
Oops! Where Did That Code Snippet Come From?

Lisong Guo, Julia Lawall, Gilles Muller
Inria/LIP6-Regal, Sorbonne Universités, UPMC Univ Paris 06, Paris, France

{Lisong.Guo, Julia.Lawall, Gilles.Muller}@lip6.fr

ABSTRACT
A kernel oops is an error report that logs the status of the
Linux kernel at the time of a crash. Such a report can provide
valuable first-hand information for a Linux kernel maintainer
to conduct postmortem debugging. Recently, a repository
has been created that systematically collects kernel oopses
from Linux users. However, debugging based on only the
information in a kernel oops is difficult. We consider the
initial problem of finding the offending line, i.e., the line of
source code that incurs the crash. For this, we propose a
novel algorithm based on approximate sequence matching,
as used in bioinformatics, to automatically pinpoint the
offending line based on information about nearby machine-
code instructions, as found in a kernel oops. Our algorithm
achieves 92% accuracy compared to 26% for the traditional
approach of using only the oops instruction pointer.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Algorithms

Keywords
Linux kernel, oops, debugging, sequence alignment

1. INTRODUCTION
The Linux kernel is used today in environments ranging

from embedded systems to servers. While the Linux kernel
is widely regarded as being stable for ordinary use, it nev-
ertheless still contains bugs [17]. Indeed, the Linux kernel
offers a huge variety of services (devices drivers, file systems,
etc.), and a huge range of configuration options [20], making
it essentially impossible to exhaustively test. Thus, Linux
developers must rely on bug reports to understand the full
scope of possible problems with their code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Recently, a repository of Linux kernel crash reports, re-
ferred to as kernel oopses, has become available [2]. This
repository systematically collects kernel oopses from any
user whose Linux distribution has the oops reporting facility
enabled. As such, the repository has the potential to give
the kernel developer a much more systematic view of the
commonly encountered problems in his code. An oops report,
however, provides only an instantaneous image of the kernel
state at the time of the crash, expressed primarily at the
level of the machine code of the running kernel. This makes
kernel oopses difficult to interpret, drastically limiting the
practical benefit of the repository. A proposal to extend
the Linux kernel to make it possible to include line number
information was recently rejected, as it would incur a too
great (albeit small) space overhead in a running kernel [12].

A fundamental part of debugging any software crash is to
identify the offending line, i.e., the line of the source code
at which the crash occurs. To illustrate the importance of
knowing the offending line and the difficulty of obtaining it
from a kernel oops, even in the ideal case when it is possible
to interact with the user who encountered the crash, we
describe a real story from the Linux kernel bugzilla [4]. A
user named Jochen encountered frequent crashes on his XFS
file system and filed a bug report that included a kernel oops.
A developer named Dave took charge of the report, but he
did not understand the issue. As Dave did not have access
to the compiled kernel that Jochen had used, he instructed
Jochen to go through a series of procedures on the victim
machine in order to produce the offending line information.
In all, it took 16 comment exchanges before another user,
Katharine, who had the same problem, managed to obtain
the offending line. Dave then quickly figured out the source
of the bug and provided a corresponding patch.

In contrast to the bugzilla case, when a developer finds
an oops in the kernel oops repository that may be relevant
to his code, there is no associated user that the developer
can contact. This compounds the difficulty of finding the
offending line. Several options remain. If the developer can
deduce the exact version and distribution from the oops,
then he may be able to retrieve a precompiled version of that
kernel with debugging information from that distribution, if
such a kernel is available. Alternatively, the developer can
compile the kernel file containing the crashing function from
the same Linux version, to try to recreate the victim kernel’s
binary code. If either of these is successful, the developer
can load the kernel code into the debugger gdb and request
the source code line corresponding to the instruction pointer
mentioned in the oops. A second option is to disassemble the

small snippet of binary code surrounding the crash site, that
is found in oopses corresponding to the more severe types of
bugs, and then match the result against the assembly code
of the crashing function. A third option is to analyze the
semantics of the instructions found in the disassembled code
snippet, to relate this semantics to the source code.

In this paper, we argue that the second approach, of match-
ing the disassembled code snippet to the assembly code of
a locally compiled kernel, is the most promising. The first
approach, using the instruction pointer, is lightweight but
brittle, especially in the common case where it is not possible
to retrieve the distribution’s original debugging kernel. In
contrast, the code snippet used in the second approach pro-
vides more context information, and is thus more tolerant to
variations in locally generated code. The third approach, re-
lating the semantics of the disassembled code snippet directly
to the source code, is very difficult, due to the different levels
of abstraction involved. The second approach nevertheless
has the disadvantage that the matching process is tedious
and error prone, especially for the many large kernel func-
tions. To make the second approach practical, we propose
to automate the matching process, based on a variant of
approximate string matching, as used in bioinformatics [22].

We have evaluated our approach on 100 randomly selected
examples from the kernel oops repository and the Linux ker-
nel bugzilla. Our approach achieves 92% accuracy, compared
to the 26% accuracy obtained when relying solely on the
instruction pointer. It is thus effective and efficient, having
complexity linear in the size of the crashing function, and,
as illustrated by the bugzilla example, produces information
that can ease the burden on a Linux kernel maintainer in
debugging a kernel oops.

The contributions of this paper are as follows:

• We quantify the difficulty of finding the offending line
in an oops generated by an older kernel.

• We propose and formalize an algorithm using approx-
imate sequence matching for identifying the line of
source code that led to the generation of an oops.

• We show that the complexity of our algorithm is linear
in the size of the crashing function.

• We show that our approach is effective, achieving an
accuracy of 92% on 100 randomly selected examples.

The rest of the paper is organized as follows. Section 2
gives some background, including the content of a kernel oops
and an illustration of the standard approach to obtaining the
offending line. Section 3 presents the outline of our matching
algorithm. Section 4 instantiates this algorithm with some
domain-specific design choices. We then evaluate our solution
in Section 5 and discuss the validities of our solution in
Section 6. We review some related work in Section 7. Finally,
we conclude in Section 8.

2. BACKGROUND
We describe the structure of a kernel oops and existing ap-

proaches to finding the offending line. We then present some
statistics that illustrate the difficulty of the latter process.

2.1 Key Attributes of a Kernel Oops
A kernel oops [23] consists of the information logged by the

Linux kernel when a crash or warning occurs. It is composed

mostly of attribute : value pairs, in which each value records
a specific piece of information about certain attribute of the
system. The format and content of a kernel oops depend
somewhat on the cause of the oops and the architecture of the
victim machine. We focus on the x86 architecture (both 32
bit and 64 bit), which currently represents almost all of the
oopses found in the kernel oops repository. Figure 1 shows
the XFS kernel oops discussed previously. Some values are
omitted (marked with ...) for brevity. Some key attributes
(boxed) are:

Oops description. A kernel oops begins with a brief de-
scription of the cause of the oops. In our example, the oops
was caused by NULL-pointer dereference (line 1).

