixing of source code, for both commercial and non-
commercial purposes. It also contains provisions
requiring attribution of the original author in the new
shared or remixed work, and that the new work must
contain the same CC-by-SA license or similar. Users
can also supersede this CC-by-SA license by attaching
a different license to their own code at the time that it
is posted.

Even though there is a default license on Stack
Overflow, developers wanting to use code found on
this site will still have a few issues to consider. Most
critically, because the CC-by-SA license requires
derivative works to carry the same license (or similar),
developers will need to be careful of whether they are
actually able to use that license on the code. Many
projects already have a license (or license family) that
they are committed to using, and it may be
incompatible with CC-by-SA. Second, the requirement
of CC-by-SA to attribute the source of the code is
going to be challenging on a site with a potential for
multiple editors per posting. Indeed, Stack Overflow
has issued clarifications [21] for how to manage this
situation. Editing, however, is the other important
feature of Stack Overflow that keeps it an "open
content" site. Stack Overflow encourages editing of
questions and answers by other users in order to "make
the post substantially better" [22].

In the next section we describe what types of Stack
Overflow data are available and how to use them. As
our motivating examples we first look at the role of
source code on Stack Overflow, and we then attempt to
show how much post editing actually goes on in the
Stack Overflow community.

3.2. Stack Overflow data

Getting data from Stack Overflow is quite
straightforward. First, there is an online SQL-based
"Data Explorer" [15] which allows anyone to run
arbitrary queries against the site data, to save, name
and share queries, and to discuss queries with other
users. For more in-depth analysis or offline processing,
Stack Exchange also provides occasional flat file
dumps of their entire (anonymized) data store suitable
for import into a SQL database [23].

3.2.1. Data about Source Code Using the flat file
dump from August 2012, we were able to calculate a
few interesting metrics about the pervasiveness of
source code in Stack Overflow postings. First we
separated each post into plaintext and code. We then
calculated the length (in characters) of each of these
parts, and calculated a code-text-ratio for each post1,
storing the results in a new table called
new_posts_meta.

(1) How many Stack Overflow postings have source
code?

SELECT count(*)
FROM new_posts_meta;

SELECT count(*)
FROM new_posts_meta
WHERE plaintext_code_length > 0;

SELECT plaintext_code_length, count(*)
FROM new_posts_meta
GROUP BY 1 ORDER BY 1 ASC;

Results:
Total Postings: 10,338,371
Total Postings with code: 5,899,791

What is the distribution of posts containing

different amounts of code? In Figure 2, we binned each
amount of source code (50 character bins) and counted
the number of posts per bin. (The number of posts with
more than 1000 characters of source code continues to
decline as the character count increases, with only one
or two posts in the 17,000+ character range.)

Our example with code counting is a simple one,
designed to show how Stack Overflow can be mined
for patterns about software development, the same way
other forge artifacts have been mined in the past. Since
the Stack Overflow data dump provides the entire body

1 On Stack Overflow, code is separated from the rest of a posting
through the use of a special "code" delimiter. This delimiter puts the
code in a non-proportional font and highlights it with a gray
background for easy reading. (Site users who find posts that contain
code and no delimiter will often edit the posts to include it. This is an
example of "making a post better", and as such, the user will earn
reputation points for their edit. More on editing in the next section.)

text for every posting on the Stack Overflow site, the
possibilities for text mining are numerous. In fact, the
Mining Software Repositories challenge for 2013 [24]
was to use Stack Overflow data to find interesting
patterns about software development. In the next
section we discuss using Stack Overflow data to learn
more about its characteristics as an open content
community.

Figure 2. Number of posts by character count

3.2.2. Data about Editing Here we use Stack
Overflow Data Explorer and the data dumps to
investigate the extent and impact of editing. How
common is editing on Stack Overflow? Is the amount
of editing increasing over time? We run a series of
queries as follows. Unless specified, all queries use
live data from the Data Explorer as of June 2013.

(2) How many total questions and answers are there on
Stack Overflow?

