Software Engineering Research in the Bazaar

Ahmed E. Hassan, Michael W. Godfrey, and Richard C. Holt
Software Architecture Group (SWAG)
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA
{aeehassa, migod, holt}@plg.uwaterloo.ca

ABSTRACT

During the last five years, our research group has stud-
ied the architecture and evolution of several large open
source systems — including Linux, GCC, VIM, Mozilla,
and Apache — and we have found that open source soft-
ware systems often exhibit interesting differences when
compared to similar commercially-developed systems.
Our investigations of these systems have involved the
creation of software architecture models, software ar-
chitecture repair, the creation of a reference architec-
ture for web servers, the study of evolution and growth
of open source systems, and the modelling of architec-
tural properties of systems that are apparent only at
build time.

Keywords
Open Source Software, Software Architecture, Software
Engineering Research

1 INTRODUCTION

Software engineering research studies the structure and
development of large software systems. Many re-
searchers have opted to use small academic software
systems to study and to validate their research. The
extrapolation of useful findings from 100 LOC system
to a 1 MLOC system are rarely valid.

Fortunately, the open source community provided us
the opportunity to study large non trivial software sys-
tems. Furthermore, the publication of our work is not
constrained by NDAs usually required by commercial
companies. As we studied many open source systems,
we discovered that open source systems exhibit many
interesting traits that are not found in previously stud-
ied commercial systems. In the following sections, we
detail several areas of active research in our group and
our findings.

2 SOFTWARE ARCHITECTURE RECOV-
ERY AND REPAIR

Many software systems do not have a documented sys-

tem architecture. The maintenance and the understand-

ing of these large and complex system is very difficult

because of the lack of up-to-date documentation. To

gain a better understanding of a software system, we

recover its software architecture [4, 11] from the sys-
tem’s source code.

We recovered the architecture of many open source
systems such as the Linux kernel [3], the Mozilla
browser [5], the Apache web server [7], and the VIM
editor [14]. The recovered architecture is browse-able
to permit developers to interact with it, [10] shows an
example for the Linux kernel.

Furthermore, we found that many differences existed
between the as-built architecture and the as-designed
architecture for these systems. This architectural drift,
which can impede program understanding, is especially
pronounced in open source systems, where many devel-
opers work in isolation on distinct features with little
coordination. We attempted to reconcile (repair) the
differences between the as-built and the as-designed ar-
chitecture for VIM and Linux [15].

3 REFERENCE ARCHITECTURE

A reference architecture for a domain defines the fun-
damental components of the domain and the relations
between them. A reference architecture is very benefi-
cial for reuse, maintenance and new development. Ma-
ture domains such as compilers and operating systems
have well-known reference architectures. For example,
a compiler is understood to have a scanner, parser, se-
mantic analyzer and a code generator subsystem [12].

In [7], we derived a reference architecture for web
servers. To derive it, we recovered the architecture
of three large open source web servers (Jigsaw [8],
Apache [2], and AOLServer [1]). We studied the ar-
chitecture of all three web servers to find communalities
which we abstracted into a reference architecture for
web servers. For commercial software systems, we would
not have been able to acquire three different implemen-
tations of a web server developed by three competing
companies.

4 SOFTWARE EVOLUTION

Most studies of software evolution were performed on
systems developed within a single organization. We
choose to examine the evolution of the Linux kernel be-
cause of the large size of its code base and because its



development is not as tightly managed like commercial
software systems.

Expecting to find the growth rate of the kernel to slow
down as its size and complexity increased. we were sur-
prised to find out that the kernel is growing at a super
linear rate [6]. Further investigations showed that archi-
tecture of the kernel and its open source development
model were the main factors that explained its growth
rate. Currently, we are investigating the evolution of
the GCC compiler.

5 BUILD-TIME VIEW

During our study of open source systems, we found that
they exhibit interesting and complex build-time proper-
ties that aren’t explicitly addressed by traditional ar-
chitecture views [9, 13].

Open source systems are, in general, designed to be as
portable as possible. Rather than create a separate
source distribution for each platform, the commonali-
ties are abstracted into a single distribution and config-
uration tools are used to aid in building the system.
A build-time view records this complex build struc-
ture [16].

6 CONCLUSION

Open source systems provide a great opportunity for
researchers to study real life large software systems. We
recovered and repaired the architecture of many open
source systems such as Linux and VIM. We used these
systems to derive a reference architecture for the web
server domain. In addition, we examined the evolution
of the Linux kernel and were surprised of its fast growth
rate. Furthermore, we proposed a new architecture view
to address the complex build structure of these systems.
We continue our investigations of open source systems
and encourage others to join us.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the significant con-
tributions of many graduate students at the University
of Waterloo, particularly current and former members
of the SWAG research group. We are also grateful to
members of the open source community who have given
freely of their time in helping us to understand their
systems.

REFERENCES

[1] America Online’s Open-
Source Web Server Home Page. Available online
at <http://www.aolserver.com/>

[2] The Apache HTTP Server Project Home Page.
Available online at <http://httpd.apache.org/>

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster.
Linux as a Case Study: Its Extracted Software Ar-
chitecture. In IEEE 21st International Conference

[15]

on Software Engineering, Los Angeles, USA, May
1999.

D. Garlan and M. Shaw. An Introduction to Soft-
ware Architecture. In V. Ambriola and G. Tor-
tora, editors, Advances in Software Engineering
and Knowledge Engineering, pages 1-39, Singa-
pore, 1993. World Scientific Publishing Company.

M. W. Godfrey and E. H. S. Lee. Secrets from the
Monster: Extracting Mozilla’s Software Architec-
ture. In Proceedings of the Second International
Symposium on Constructing Software Engineering
Tools, pages 15-23, Limerick, Ireland, June 2000.

M. W. Godfrey and Q. Tu. Evolution in Open
Source Software: A Case Study. In Proceedings
of the 2000 International. Conference on Software
Maintenance, San Jose, California, Oct. 2000.

A. E. Hassan and R. C. Holt. A Reference Ar-
chitecture for Web Servers. In 7th Working Con-
ference on Reverse Engineering, Brisbane, Queens-
land, Australia, Nov. 2000.

Jigsaw - The W3C'’s Server - Home Page. Available
online at <http://www.w3.org/Jigsaw/>

P. B. Kruchten. The 4+1 View Model of Architec-
ture. IEEE Software, 12(6):42-50, Nov. 1995.

The Software
Bookshelf of the Linux Kernel. Available online at
<http://swag.uwaterloo.ca/pbs/examples/linux/>

D. E. Perry and A. L. Wolf. Foundations for
the Study of Software Architecture. ACM SIG-
SOFT Software Engineering Notes, 17(4):40-52,
Oct. 1992.

M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-
Hall, Inc., Upper Saddle River, NJ., USA, 1996.

D. Soni, R. L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. In IEEE
17th International Conference on Software Engi-
neering, 1995.

J. B. Tran. Software Architecture Repair as a
Form of Preventive Maintenance. Master’s thesis,
University of Waterloo, 1999. Available online at

<http://plg.uwaterloo.ca/~ j3tran/papers/thesis.ht

J. B. Tran, M. W. Godfrey, E. H. S. Lee, and R. C.
Holt. Architectural Repair of Open Source Soft-
ware. In Proceedings of International Workshop on
Program Comprehension, Limerick, Ireland, June
2000.



[16] Q. Tu and M. W. Godfrey. The Build-Time Soft-
ware Architecture View. In Submitted to 2001 In-
ternational Conference on Software Maintenance,
2001.