Error site. The IP (Instruction Pointer, line 2) field in-
dicates the name (xfs_da_do_buf) of the function being
executed at the time of the oops, i.e., the crashing function,
the binary code offset (0x4da) at which the oops occurred,
and the binary code size (0x5e1) of the crashing function.

Kernel version. A string (2.6.36-gentoo-r5) following
the value of the attribute Tainted (line 5) indicates the Linux
kernel version (2.6.36, maintained between October 2010
and February 2011) from which the kernel oops was generated.
The string may also indicate the distribution of the Linux
kernel, here Gentoo.

Code snippet. Some kernel oopses, for the more severe
faults, contain a binary code snippet (line 13) indicating the
64 bytes of binary code surrounding the error site (43 bytes
before the trapping instruction and 20 after), regardless of
instruction boundaries. Within this snippet, the first byte of
the instruction that causes the crash is marked by <>. We
refer to this instruction as the trapping instruction.

1 BUG: unable to handle kernel
NULL pointer dereference at 00000008

2 IP: [<c10fb360>] xfs_da_do_buf+0x4da/0x5e1
3 Oops: 0000 [#1] PREEMPT SMP
4 Modules linked in: nfs lockd nfs_acl sunrpc w83627hf ...
5 Pid: 2725, comm: rm Tainted: P 2.6.36-gentoo-r5 #10
6 EIP: 0060:[<c10fb360>] EFLAGS: 00010246 CPU: 0
7 EAX: 00000001 EBX: f60da400 ECX: fbd5a730 EDX: 00000000 ...
8 Stack: 0012c096 00000000 f64cabc0 f64ca5dc d853fb40 ...
9 Call Trace:
10 [<c1020717>] ? get_parent_ip+0xb/0x31
11 [<c102086e>] ? sub_preempt_count+0x7c/0x89
12 [<c111f85e>] ? xfs_remove+0x1b3/0x2e0 ...
13 Code: f0 00 c7 45 b8 00 00 00 00 74 13 8b 4d 18

8d 55 f0 b8 01 00 00 00 e8 06 fa ff ff 89 45 b8 83 7d 14
01 0f 85 82 00 00 00 8b 55 b8 <8b> 4a 08 8b 51 08 8b 01
0f c8 86 f2 0f b7 d2 81 fa ee fb 00 00

14 ---[end trace 118398ff1b25f91d]---

Figure 1: XFS kernel oops

2.2 Pinpointing the Offending Line
We now consider in more detail the three options for

pinpointing the offending line that were proposed in the
introduction, in terms of the example in Figure 1. We place
ourselves in the situation where a kernel with debugging
information corresponding to the offending kernel is not
available, as finding such debugging kernels is difficult for
versions that do not correspond to a current release of the

given distribution, and even if possible requires somewhat
obscure distribution-specific knowledge.

Gdb. To use gdb on the instruction pointer found in the
kernel oops, we first need to obtain binary code with debug-
ging information for the file containing the crashing function.
For this, we download the kernel version corresponding to
the version (2.6.36) listed in the kernel oops from the main-
line kernel repository kernel.org. We then create a default
configuration file, using the command make ARCH=i386 def-

config because the oops contains 32 bit addresses. In the
configuration file, to obtain debugging information, we then
manually select the option CONFIG_DEBUG_INFO and unselect
the option DEBUG_INFO_REDUCED. We then use the local ver-
sion of gcc (in our case, gcc 4.7.2 (Debian 4.7.2-5)) to compile
the file containing the crashing function, using the command
make ARCH=i386 fs/xfs/xfs_da_btree.o. Finally, we load
the resulting object file into gdb and obtain the offending
line with the command list *(xfs_da_do_buf+0x4da).

Having followed this procedure, we obtain a line that is five
lines away from the one indicated in the bugzilla discussion.
There are furthermore several lines at which a NULL pointer
dereference could occur between the line identified by gdb
and the actual offending line. This approach is clearly too
brittle for practical use.

Assembly code matching. For this approach, we first ob-
tain a locally compiled debugging kernel, as above. We then
use the Linux kernel script decodecode, with the environment
parameter AFLAGS=--32 | --64 indicating the architecture,
to disassemble the code snippet. Next, we use gdb with the
command disassemble xfs_da_do_buf to disassemble the
crashing function. We must then manually match the two se-
quences of assembly code to find the offset of the instruction
in the locally compiled crashing function that most probably
matches the trapping instruction in the code snippet. This
offset can then be used with gdb as in the previous case, to
get the offending line.

In the case of the oops shown in Figure 1 the locally
compiled crashing function consists of 459 instructions, as
compared to the 19 instructions in the code snippet. The
large size of the crashing function makes the matching process
tedious and error prone. Indeed, an exact match is not likely,
due to the use of different compilers or compiling options,
which causes differences in both the choice of instructions
and the order in which they appear. These problems can be
somewhat alleviated if the instruction pointer indicates that
the trapping instruction is very near the beginning or end
of the function. Our example, however, does not have this
property.

At the other end of the spectrum, we consider an oops
derived from the much smaller function shown in Figure 2.
Figure 3 shows the correspondence between the code snippet
in the oops and the assembly code obtained from locally
compiling the crashing function. By comparing the sequence
of opcodes, we can see that the trapping instruction at offset
<+8> in the code snippet corresponds to the instruction at
offset <+13> in the locally compiled crashing function. The
debugging information then indicates that the instruction
at offset <+13> of the crashing function originates from the
statement at line 4 in Figure 2, which is the offending line.
During the matching process, some gaps, marked by ---,
are required, and we can see that the compilers have taken

1 int elv may queue(struct request queue ∗q, int rw)
2 {
3 struct elevator queue ∗e = q−>elevator;
4 if (e−>ops−>elevator may queue fn)
5 return e−>ops−>elevator may queue fn(q, rw);
6 return ELV MQUEUE MAY;
7 }

Figure 2: The source code of the crashing function

code snippet crashing function

<+0> push %ebx <+0> push %ebp

<+1> mov %eax,%ebx <+1> mov %esp,%ebp

−−− <+3> call 0x1414 (<+4>)

<+3> mov 0xc(%eax),%eax <+8> mov 0xc(%eax),%ecx

<+6> mov (%eax),%eax <+11> mov (%ecx),%ecx

<+8> mov 0x38(%eax),%ecx <+13> mov 0x38(%ecx),%ecx

<+11> xor %eax,%eax −−−
<+13> test %ecx,%ecx <+16> test %ecx,%ecx

<+15> je 0x38 <+21> <+18> je 0x1428 <+24>

<+17> mov %ebx,%eax −−−
<+19> call *%ecx <+20> call *%ecx

<+21> pop %ebx <+22> pop %ebp

<+22> ret <+23> ret

−−− <+24> xor %eax,%eax

−−− <+26> pop %ebp

−−− <+27> nop

<+23> lea 0x4c(%edx),%eax <+28> lea 0x0(%esi,%eiz,1),%esi

−−− <+32> ret

Figure 3: An example of assembly code matching

different decisions in compiling the conditional test, marked
with arrows at offsets <+15> and <+18>, respectively. These
issues complicate the matching even for a small example.