SELECT count(*)
FROM posts
WHERE PostTypeId=1;

SELECT count(*)
FROM posts
WHERE PostTypeId=2;

Results:
Questions: 5,171,392
Answers: 9,515,391

(3) How many of the questions have ever been edited?
How many of the answers have ever been edited?

SELECT count(*)
FROM posts
WHERE postTypeId = 1
AND lastEditorUserId IS NOT NULL;

SELECT count(*)
FROM posts

WHERE postTypeId = 2
AND lastEditorUserId IS NOT NULL;

Results:
Questions edited: 2,522,694 (49%)
Answers edited: 2,225,720 (23%)

(4) Using the August 2012 data dump, how many
questions and answers have been edited?

Results:
Total questions: 3,453,742
Questions edited: 1,632,131 (47%)
Total answers: 6,858,133
Answers edited: 1,478,465 (22%)

It is not surprising that questions would be edited

more than answers, since there are many more answers
than questions, and not all of them are very good. And
since one of the main reasons to edit a posting is to
correct information that has gone out of date, it stands
to reason that over time the percentage of edited posts
will rise slightly (irrespective of other reasons why
user editing activity could increase).

Since editing posts is one way to gain reputation
points on Stack Overflow, and editing is an important
aspect of its open content mission, we are interested in
finding the number of users who are editing, and
whether editor counts are increasing over time.

(5) How many users are in Stack Overflow (June
2013)?

SELECT count(id)
FROM users;

Results:
Total users: 2,075,879

(6) How many of those users have ever actually edited
anything? (The PostHistoryTypeId for editing actions
is either 4, 5, or 6.)

SELECT count(distinct UserId)
FROM PostHistory
WHERE PostHistoryTypeId=4
or PostHistoryTypeId=5
or PostHistoryTypeId=6;

Results: 479,891 (23.1% of total users were editors)

(7) Using the August 2012 data dump, how many users
have ever actually edited anything?

Results: 307,892 (editors)
1,295,620 (total users)
23.7% of total users were editors

Between August 2012 and June 2013, we do not
see much of a decline in the percentage of total users
who edit posts (23.7% vs. 23.1%).

Finally, we know that users are awarded badges on
Stack Overflow as motivation, for performing various
tasks deemed helpful to the site. Badges are awarded in
three categories (gold, silver, or bronze) depending on
how difficult they are to get and how important it is to
encourage that particular behavior on the site. There
are several badges related to editing the site, so to
continue this exploration of the Stack Overflow data,
we will examine the Strunk & White badge (silver),
awarded upon editing 80 posts, and the Copy Editor
(gold) badge, awarded upon reaching 500 posts. (There
is also a bronze "Editor" badge awarded for a first edit.
The numbers for that one are similar to those shown
above in questions 5, 6, and 7).

First, with regard to motivation: we should note
that some recent research [25] concludes that users do
tend to quit performing the desired behavior upon
earning a badge. (The specific badge in question in
[25] was the Copy Editor badge. The authors found
that users quit performing editing tasks directly after
earning the badge. Authors of [26] also found that user
behavior changes after earning a particular badge.)
How many users have earned the different editing
badges, and is that number going up over time, as a
percentage of total users?

We can see from the answers to questions 8 and 9,
numbers for each badge type as a percentage of the
total user base are steady.

(8) How many users have earned each badge type?

SELECT count(*)
FROM badges
WHERE name='Strunk & White';

SELECT count(*)
FROM badges
WHERE name='Copy Editor';

Results:
Total Users: 2,075,879
Strunk&White: 4390 (.21%)
Copy Editor: 810 (.039%)

(9) Using the August 2012 data dump, how many users
have earned each badge type?

Results:
Total Users: 1,295,620
Strunk&White: 2726 (.21%)
Copy Editor: 470 (.036%)

Stack Overflow is a non-forge web site with some
"open content" and forge-like features. Two of these
are the ability to share source code and the ability to
edit posts. We described how to use the Data Explorer
and the data dumps to study Stack Overflow artifacts
and metadata. By doing so, we gain insights into how
question-and-answer web sites are used to make
software.

