A critical approach to Open Source software

Stefan Gorling

Submitted for the degree of Masters of Science
June 2003

Abstract

The purpose of this thesis was to discuss a number of assamptgarding the benefits of Open
Source software projects. By studying what has been writteyut Open Source combined with a
number of own data collections, this thesis argues that:

e Brooks law is still valid in Open Source projects

e Many Open Source projects are failures

e Open Source culture is a product of the 90s, not the 70s
e Open Source is no guarantee for reduced lock-in effects

e Our most famous Open Source projects are not built up by wewddng for free, but profes-
sionals, employed by commercial companies to contributkegrojects.

e Large Open Source projects are often hierarchical and baratc

e Opening your source does not automatically lead to a larg#yeu of contributors
e Open Source breeds diversity, not a single winner

e Open Source projects often targets the community itsetierahan external actors

e Companies benefiting from Open Source are often based dtidred business models rather
than revolutionary visions

e Open Source is not necessarily an efficient way to develdpaod

Copyright (© 2003 byStefan Gorling.

Acknowledgments

Here | would acknowledge my cat if | had one.

Contents

Abstract [
Acknowledgements iii
1 Introduction to Open Source 1
1.1 WhatisOpenSource i i i it e 1
1.2 Aexample of Open Sourceincorporations. e oL 2
1.3 Ashortnoteonlicenses 3
1.4 Whentochoose OpensSource. i i, 4
2 Method and Delimitations 5
2.1 Background 5
2.2 ResearchQuestion e 5
2.3 Description e e 5
24 Phases 5
25 Delimitations e e 6
26 Method e 6
2.6.1 Investigation 1: Who is paying for free software 6
2.6.2 Investigation 2: A study on Open Source projects thubntook off 6
2.7 Potential conclusionstobereached 6
3 Open Source praise 7
4 Results from data collection 11
4.1 OpenSourcedevelopers e 11
4.2 OpenSource projectS o i e e e e e 13
4.3 Open Source communities e e e 15
4.4 Open Source businessmodels o . 17
4.4.1 Services for the players, the communitiesandthegame 17
4.4.2 Repackaging and distributiono 0oL 17
4.4.3 Brands, Trademarkandspin-offs. 19
4.4.4 Coopetition 19
4.5 Open Source methodology 19
451 BrooksLaw 19
452 BUIGAUCIACY . . . « v v i i i e e e 02
453 Efficiency 12
4.6 Lock-ineffects e 21
4.7 Participation in commercial Open Source projects 23
5 The Concept of Open Source exemplified - The Mozilla Project 25
5.1 The story of Netscape CommunicationInc 25
5.2 The birth of the Mozillaproject aa 27
5.3 The prerequisites of the Mozillaproject 27
5.4 The failure of the Mozillaproject u ... 28
5.5 The epilogue ofthe Netscapeera i mmu.... 29

Contents

%
6 Conclusions 30
6.1 Themythsrevisited e 30
6.2 Suggestions for furtherresearch, 32
Bibliography 33
Appendix 36
A Open Source Development - Who is paying for free software? (653
B A study of the Open Source projects that never took off 52

19th October 2004

List of Figures

1.1
1.2
1.3

4.1

4.2
4.3
4.4

51

A traditional software developmentcompany 2
A software development company using third party compﬁm 2
A model of an Open Source communitymodel 3

Afigure illustrating the number of active vs. inactivejects. The high bars denotes

inactive projects. e 13
A figure illustrating the gap between the core and theriateusers/spectators . . . 18
A figure showing how organizations is narrowingthe gap.... 18
A figure showing the hierarch of the Linux Kernel project 20
A figure showing Web Browser marketshare 26

Vi

List of Tables

4.1 The ratio of paid vs. unpaid developers in various Opam@&oprojects. 11
4.2 A table showing how many developers the projects hawgeéts with more than 7

developers have been grouped as Other. 13
4.3 A table showing who the projects are targeting. Iteme\bdl% has been grouped

asOther e 14
4.4 A table showing which Operating Systems projects agetarg. Items below 1%

has beengroupedasOther 14
4.5 A table showing the maturity of the projects which arestive. 15
4.6 Number of file formats various word processors canexport. 23
A.1 Atable listing the most active persons on the apacheatilinglist during 2002. . . 39
A.2 Atable listing the most active companies on the apaaheathilinglist during 2002.

(Only persons in the previous figure is included.) 40
A.3 A table listing the most active persons on the gnome-ldewimghst durmg 2002. . 42
A.4 A table listing the most active companies on the gnomesldmailinglist during

2002. (Only persons in the previous figure is included.) . 42
A.5 A table listing the most active persons on the linux- Ieemanmgllst dunng 2002. 44
A.6 Atable listing the most active companies on the linuxrleémailinglist during 2002.