Semantics matching. For this approach, we use decode-

code as above to obtain the assembly code of the code snippet
and download the kernel version mentioned in the oops, but
do not compile it. For simplicity, we illustrate this approach
using only our second example (Figures 2 and 3). We reason
as follows: I) The trapping instruction is a memory access
operation, due to the operand 0x38(%eax), which implies that
the offending line involves a pointer dereference. II) Right
above the trapping instruction, there is a similar instruction
that operates on the same register as the trapping instruc-
tion. Thus, the offending line likely contains two successive
pointer-dereferences, i.e., it has the form a → b → c, for
some expression a, and some fields b and c. III) Following the
trapping instruction, there is a branching test which should
correspond to a conditional test in the source code. IV) Fur-
thermore, the result of the trapping instruction is stored in
the register %ecx, which is used later at offset <+19> as a
function pointer (call ∗%ecx). Thus, the offending line should
evaluate to a function pointer for a following invocation. Line
4 in the crashing function is the only one that satisfies all of
the above properties, and is indeed the offending line.

Although successful in this case, this approach is clearly
not systematic enough for frequent use, particularly for large
or complex crashing functions, such as the one associated
with Figure 1. Nevertheless, we use this approach, combined
with some manual matching of the assembly code to validate
our results obtained in Section 5.

0 1,000 2,000 3,000 4,000 5,000

101
102
103
104
105
106

crashing function index

b
y
te
s

Figure 4: Function size for unique oopses containing
both a code snippet and function name

2.3 Properties of Oopsing Functions
To better understand the problems confronting a kernel

developer, we have studied various properties of the oopses
collected during the first 8 months of the existence of the
kernel oops repository.

Data set. Between September 1, 2012 and May 1, 2013, the
kernel oops repository received 187,342 kernel oopses. Many
are warnings, and thus only 22,316 contain a code snippet.
Our approach requires the presence of both a code snippet
and a function name. 3263 of the code snippets contain only
“Bad EIP value” or “Bad RIP value” indicating an invalid
instruction pointer. Of the remaining 19,053 oopses, 897 do
not give a name for the crashing function, only an address,
again indicating an invalid instruction pointer. Finally, the
kernel oops repository contains many duplicate reports [8].
Of the oopses containing both a function name and a code
snippet, 5192 have a unique combination of function name,
crashing instruction offset, function size, and code snippet.
We consider only these oopses in the rest of this section.

Size of the crashing function. As the size of the crashing
function increases, it becomes more difficult to scan through
its assembly code to find instructions that look similar to
the disassembled code snippet. Figure 4 shows the sizes
in bytes of the crashing functions indicated in our oopses,
ordered from smallest to largest.1 This figure shows one
point per oops, even though multiple oopses may refer to the
same function. 20% of the unique oopses involve functions
containing more than 500 bytes, making manual scanning for
a close match to a 64-byte code snippet impractical. Three
oopses refer to a function that contains over a million bytes.
This is a large memory region used by a kernel module added
by VirtualBox, and is not part of the mainline kernel.2

Compiler effects. A major source of variation in the se-
quence of instructions generated by compiling a kernel is
the version of the compiler used. To measure this effect, we
consider three compilers: gcc 4.6.1 (Ubuntu/Linaro 4.6.1-
9ubuntu3), gcc 4.7.2 (Debian 4.7.2-5), and gcc 4.8.1 (Ubun-
tu/Linaro 4.8.1-10ubuntu9). For simplicity, we test these
compilers on a single version, Linux 3.7, released in 2012.
For this kernel, we generate a configuration file using make

ARCH=x86_64 defconfig. Linux 3.7 represents 12% of our
considered oopses, and is the second most common version
mentioned. The most common version, representing 57%
of the oopses, is Linux 2.6.32, first released in 2009. Our
compilers, however, generate many warnings on the Linux

1We use the number of bytes indicated in the oops; the
number of instructions is not available.
2https://forums.virtualbox.org/viewtopic.php?f=7&t=30037

Table 1: Compiler comparison.
1 gcc version 2 gcc versions

4.6.1→ 4.7.2 4.7.2→ 4.8.1 4.6.1→ 4.8.1
instr sz # instr sz # instr sz #
diff diff fns diff diff fns diff diff fns

small 14% 8% 353 14% 4% 350 23% 11% 354
medium 17% 4% 404 21% 4% 402 28% 6% 397
large 32% 3% 102 32% 4% 102 40% 5% 103

Instr diff is the rate of difference in the instructions. Sz diff is the rate
of difference in the function sizes. #fns is the number of functions
that are small, medium, or large, respectively.

2.6.32 code, and we want to avoid comparing invalid code.
Our single tested kernel version and configuration may not

cover all the crashing functions of our 5192 oopses. There are
1557 such functions, of which 25% are either not defined in
Linux 3.7, are only defined in architecture-specific code (arch
directory) for an architecture other than x86, or are only
defined in header files, which do not generate an independent
object file in which we can find the binary code definition.
Finally, for 18% of the 1557 functions, the defining file is
not included in our kernel configuration, and for 3% of the
1557 functions, at least one compiler does not generate code,
perhaps due to inlining. This leaves just over 850 distinct
crashing functions whose assembly code we can compare.

For each compilation result, we first obtain the assembly
code, using the command objdump -disassemble, and then
rewrite the output to abstract away all information except
the opcode, any constants, and any constant offsets used in
indirect references. This eliminates the effect of compiler
choices such as register names and branch offsets, and focuses
on information that is likely to stand out as the developer
scans the code. To estimate the difference between two
compilation results we apply the unix tool diff to these
abstracted versions, and then divide the sum of the number
of differences by twice the number of instructions found in
the smaller compiled function, to normalize the results. As a
baseline, we also compute the difference in size between the
smaller and larger compiled functions as a percentage of the
size of the smaller compiled function. Finally, we distinguish
between small functions, for which the smaller compiled func-
tion contains 50 instructions or less, medium functions, for
which the smaller compiled function contains 250 instructions
or less, and large functions, for which the smaller compiled
function contains more than 250 instructions. The number
of functions in each category varies slightly depending on
which compilers are being compared.