4. Pastebins

A pastebin is a web-based tool offering a simple
paste-to-URL service. This means that a user
(anonymous or not) can paste in any text to the web
host (such as pastebin.com) and get back a URL
pointing to a web page that includes the text as it was
pasted. This saved text and its associated URL is called
a paste. The paste will remain valid for a set period of
time, usually specified by the user when the paste is
created. When creating a paste, the creator has the
ability to format the paste into a particular
programming language, which will add the appropriate
syntax highlighting and indentation to the paste.
Programmers use pastebins to share code, error
messages, and log files quickly and easily. Earlier
alternatives to a pastebin were to (a) paste your
(possibly long and complicated) code into a mailing
list, forum, IRC channel where a discussion is taking
place and have other users become annoyed, or (b)
make a file, upload it to a public-facing server, retrieve
its URL, and copy that into the mailing list message,
forum, or IRC channel. Pastebins simplify this process
for quicker and easier sharing.

At this point we should note that, largely because of
their anonymity and ubiquity, pastebins can also be
used to share non-programming content. [27] and [28]
outline the darker side of pastebins and what they are
used for in criminal activity.

There are hundreds of pastebin tools available
today. There are three factors responsible for the fact
that no single pastebin has become as popular as
Github or Stack Overflow (in their respective
categories). First, creating a pastebin is not terribly
difficult since it does not require many features, and
the requirements for authentication and security can be
low (depending on whether the pastebin is offering
private pastes or not). Thus, the number of pastebin
web sites has proliferated. Second, companies or
software groups have begun making their own internal
pastebins, thus diluting the numbers of developers
using any one particular public site. Finally, pastebins
typically lack some of the social features of Github and
Stack Overflow. This is because they have just a single
primary functionality, which is to provide a URL to a
piece of text. Thus pastebins have very small network

effects (or, bandwagon effects) [29]. In other words,
there is no real advantage to using the same pastebin as
your co-worker; a particular pastebin does not increase
in value the more that people use it (other than perhaps
a small advantage conferred when sharing private
pastes on some bins).

To gauge the impact of pastebins on the community
of developers making FLOSS software, we searched
across developer mailing lists to see how often these
tools were being used to share code. We used searches
on both MarkMail (markmail.org) and Marc.info
(public software development mailing list aggregators,
including for FLOSS), and found that pastebins started
being discussed on developer mailing lists in the mid-
2000s (a few dozen mentions each month, across
several thousand lists) and by mid-2013 were
mentioned on FLOSS lists upwards of 800 times per
month. Figure 3 shows a graph produced by MarkMail
for instances of the simple term 'pastebin' between
2001 and 2013. MarkMail reports roughly 57,000
messages across 8600 public email lists. (Not all the
lists are about FLOSS development, but most are.)

Figure 3. 'Pastebin' in email, 2001-2013

We compare this to the result of 'pastebin' searches on
Google using Google Trends. (Figure 4) The sharp
spikes at the right-hand side of the graph correspond to
days when Pastebin.com was under a denial-of-service
attack. In both graphs, 'pastebin' becomes a more
popular search term over time, and may have leveled
off somewhat over the past year.

Figure 4. 'Pastebin' Google Trends, 2004-2013

4.1. Pastebins and "openness"

Pastebins certainly contribute to the same ethos of

transparency and sharing as Github and Stack
Overflow, but perhaps since pastebins are seen as a

waystation for code, and not its final destination, the
pastebin hosts pay little or no attention to licensing
issues. Copyright is, of course, still in effect, though
anonymous posting and reading makes the
infringement issue more difficult to navigate. But there
is no default code license on pastebin.com, for
example. Pastebin.com does outline its own obligations
under the Digital Millenium Copyright Act (DMCA) to
remove infringing copyrighted material. In addition,
we found that the number of code samples submitted to
pastebin.com that include their own code license is
very small. In fact, when searching on pastebin for the
phrase "license", the results showed more pastes about
generating or sharing illegal license keys than actual
source code being posted with a license.