The results are shown in Table 1. In each case, the com-
parison on instruction opcodes and operands shows a much
greater rate of change than the comparison on code size.
Thus, many changes must be within the shared part of the
code; there is not e.g., simply a new sequence of code added
at the end of the function. Furthermore, we see that the rate
of changes increases as the function size increases and as the
distance between the compiler versions increases. All these
variations make manual matching complex.

3. AUTOMATING ASSEMBLY CODE
MATCHING

Our goal is to automate the matching of the disassem-
bled code snippet against the disassembled locally compiled
crashing function, as previously illustrated in Figure 3. We
take inspiration from approximate sequence matching, used in
bioinformatics [22]. We begin with some definitions, and then

propose a matching algorithm that focuses on each possible
counterpart to the trapping instruction and its surrounding
context. This matching algorithm uses an algorithm for
matching a code sequence against a prefix of another code
sequence, which we present next. Finally, we consider the
complexity of the complete approach. Some design decisions
related to the particular properties of assembly language
instructions are deferred to Section 4.

3.1 Definitions
We refer to disassembled code snippet as the code snippet,

C, and the disassembled locally compiled crashing function
as the local function, L. We first define some properties of
sequences, and then describe sequence matching:

Definition 1. For a sequence S, let S[i] denote the ele-
ment at the position i, and |S| denote the length of S. We
also define a special element called a gap, denoted ⊥.

Definition 2. For a sequence S of length n and any 1 ≤
i ≤ j ≤ n, Ŝ = S[i...j] is a substring of S and Ŝ = S[1...j]
is a prefix of S.

Definition 3. For sequences S1 and S2, we define an
anchored alignment of S1 with S2, written Align(S1, S2), as
any (S′

1, S
′
2) where: I). S′

1 and S′
2 are sequences that may

contain gaps. II). |S′
1| = |S′

2|. III). Removing gaps from S′
1

leaves S1. IV). Removing gaps from S′
2 leaves a prefix of S2.

Anchored alignment is a variant of the global alignment and
local alignment used in bioinformatics [22]. Global align-
ment matches two complete sequences, while local alignment
matches subsequences of those sequences. Anchored align-
ment matches a complete sequence against a prefix of another
sequence, with gaps allowed. Figure 5 shows an example.

S1[1] ⊥ S1[2] S1[3] S1[4] ⊥ ⊥ S1[5]
| | | | | | | |

S2[1] S2[2] S2[3] S2[4] ⊥ S2[5] S2[6] S2[7] . . .

Figure 5: Align(S1, S2), where |S1| = 5 and |S2| ≥ 7

In general, for finding the offending line, it is not sufficient
to use any match; instead, we want one that is considered
to be best according to some scoring function. Indeed, the
challenge in performing alignment is to determine where to
place gaps to obtain the highest possible score.

Definition 4. For elements s1 and s2, let score(s1, s2) be
a measure of the similarity between s1 and s2. The precise
definition of score is orthogonal to the problem of matching,
and is deferred to the next section. Nevertheless, we require
that a match with a gap have a negative score, to make it
unfavorable to match a gap with itself.

Definition 5. For sequences S′
1 and S′

2 of length n, which
may contain gaps, we define the similarity of S′

1 with S′
2, as

Sim(S′
1, S

′
2) =

n∑
i

score(S′
1[i], S′

2[i]).

Definition 6. For sequences S1 and S2, let Θ be the set
of all possible anchored alignments between S1 and S2, i.e.,
Align(S1, S2). Then, the optimal anchored alignment of S1

with S2, written Alignopt(S1, S2), is the one of {θ ∈ Θ |
∀θ1 ∈ Θ, Sim(θ) ≥ Sim(θ1)}.

C[1] ... C[t] ... C[m]

S[1] ... S[j] ... S[i] ... S[k] ... S[n]

anchor

Figure 6: Anchored sequence matching schema

3.2 Anchored Sequence Matching
We define anchored sequence matching to select a counter-

part instruction from the local function, that matches well
against the trapping instruction, taking the contexts of these
instructions into account. First, we select a set of anchor
points, likely candidates for the counterpart instruction from
the local function. Next, starting from each anchor point,
we compute the optimal match between the preceding and
following fragments of the code snippet and of the local
function, respectively. Finally, we select the anchor point
with the maximal overall similarity value as the counterpart
instruction.

Algorithm 1 presents the anchored sequence matching
algorithm. Lines 2-6 perform some initializations, including
splitting the code snippet into three parts: the part before
the trapping instruction, C left, the trapping instruction,
trap, and the part following the trapping instruction, C right.
C left is reversed, because we want to match the sequence
to the left of the trapping instruction backwards from the
trapping instruction (cf. Figure 6). Lines 8-22 then iterate
over the possible anchor points. For each one, the local
function is split into L left, anchor, and L right, with L left
reversed (lines 9-12), analogous to C left. Optimal anchored
alignment is then used via the function align to match C left
against L left, and C right against L right, and to obtain the
resulting similarity score (lines 13-14). We also compute the
similarity score of the trapping instruction and the chosen
anchor point (line 15). If the sum of these scores is greater
than the best score recorded so far, then the current anchor
point is recorded as the best match (lines 16-21). The final
result is then the best collected anchor point (line 23).

Algorithm 1 The anchored sequence matching algorithm

1: function ASM(List C, List L, List anchors, Int t)
2: best anchor ← −1
3: max score ← min value
4: C left ← reverse(C[1..t− 1])
5: trap ← C[t]
6: C right ← C[t+ 1..C.length]
7:
8: for i = 1 → anchors.length do
9: L left ← reverse(L[1..t− 1])

10: anchor ← L[i]
11: L right ← L[t+ 1..L.length]
12:
13: left score ← align(C left, L left)
14: right score ← align(C right, L right)
15: anchor score ← score(trap, anchor)
16: total score ← left score + right score + anchor score
17:
18: if (total score > max score) then
19: max score ← total score
20: best anchor ← i
21: end if
22: end for
23: return best anchor
24: end function

3.3 Anchored Alignment
Anchored sequence matching uses anchored alignment,

Align(Ĉ, L̂), to match the code snippet substrings Ĉ before

and after the trapping instruction against the context L̂ of
each proposed anchor point. Algorithm 2 shows a straightfor-
ward recursive implementation. For each pair of nonempty
sequences this algorithm takes the maximum value produced
by three possibilities: matching the heads of each sequence
with each other and the tails of each sequence recursively
with each other, or matching the head of one sequence with
a gap and the tail of that sequence recursively with the other
sequence. The remaining lines address the empty sequence
cases. If the code snippet substring is empty (line 3), the
result is 0, reflecting the fact that it need only be matched
against a prefix of the local function substring. On the other
hand, if the local function substring is empty (line 4), the
result is the product of the length of the remaining code
snippet substring and the gap score, effectively matching the
remaining code snippet substring to gaps.

Algorithm 2 A recursive anchored alignment algorithm

1: function alignrc(List Ĉ, List L̂)

2: match (Ĉ, L̂) with
3: | ([],) → 0

4: | (, []) → |Ĉ| × gap score
5: | (c::ct, l::lt) →
6: let gap score = score(⊥, ⊥) in
7: let head score = score(c, l) in
8: let no gap = align(ct, lt) + head score in

9: let cs gap = align(ct, L̂) + gap score in

10: let lk gap = align(Ĉ, lt) + gap score in
11: return max(no gap, cs gap, lk gap)
12: end function

The recursive algorithm constructs a three-way tree of

execution, in which each branch has height at most |Ĉ|+ |L̂|.
|Ĉ| has fixed size, and except when the local function is very

small, |Ĉ| ≤ |L̂|. The complexity is thus O(3|L̂|).
The recursive algorithm recomputes the scores of many pos-

sible alignments. To avoid this inefficiency, we use dynamic
programming [3], as shown in Algorithm 3. This algorithm

populates an array dpm of size (|Ĉ| + 1) × (|L̂| + 1). The
value stored in dpm[i][j] represents the similarity of the best

alignment between Ĉ[1..i] and L̂[1..j]. As anchored align-
ment requires matching the complete code snippet substring
but only a prefix of the local function substring, we take

the best value found anywhere in the row dpm[|Ĉ|][∗] as the
result. This is in contrast with the dynamic programming im-
plementation of global alignment [22], in which the iterative

computation is the same, but the result is dpm[|Ĉ|][|L̂|].
The dynamic programming algorithm starts by initializing

the zero column of every row with a multiple of the gap
score (lines 6-8), reflecting the need to match the elements
of the code snippet substring against gaps when the local
function substring runs out. It then initializes the zero row
of every column with a multiple of the gap score (line 10-
12), reflecting the cost of pushing the initial match of the
code snippet substring past a prefix of the local function
substring, which requires matching the elements of that prefix
to gaps. The remainder of the algorithm iterates over the
elements of the array, starting from the elements with the
smallest indices, representing the early parts of each sequence

Algorithm 3 Anchored alignment by dynamic programming

1: function Aligndp(List Ĉ, List L̂)

2: // init matrix with zero

3: dpm ←make matrix(0..|Ĉ|, 0..|L̂|, 0)
4: gap score ← score(⊥, ⊥)
5:
6: for i = 1→ |Ĉ| do
7: dpm[i][0] ← i ∗ gap score
8: end for
9:

10: for j = 1→ |L̂| do
11: dpm[0][j] ← j ∗ gap score
12: end for
13:
14: for i = 1→ |Ĉ| do
15: for j = 1→ |L̂| do
16: head score ← score(Ĉ[i], L̂[m])
17: dpm[m][n] ←max (
18: dpm[i− 1][j − 1] + head score,
19: dpm[i− 1][j] + gap score,
20: dpm[i][j − 1] + gap score)
21: end for
22: end for
23: return score opt(dpm[|Ĉ|])
24: end function

and moving towards the elements with the largest indices,
representing the later parts of the sequences. For each pair
of offsets, the algorithm considers the possibilities that the
sequence elements represented by the current position match
(line 18), or that one or the other is matched against a gap
(lines 19-20). In each case, the matching score or the gap
score is added to the previously computed value found in
the array at the position corresponding to the effect of the
match on the two subsequences. The result for the current
array element is the maximum result produced by any of
these three cases. Once the array is filled, the result is the
largest score anywhere in the row representing the end of the
code snippet substring. The complexity of the algorithm is

proportional to the size of the array i.e., O(|Ĉ| × |L̂|).
We then further optimize the algorithm by reducing the

number of columns in the matrix, representing the distance
into the local function substring for which it is worth con-

sidering a match. Indeed, in the tail of L̂, the penalty of
the leading gap alignment could eventually outweigh even
a perfect alignment score for the remaining code snippet
substring. Therefore, the optimal alignment can only in-
volve instructions found within a certain distance R from the
start of L̂. Let max score be the maximal alignment value
for two elements, i.e., the score when the elements match
perfectly, gap score be the alignment value if either element
is a gap, and min score be the minimal alignment value,
i.e., the score when two elements are matched, but they
are vastly different. Then, R is the smallest value such that

|Ĉ|×min score > |Ĉ|×max score+(R−|Ĉ|)×gap score, i.e.,

R > |Ĉ| × ((min score−max score + gap score)/gap score),
since gap score is negative. This inequality says that a com-
plete mismatch of each element of the code snippet substring
at the beginning of the local function substring could provide
a higher alignment score than any perfect alignment that ap-
pears later in the sequence, beyond a sequence of gaps. Thus,
we can just populate the matrix up to column R, instead of

the full length |L̂|. The inequality also shows that R is of

the same order of magnitude as |Ĉ|, as the least R satisfying

the inequality is bounded by a constant multiple of |Ĉ|.
This optimization reduces the complexity of sequence

alignment to O(|Ĉ| × R). Since (min score − max score
+ gap score) / gap score is a positive constant, the complex-

ity becomes O(|Ĉ|2). Because the Linux kernel limits the
length of the code snippet substring to a small constant (64

bytes), O(|Ĉ|2) amounts to a constant.
The anchored sequence matching algorithm uses the dy-

namic programming based sequence alignment algorithm
twice per anchor point. As the complexity of the latter is
constant, due to the restricted size of the code snippet, the
overall complexity of Anchored Sequence Matching is linear
in the number of anchor points.

4. DESIGN DECISIONS
The matching algorithm is independent of how anchor

points are selected and how the score associated with a
match between two elements is determined. We now address
these issues. We also consider the need to normalize the
input in some cases and address the possibilities of ties.

4.1 Anchor Point Selection
The complexity of the Anchored Sequence Matching algo-

rithm is proportional to the number of anchor points. The
accuracy of the algorithm also depends heavily on the se-
lection of anchor points. All suspicious points in the source
sequence should be included as anchor points to ensure the
soundness of the algorithm. However, we found that taking
all points in the source sequence as possible anchor points
hurts the accuracy, as some incorrect anchor points could
obtain higher scores than the true counterpart point.

Our experiments showed that the counterpart instruction
is often consistent with the trapping instruction in three ways:
1). The type of the opcode 2). The addressing modes of the
operands 3). The offsets used in indirect addressing modes.
For example, the instructions <mov 0x68(%rcx), %rcx> and
<mov 0x68(%rax),%rax> have the same opcode type (mov),
the same addressing mode (an indirect memory access for
the source operand and a direct register access for the target
operand), and the same offset of any indirect address (0x68),
although they use different registers. Furthermore, we con-
sider two instructions to be of the same type even if they
operate on operands of different sizes (e.g. movl vs. movq)
or their triggering conditions are opposite (e.g. je vs. jne).