In considering the "openness" of pastebins, we did
uncover numerous FLOSS-oriented pastebins. For
example, KDE has a pastebin (paste.kde.org), Oregon
State University’s Open Source Lab has a pastebin
(pastebin.osuosl.org), and Github also released its own
paste site called Gist (gist.github.com).

4.2. Data from pastebins

Pastebin.com is perhaps the largest of the

independent pastebin sites. It reported in June 2013
that the site has reached as many as 15 million visitors
per month, with more than 33 million pastes hosted on
the site to date. Pastebin.com provides a very simple
API [30], but compared to the ease of mining Stack
Overflow or even Github, the options with this API are
slim. The Pastebin.com API provides a few methods
centered around the tasks of creating pastes and getting
specific information about known users.

The history of repository mining shows that when
researchers locate a potential source of interesting data,
they will find a way to get it, even if the method is not
elegant. In the early 2000s, Sourceforge was the most
popular forge for FLOSS development. However it did
not have an API or any officially sanctioned method of
collecting project artifacts and metadata. So a few
different research groups took on the challenge of
collecting and storing Sourceforge artifacts and
metadata for the entire research community to use
[31][32], despite the many limitations of doing so [33].
Pastebin mining is similarly in its infancy, with just a
few tools [34][35][36] available to help developers and
researchers find, collect, store, and mine large
quantities of pastes from different sites. Github itself
stores its Gist pastes as repositories, so they can be
mined in the same fashion as regular Github
repositories.

4.2.1 Pastebin mining. The increasing popularity
of pastebins necessarily changes the way FLOSS
artifact mining will have to happen, especially in terms

of mining email messages from mailing lists. (See [37]
for a review of how FLOSS researchers mine email
archives.) Consider the partial email exchange shown
in Figure 5. This appeared in mid-2008 on the Apache-
httpd-users mailing list.

Figure 5. Email excerpt recommending
pastebin, 2008

In Figure 5, the original poster, Chris, is requesting
some help with understanding a log file, but the
mailing list manager is rejecting his message for being
spam. The respondent, Frank, directs Chris to use a
pastebin site instead. We can confirm a few things
from this exchange: log files can be interpreted as
spam; spam is unwanted and blocked; links are
welcome; pastebin is understood to be an easy way to
post a link to a logfile.

For text mining, the downside to using a pastebin is
of course that the pastebinned text (the log file or code
sample) is no longer included with the email message
itself. This changes the nature of the artifact collection,
storage, and cleaning process. It is more akin to having
to deal with attachments, rather than just being able to
process simple email text. Figure 6 shows an
interesting turn of events from January 2013.

Figure 6. Email excerpt discouraging
pastebin, 2013

In this exchange, a developer on the Freedesktop
project list discourages another user from using
pastebin to post logs. The reason given is that

sometimes the URLs become unavailable, making the
problem/solution archive incomplete. From this
exchange we learn that to (at least) one developer, the
mailing list archives can be important archival tools.
Additionally, we confirm that there is some awareness
within the community that pastebins can change the
way archiving works.

5. Conclusion

The main contribution of this paper is to describe
three important tools used in the next generation of
collaborative software development. FLOSS
development is geographically and temporally
distributed by its nature, so centralized virtual
environments such as software forges are key to its
development. For many FLOSS researchers,
understanding software development in the 2000s had
been an exercise in artifact collection and mining,
mainly from forges and code repositories. Thus, this
paper establishes that changes in forges, and in
collaborative forge-like or forge-based tools, will affect
the artifacts of the development process, which will in
turn affect the way FLOSS is studied as a
phenomenon.

We review the artifacts and metadata available in
these new tools, and discuss some of the differences in
the way each tool approaches "openness". We discover
that the contemporary view of "openness" on Github,
Stack Overflow, and pastebins may be centered on
providing transparency or accessibility, rather than on
offering specific rights as granted by particular
software licenses.