We define a function compare(i1, i2) that compares two
instructions i1 and i2 based on the above criteria. The result
is a triple 〈type, mode, offset〉 where each element corresponds
to a binary value that represents the comparison result with
respect to he corresponding criterion, e.g.,

compare(
<mov 0x68(%rcx),%rcx>

<mov 0x68(%rax),%rax>
) = 〈1,1,1〉

There are usually multiple anchor point candidates in the
source sequence. To prioritize their selection, we build three
queues based on the above criteria. The high-priority queue
consists of the anchor points that satisfy all three criteria, i.e.,
{i | compare(i, t) = 〈1, 1, 1〉}. The medium-priority queue
consists of the ones that have the same instruction type as
the trapping instruction, i.e., {i | compare(i, t) = 〈1, ∗, ∗〉}.
And the low-priority queue consists of all the instructions
in the local function. For the matching, we select the first
non-empty queue following the order of the priority.

4.2 Scoring Function Design
The scoring function should measure the similarity of two

related elements as well as the unlikelihood for the matching
of two unrelated elements. The comparison between two
elements can result in a match, a mismatch, or a gap match
(i.e., either element is empty). A match should have a higher
score than a mismatch, and we previously argued that a gap
match should have a negative score, to eliminate the match
(⊥,⊥) in any optimal solution [22]. We propose two possible
scoring functions, differing in how much information about
the instructions that they take into account.

Our first scoring function based on opcode, score, considers
two instructions to be a match if they have the same type
of opcode, i.e., compare(i1, i2) = 〈1, ∗, ∗〉, and any other
comparison between two instructions to be a mismatch. We
assign the scores 2 for a match, -1 for a mismatch, and -1
for a gap match [22]. In practice, we have observed that
the gap match value should not be lower than the mismatch
value, or the algorithm will almost never assign a gap.

Our second scoring function based on both opcode and
operands, score′, further refines the match case, following the
comparison criteria proposed for the anchor point selection.
For those instructions with both source and target operands,
we give one point bonus if the addressing modes of the
operands of the two instructions match, and another point if
the offsets of indirect addressing modes match as well:

score
′(i1, i2) =

{
2 + mode + offset, if type = 1

score, otherwise

where 〈type,mode, offset〉 = compare(i1, i2)

4.3 Breaking Ties
Our algorithm selects anchor points and runs the sequence

matching algorithm for each of them in order to identify the
anchor point with the highest matching score. In case of a
tie, we increase the score of each result with the best score by
score′(trap, anchor), thus doubling the weight of the anchor
point. The strategy favours the anchor point that is more
similar to the trapping instruction. If this computation again
produces a tie, we then select the anchor point that occurs
earlier in the local function. This strategy is based on the
observation that e.g., if the oops is due to a dereference of a
pointer that is NULL already at the beginning of the function,
then only the first dereference attempt will be executed.

4.4 Input Normalization
The disassembled code snippet or local function may con-

tain instructions such as <nop> (no operation), or <xchg
%ax,%ax> (exchange the values of registers), that have no
impact on the result of the execution, but that may e.g.,
improve memory alignment. We refer to these instructions
as junk instructions. The junk instructions might interfere
with our matching, since they could unnecessarily incur the
cost of a mismatch or a gap match if the compiler of the
victim kernel and the compiler of the local function do not
introduce them according to the same strategy. We thus
remove all junk instructions before matching.

5. EVALUATION
We have implemented our approach as a tool named

Oopsa.3 We now evaluate Oopsa, presenting our experi-

3Oopsa rhymes with a French phrase “où ça?” (where is it?).

Table 2: Distribution of Trapping Instructions
opcode mov* cmp* test add and ud2 inc bts
count 73 14 5 2 2 2 1 1

mental data and settings, the performance benchmarking,
and an analysis of the failure cases.

5.1 Experimental Data
We have selected 100 kernel oops samples, of which 90

come from the kernel oops repository [2] and 10 are from the
attachment of bug reports in the Linux kernel bugzilla [11].
Oopsa requires that a kernel oops have the following proper-
ties: I). It should contain a code snippet that can be properly
decoded. II). Gcc should be able to generate debugging infor-
mation mapping between the source code and assembly code
of the crashing function. Among the kernel oopses satisfying
these properties, we randomly selected 100 samples. The
distribution of trapping instructions among these 100 kerne
oopses is shown in Table 2, with 73 being variants of the mov
instruction. Furthermore, in 95 out of 100 cases, the trapping
instruction involves a memory-based operation. In 19 cases
an operand is a constant, which can make the instruction
more distinguishable. Finally, the number of instructions for
the code snippet is between 10 and 27, with 18 on average.

To evaluate Oopsa, we establish the ground truth for each
kernel oops by manually inferring the offending line through
the semantic matching (cf., Section 2.2). This analysis re-
quires up to several hours per oops, limiting the number of
cases that we can consider. For some of the bugzilla samples,
the offending line is given in the subsequent discussion.

5.2 Experimental Settings
Our experiments use a 64 bit machine(Debian 3.2.54-2), the

easily accessible mainline source code from kernel.org corre-
sponding to the version mentioned in the kernel oops, gcc ver-
sion 4.7.2 (Debian 4.7.2-5), and a kernel configuration file gen-
erated by the standard command make ARCH=i386|x86_64

defconfig, specifying a 32 or 64-bit architecture, as indi-
cated by the oops. Thus, our approach does not burden the
developer with hunting down distribution-specific debugging
kernels or recreating the exact build environment used to
create the victim kernel. The default compiling configuration
as stated previous allows us to generate the assembly code
for almost all crashing functions in our samples. For those
exceptional cases (7 out of 100), we then used the .config file
of Debian 3.2.54-2 machine, compiled the source file directly
and chose the default value for every prompt option, in order
to generate the assembly code for the crashing function.

Our experiments measure both the accuracy and the run-
ning time of our solution. Accuracy is measured as the
percentage of cases where the result is consistent with the
established ground truth. Running time is measured as the
average execution time per sample, over the 100 samples,
including the time for parsing the input, the time for running
the matching algorithm, and the time for generating the
output. We measure the running time on a Mac mini with
an Intel Core i5 2.5 GHz.

Our tool, Oopsa, is implemented in OCaml, consisting of
the parsing of the kernel oops, the parsing of assembly code,
and the matching algorithms. The implementation amounts
to 1645 lines of OCaml code. This OCaml code is compiled
into optimized native code for the evaluation.

Table 3: Performance with core settings

Scoring Function
Anchor Point Selection

No Yes
opcode based 64% / 450ms 86% / 20ms
opcode-operand based 72% / 838ms 90% / 33ms

Table 4: Performance with peripheral settings

Input Normalization
Score Adjustment
No Yes

No 90% / 33ms 91% / 33ms
Yes 91% / 31ms 92% / 31ms

5.3 Performance Benchmarking
Overall, Oopsa automatically identifies the correct offend-

ing line in 92 cases (92% accuracy), while the approach
merely relying on the instruction pointer only identifies the
correct offending line in 26 cases (26% accuracy). For these
26 cases, Oopsa works as well.

In Section 4, we proposed several designs concerning the
anchor point selection, the scoring function, the matching
score adjustment and the input normalization. We now
evaluate the impact of these designs.

The algorithms for anchor point selection and for the scor-
ing function affect the treatment of every oops, and thus
we consider them together. Table 3 shows the accuracy and
the running time for each possible combination. Using every
instruction as an anchor point, combined with the scoring
function that takes only the type of the opcode into account
gives the worst accuracy (64%). Extending the scoring func-
tion to also take properties of the operands into account
improves the accuracy (72%), but at a heavy performance
penalty (>80%) since it requires more sophisticated pars-
ing for each instruction. On the other hand, just with the
operand type based scoring function, simply applying an-
chor point selection gives a greater improvement in accuracy
(86%), because it eliminates anchor points that mislead the
algorithm, and also greatly improves the running time (22
times faster), because the complexity of the matching al-
gorithm is linear in the number of anchor points. Further
augmenting with the type-operand based scoring function,
we obtain the best accuracy (90%). We furthermore note
that the observed improvements in the number of correct
results are monotonic; the number of correct results improves,
while no previously correct results become incorrect.

Table 4 shows the impact of augmenting the use of the
anchor point selection algorithm and the scoring function
based on both the opcode and properties of the operands
with the elimination of junk instructions and the treatment
of ties. These optimizations, although not essential, help
Oopsa deal with certain corner cases and have little impact
on the running time.

For all the results shown in Tables 3 and 4, we have applied
the optimization that reduces the size of matrix considered in
the underlying dynamic programming algorithm, as presented
in Section 3.3. The optimization greatly improves the running
time of our solution, regardless of the other settings. Without
this optimization, the running times in e.g., the bottom row
of Table 3 rise to 4253ms and 112ms respectively, an increase
of up to over 5 times.

5.4 Failure Case Analysis
In six cases, either the local function is organized is a

way that is profoundly different from the code snippet, so
that the sequence matching algorithm is misled, or there
are several very similar subsequences in the local function,
and the sequence matching cannot distinguish among them.
These cases break our assumption that the neighborhood of
the counterpart instruction is more similar to that of the
trapping instruction than that of any other instruction. For
example, in one case, the crash occurs one line before a
branching statement. In the code snippet, the branch is
implemented using the jne instruction, while in the local
function, the branch is implemented using its opposite, je,
changing drastically the instruction order. In another case,
the oops is generated by a use of the BUG_ON macro, which
occurs twice in the crashing function, in almost identical
contexts. Both occurrences thus get the same score.

Second, our anchor point selection algorithm assumes that
the opcode of the counterpart instruction is at least of the
same type as the trapping instruction. In two cases, this
assumption does not hold, leading to failure. For instance,
in one case, the trapping instruction is a memory-access
operation <movzwl 0x54(%rbx),%eax> followed by a test
<test $0x2,%al>, while the counterpart instruction is a test
<testb $0x2,0x54(%rbx)> combining both operations. As
a result, the counterpart instruction is overlooked by the
anchor point selection mechanism, since there are several
candidates that match the trapping instruction better.

To address these cases, we plan to integrate more seman-
tic analysis, such as data flow analysis, into the matching
algorithm. One observation from the above example is that
the <test $0x2,%al> instruction has a data dependency on
the trapping instruction movzwl over the register %al. It
should be noted that the test instruction is more identifiable,
especially with a constant operand, since it appears less fre-
quently than the variants of mov instruction. Thus, it may
be more effective to find a counterpart instruction for the
test instruction, instead for the trapping instruction, and to
work back from there. We leave this as future work.

6. THREATS TO VALIDITY
In this section, we discuss the threats to the various types

of validity of our solution.

Construct Validity. Does the accuracy metric actually
measure the accuracy of our solution? The accuracy of the
measurement depends on the ground truth. For each kernel
oops sample, we establish the ground truth (its offending
line) through both the assembly code matching and the
semantic matching approaches. We found at least 3 pieces of
evidence to support our assessment in each case. In addition,
in certain samples from the Linux kernel bugzilla, the ground
truth is given in the comments following the kernel oops,
which reconfirms our assessment. There might, nevertheless,
be some mistakes in our assessment.

Internal Validity. Are the underlying assumptions of our
sequence matching algorithm valid in practice? Our main
assumptions are: I). If we find the counterpart instruction for
the trapping instruction, then we can find the offending line.
II). The counterpart instruction is situated in a neighborhood
that is the most similar to the one of the trapping instruction.
The first assumption depends on the functionality of gdb,
which holds for all cases in our experiment. The second may

not hold if the instruction sequence of the crashing function
that led to the oops is significantly different from that of
the mainline kernel. This can occur if the configuration
options or source code are different; Linux is open source
software, and anyone can freely recompile the kernel under
different configuration options and even modify the source
code. Alternatively, as described in Section 5.4, there is a
risk that the algorithm might be misled by multiple very
similar regions of code within the crashing function.

External Validity. To which extent does the solution gen-
eralize to new kernel oopses, or to different platforms? We
argue that the samples in our experiments are representa-
tive, since they are extracted from well recognized sources:
the kernel oops repository and the Linux kernel bugzilla.
We are not aware of any other resources that provide more
representative kernel oopses.

There are currently around 4400 kernel oopses with code
snippets in the kernel oops repository. We obtained 92%
accuracy on the 90 randomly selected samples from the
repository. According to the sample size calculator,4 our
solution should work for at least 95%(−5.55) of all qualified
kernel oopses. Therefore, we have a relatively high confidence
that our solution works for any kernel oops that satisfies the
properties listed in Section 5.

Furthermore, our sequence matching algorithm is primarily
designed to locate a counterpart point in one sequence for a
point of interest in another sequence. It is independent of
the platform and the programming language. Therefore, it
should be applicable to any scenario having a similar goal.

7. RELATED WORK

Error Report Debugging. WER [15] (Windows Error Re-
porting) is a distributed, postmortem debugging system that
collects error reports from the Windows operating system
as well as over 7000 third-party applications. Due to the
large deployment of Windows, one of the primary design
goals of WER [6] is to prioritise the error reports. For this,
WER groups the error reports into buckets based on a series
of criteria, such as the crashing program name, the excep-
tion code, and the trapping instruction offset. ReBucket [5]
clusters WER crash reports based on call stack matching.