In our analysis of functionality and artifacts, Github
represents the next generation of the traditional
software forge, albeit with some major differences in
size and ideology. In short, Github is a forge built
around a DVCS; it has very few of the other add-on
tools traditionally offered by older software forges. We
can say that Github represents a "forge light" approach:
do a few things very well rather than many things
poorly.

In contrast, Stack Overflow is a standalone tool, not
a forge at all. Yet its functionality is replacing some
traditional forge-based features (e.g. support forums
and wikis). Stack Overflow has become a critical piece
of development infrastructure, but at the same time, it
is a separate entity, and not trying to be a software
forge. If Github is able to succeed with a "forge light"
approach, we wonder if that is partially because much
of the communication and support load is being borne
by Stack Overflow (and older technologies like mailing
lists and IRC). While it is less convenient for users to
have to split their development attention across
multiple sites and media, perhaps this approach is

appealing for its increase in functionality and lower
overhead.

Pastebins are also standalone tools. But unlike
Stack Overflow, which essentially replaced a feature
formerly found on software forges, pastebins have no
parallel in older software forges. In fact (perhaps
ironically considering the "forge light" approach just
discussed), Github is the one forge that has integrated a
pastebin tool (Gist) directly into its feature offerings.
To paraphrase the famous saying, "Software forges are
dead. Long live software forges."

6. References

[1] M. Squire. "Describing the software forge ecosystem".

In Proc. Hawaii Int. Conf. Sys. Sci. (HICSS'45). pp
3416-3425. 2012.

[2] 10th Working Conference on Mining Software
Repositories. http://2013.msrconf.org/

[3] A. Williamson, "Licensing of Software on Github: A
Quantitative Analysis" Online,
http://www.softwarefreedom.org/resources/2013/lcs-
slides-aaronw/. Accessed June 2013.

[4] Github. "Terms of Service". Online, https://help.github.
com/articles/github-terms-of-service. Accessed June
2013.

[5] S. Phipps. "Github needs to take open source seriously".
November 23, 2012. Online, http://www.infoworld.com
/d/open-source-software/github-needs-take-open-source-
seriously-208046. Accessed June 2013.

[6] Github. "Github API, v3". Online,
http://developer.github.com/v3/. Accessed June 2013.

[7] I. Grigorik, "The Github archive," Mar. 2012. Online,
http://githubarchive.org. Accessed June 2013.

[8] G. Gousios, "The GHTorent Dataset and Tool Suite," In
Proc. 10th Working Conf. on Mining Software
Repositories (MSR 2013). pp. 233-236. 2013.

[9] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M.
German, and P. Devanbu. "The promises and perils of
mining git." In Proc. 6th Working Conf. on Mining
Software Repositories (MSR 2009). pp. 1-10. 2009.

[10] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer.
"Visualizing collaboration and influence in the open-
source software community." In Proc. 8th Working
Conf. on Mining Software Repositories (MSR 2011). pp.
223-226. 2011.

[11] X. Ben, S. Beijun, and Y. Weicheng. "Mining
Developer Contribution in Open Source Software Using
Visualization Techniques." In Intelligent System Design
and Engineering Applications (ISDEA), pp. 934-937.
IEEE, 2013.

[12] M. Allamanis, and C. Sutton. "Mining source code
repositories at massive scale using language modeling."
In Proc. 10th Working Conf. on Mining Software
Repositories (MSR 2013). pp. 207-216. 2013.

[13] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. "Social
coding in github: transparency and collaboration in an
open software repository." In Proc. of the ACM Conf. on
Computer Supported Cooperative Work, 2012. pp.
1277-1286.

[14] G. Robles, J.M. Gonzalez-Barahona, D. Izquierdo-
Cortazar, and I. Herraiz. "Tools for the Study of the
Usual Data Sources found in Libre Software Projects".
Int. J. Open Source Software and Processes, 1(1). pp.
24-45. 2009.