The Linux kernel oops repository [2] receives several hun-
dred reports per day. We have previously done a statistical
analysis of kernel oopses [8]. In this paper, we focus on help-
ing developers debug a particular kernel oops, individually.

Several researchers have used fault injection to study the re-
sistance of the kernel to crash conditions generating oopses [7,
25]. Our work is different, in that it aims to help developers
debug kernel oopses. Our sample data also come from the
real world, instead being generated by fault injection.

Software Fault Localization. Fault localization is the ac-
tivity of identifying the exact locations of program faults [24].
Our approach identifies the offending line, which is the direct
cause of an error report, but is not necessarily the root cause
of a bug. On the other hand, our approach does not require
the execution of the crashing program, or the presence of
test cases, unlike most of the fault localization techniques.

4http://www.surveysystem.com/sscalc.htm

http://www.surveysystem.com/sscalc.htm

Sequence Alignment. In biology, global sequence align-
ment was first proposed by Needleman and Wunsch [16] in
1970, in order to search for similarities in the amino acid
sequence of two proteins. Later, Smith and Waterman [21]
introduced the problem of local alignment. Both alignments
are implemented based on the systematic study of dynamic
programming by Belleman [3] in 1957. Finally, a number
of authors have studied the question of how to construct a
good scoring function for sequence comparison, to meet the
matching criteria of different scenarios [1, 10].

Our problem is different from both the global and local
sequence alignment. Given a code snippet C and a local

function L, we seek to find a substring L̂ of L that has the
best global sequence alignment with C. In addition, we give
priority to the matching of the counterpart instruction — a
point of interest within the source sequence that is likely to
match the best with the trapping instruction in the snippet.

Sequence alignment has already been applied in software
engineering. Han et al. [9] applied sequence alignment to call
traces, while Lo et al. [14] did the same for program execu-
tion traces. Levenshtein distance [13] uses global sequence
alignment in measuring the minimal editing effort required
to change one text to another one. Several efforts have been
made to track the evolution of other software artifacts, such
as program execution traces [18], or variables [19], using the
global sequence alignment.

8. CONCLUSION
In this paper, we have shown how to use approximate

sequence matching to identify the offending line of a kernel
oops. Our approach is fully automatic, from extracting the
code snippet from the oops and obtaining the source code to
returning the offending line. As such, our approach has great
potential to help developers take advantage of the recently
established kernel oops repository.

In future work, we will consider how to improve the accu-
racy of our approach, possibly by applying analyses such as
dataflow analysis to the code snippet. We will also evaluate
our approach on a larger set of oopses, and consider whether
our approach could be relevant to other kinds of software.

9. ACKNOWLEGEMENT
We thank David Lo for his advice and feedback.

10. REFERENCES
[1] S. F. Altschul. A protein alignment scoring system

sensitive at all evolutionary distances. Journal of
Molecular Evolution, 36:290–300, 1993.

[2] A. Arapov. Kernel oops repository, Sept. 2012.

[3] R. Bellman. Dynamic Programming. Princeton
University Press, 1957.

[4] Bug report in bugzilla:
http://bugzilla.kernel.org/show bug.cgi?id=27492.

[5] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
ReBucket: a method for clustering duplicate crash
reports based on call stack similarity. In ICSE, pages
1084–1093, 2012.

[6] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: ten years of
implementation and experience. In SOSP, pages
103–116, 2009.

[7] W. Gu, Z. Kalbarczyk, K. Ravishankar, and Z. Yang.
Characterization of Linux kernel behavior under errors.
In DSN, pages 459–468, June 2003.

[8] L. Guo, P. Senna Tschudin, K. Kono, G. Muller, and
J. Lawall. Oops! what about a million kernel oopses?
Technical Report RT-0436, Inria, June 2013.

[9] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie.
Performance debugging in the large via mining millions
of stack traces. In ICSE, pages 145–155, 2012.

[10] S. Karlin and S. F. Altschul. Methods for assessing the
statistical significance of molecular sequence features by
using general scoring schemes. In Proceedings of the
National Academy of Science, volume 87, pages
2264–2268, USA, Mar. 1990.

[11] Kernel bug tracker: https://bugzilla.kernel.org/.

[12] M. Kerrisk. Kernel submit: Improving tracing and
debugging, 2012. https ://lwn.net/Articles/514898/.

[13] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet Physics
Doklady, pages 707–710, 1966.

[14] D. Lo and S.-C. Khoo. SMArTIC: Towards building an
accurate, robust and scalable specification miner. In
ACM SIGSOFT FSE, pages 265–275, 2006.

[15] Microsoft MSDN. Windows error reporting.

[16] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

[17] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in Linux: ten years later. In
ASPLOS, pages 305–318, Mar. 2011.

[18] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Sieve: A tool for automatically detecting variations
across program versions. In ASE, pages 241–252, 2006.

[19] M. K. Ramanathan, S. Jagannathan, and A. Grama.
Trace-based memory aliasing across program versions.
In FASE, pages 381–395, 2006.

[20] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: facing the
Linux 10,000 feature problem. In EuroSys, 2011.

[21] F. S. Temple and S. W. Michael. Identification of
common molecular sequences. Journal of Molecular
Biology, 147:195–197, 1981.

[22] M. Tompa. Lecture notes on biological sequence
analysis. Technical Report 2000-06-01, Department of
Computer Science and Engineering University of
Washington, Winter 2000.

[23] L. Torvalds. http://www.kernel.org/doc/
Documentation/oops-tracing.txt.

[24] W. E. Wong and V. Debroy. A survey on software fault
localization. Technical Report UTDCS-45-09,
Department of Computer Science, University of Texas
at Dallas, Nov. 2009.

[25] T. Yoshimura, H. Yamada, and K. Kono. Is Linux
kernel oops useful or not? In HotDep, Oct. 2012.

http://bugzilla.kernel.org/show_bug.cgi?id=27492
https://bugzilla.kernel.org/
http://www.kernel.org/doc/Documentation/oops-tracing.txt
http://www.kernel.org/doc/Documentation/oops-tracing.txt

	Introduction
	Background
	Key Attributes of a Kernel Oops
	Pinpointing the Offending Line
	Properties of Oopsing Functions

	Automating assembly code matching
	Definitions
	Anchored Sequence Matching
	Anchored Alignment

	Design Decisions
	Anchor Point Selection
	Scoring Function Design
	Breaking Ties
	Input Normalization

	Evaluation
	Experimental Data
	Experimental Settings
	Performance Benchmarking
	Failure Case Analysis

	Threats to Validity
	Related Work
	Conclusion
	Acknowlegement
	References