[15] Stack Exchange. "The Stack Exchange Data Explorer."
Online, http://data.stackexchange.com/stackoverflow/
queries. Accessed June 2013.

[16] C. Parnin. "Api documentation". Online, March 3, 2013.
http://blog.ninlabs.com/2013/03/api-documentati on.
Accessed June 2013.

[17] Google. "Get Help Developing with Google BigQuery."
Online, https://developers.google.com/bigquery/docs/
support. Accessed June 2013.

[18] Google. "We're moving BigQuery developer support to
Stack Overflow (using the tag "google-bigquery")."
Online, http://groups.google.com/group/bigquery-disc
uss/browse_thread/thread/cf967e6914bdcfc2. Accessed
June 2013.

[19] Stack Overflow. "Terms of Service". Online,
http://stackexchange.com/legal. Accessed June 2013.

[20] Creative Commons. "Attribution-ShareAlike 2.5
Generic". Online, http://creativecommons.org/licenses/
by-sa/2.5/. Accessed June 2013.

[21] J. Atwood. "Attribution Required," Stack Exchange
Blog. June 25, 2009. Online, http://blog.stackoverflow
.com/2009/06/attribution-required/ Accessed June 2013.

[22] Stack Overflow. "Privileges: Edit Questions and
Answers," Online, http://stackoverflow.com/privileges/
edit. Accessed June 2013.

[23] Stack Exchange Data Dumps. Online,
http://www.clearbits.net/creators/146-stack-exchange-
data-dump

[24] Mining Software Repositories Challenge, 2013. In Proc.
of the 10th Working Conference on Mining Software
Repositories (MSR 2013). pp. 53-100.

[25] S. Grant, and B. Betts. "Encouraging user behaviour
with achievements: an empirical study." In Proc. of the
10th Working Conference on Mining Software
Repositories (MSR 2013). pp. 65-68. 2013.

[26] A. Anderson, D. Huttenlocher, J. Kleinberg, and J.
Leskovec. "Steering User Behavior With Badges." In
Proc. WWW2013, May 13–17, 2013.

[27] S. Matic, A. Fattori, D. Bruschi, and L. Cavallaro.
"Peering into the Muddy Waters of Pastebin." ERCIM
News: Special Theme Cybercrime and Privacy Issues.
pp. 16. July 2012.

[28] G. Kontaxis, I. Polakis, S. Ioannidis, "Outsourcing
Malicious Infrastructure to the Cloud," In First SysSec
Workshop (SysSec), pp. 35. July 2011

[29] J. Rohlfs. Bandwagon Effects. MIT Press. 2003.
[30] Pastebin. "Developers API". Online, http://pastebin.

com/api. Accessed June 2013.
[31] J. Howison, M. Conklin, and K. Crowston,

"FLOSSmole: A collaborative repository for FLOSS
research data and analyses." International Journal of
Information Technology and Web Engineering, 1(3),
17–26. 2006.

[32] Y. Gao, M. Van Antwerp, S. Christley and G. Madey,
"A Research Collaboratory for Open Source Software
Research", In Proc. Int. Workshop on Emerging Trends
in FLOSS Research and Development (FLOSS 2007),
Minneapolis, MN, May 2007.

[33] K. Crowston and J. Howison. "The perils and pitfalls of
mining sourceforge." In Proc. 1st Workshop on Mining
Software Repositories. pp. 7-11. 2004.

[34] A. MacPherson. "PasteLert". Online, http://www.
andrewmohawk.com/pasteLert/. Accessed June 2013.

[35] A. MacPherson. "PastebinParser". Online, http://www.
andrewmohawk.com/pasteScrape/. Accessed June 2013.

[36] Corelan Team. "Pastenum". March, 2011. Online,
http://www.corelan.be/index.php/2011/03/22/pastenum-
pastebinpastie-enumeration-tool. Accessed June 2013.

[37] M. Squire. "How the FLOSS research community uses
email archives". Int. J. Open Source Software and
Processes, 4(1). pp. 37-59. 2012.