(Only persons in the previous figure is included.) 45

A.7 Atable listing the most active persons on the sambar-ﬁeahmalllngllst durmg 2002. 47

A.8 A table listing the most active companies on the sambhrtieal mailinglist during

2002. (Only persons in the previous figure is included.) . 48
A.9 A table listing the most active persons on the wine- dm@llngllst durlng 2002. 50
A.10 A table listing the most active companies on the wineetlmailinglist during 2002.
(Only persons in the previous figure is included.) 51
B.1 A table showing how many developers the projects havgjefts with more than 7
developers have been grouped as Other. Ce 54
B.2 Atable showing how many projects the developers areeau:tl 54
B.3 A table showing who the projects are targeting. Itemswe% has been grouped
asOther e 55
B.4 A table showing how many developers the projects haeedtbelow 1% has been
groupedas Other 55
B.5 A table showing how many developers the projects haemdtbelow 1% has been
groupedas Other 6 5
B.6 A table showing how many developers the projects haeemdtbelow 1% has been
groupedas Other 6 5
B.7 A table showing how many developers the projects haeemdtbelow 1% has been
groupedas Other 75
B.8 A table showing how many developers the projects haemdtbelow 1% has been
groupedas Other 75
B.9 A table showing which Operating Systems projects aigetarg. Items below 1%
has beengroupedasOther 58
B.10 A table showing how many developers the projects haeend below 1% has been
groupedas Other 9 5

Vii

List of Tables viii

B.11 A table showing how many new projects that were creaaet enonth. 60
B.12 A table showing how many projects that had cvs-acte@ggh month. 62
B.13 A table showing how many projects began to use cvs eactthmo. 64
B.14 A table showing how many new projects that releasediigsfile each month. . . . 65
B.15 A table showing the number of months between the creafia project and its first
download. 67
B.16 A table showing the number of months between the creafia project and its first
download (only projects with releases counted). . . 68
B.17 A table showing the number of months between the cneaﬂﬁa prOject and |ts Iast
cvs-activity. (only dead projectsincluded) L. 69
B.18 A table showing the maturity of the projects which am&ciive. 70
B.19 A table showing how many projects that were activefimaceach month (only
projectsusingcvsincluded). e 71

19th October 2004

Chapter 1

Introduction to Open Source

Begin at the beginning and go on till you come to the end; thep.s
—Lewis Catrroll

The purpose of this chapter is to give you, the reader, andottion to what Open Source is and
how it is used. This introduction is rather short, and it nititerefore not be sufficient to explain
everything you need to know about Open Source in order toyehije thesis to its full extent. If |
have failed to provide the necessary pieces here, pleasatalok at the reference list.

1.1 Whatis Open Source

Open Source could be described as a collective effort toldpsoftware in an efficient way. In
order to maximize the benefit from the software, the devetpleooses to give away the immaterial
rights to their works to anyone, often provided that theyltmdame if they improve the software.
What Open Source is, depends on the perspective one usesud/aspects of Open Source
could be described as a methodology to develop softwardfiewr even a religion.
The Open Source trademark is protected by the Open Sout@iltg, who describes the basic
idea behind Open Source as [32]:

“The basic idea behind open source is very simple: When progrers can read, redis-
tribute, and modify the source code for a piece of softwaesbftware evolves. People
improve it, people adapt it, people fix bugs. And this can lesygt a speed that, if one
is used to the slow pace of conventional software developreeams astonishing.”

The perhaps most famous Open Source project is the LinuxaKexnd various projects surrounding
it. The project were created by Linus Torvalds in 1991 andehaow developed into a popular
operating system, used by millions people. Linus posteditstepiece of source code to the public
later on that year and since that day, thousands of develb&e joined the project by contributing
with fixes and new features.

The Linux Kernel project have often been used as the primesynele of the efficiency of the
concept of Open Source, and the conclusions made from thjegtrhave often been generalized
into all areas of software development by various writershansubject.

The most common way to describe Open Source is to look at itagéination of a methodol-
ogy and a culture.

Open Source methodology is described as a highly decergdatievelopment system, enabled
by the Internet. By a common versioning control system, ibgears over the whole world can keep
their local copy of the source code and develop on their watks. When they have a feature that
they want to add, or a bug they have a fix for, they send a retutret maintainer to include the new
code into the source code tree. The maintainer acts as afoelagproving additions to the source
code, in large projects there might be multiple levels ofntainers, each responsible for a certain
part of the code.

The Open Source culture could be compared to the culturdbletias. Everyone who have been
a member of a teem sport can tell you that the actual gamelyigqrart of the reason why they train,

1

1.2. A example of Open Source in corporations 2

the social activities around the sport, communication wéhple sharing a common interest, is often
as important as the actual game. Developing a project ismigtam interaction with the computer,
but with a society of other developers working on the projétie Open Source cultures have a low
level of tolerance for free-riders, and strong ethic opisiabout sportsmanship and fair play. There
is a high level of technical reasoning, striving to alwaydule the best technical solution.

1.2 A example of Open Source in corporations

To give a better description about how Open Source could beflwéal for corporations, | will
illustrate an example of a small software development cammpare. The type of company is chosen
as it is easy to show how they may benefit from using Open Sduitbeir products.

We will begin the journey with the picture of a traditionalnapany (figure 1.1).

Conpany

—[> Customers

Figure 1.1: A traditional software development company

Our traditional company is very simple, it is a software camp developing various software
solutions for their customers. The product is built fromesch in-house and the company owns the
full rights to the products.

When our simple company faces a problem that is too largénantto handle themselves. Say
that they need to incorporate a database engine in theiupt®dn order to store and process data
in an efficient way. As a database engine is complex, the company chose todieetisrd-party
product rather than inventing the wheel themselves (figutg 1

Conpany

—[> Customers

3rd Party Vendor

D Customers

Pr oduct

Figure 1.2: A software development company using thirdyp@aotnponents

As the database engine vendor specializes in deliveringisnk to other companies, they are
able to split up the cost on multiple customer, thus reduttilgcost for every single party, as well
as generating a, often rather large, profit for the databessdor. The drawback for our company is
that they have no, or little, power over what the third-paspndor chooses to do in the future.

The other choice available for our company is to use a Openc8quoduct (figure 1.3).

If the company could find a Open Source project which to sontengsolves their problem,
they could join the project and use that product as a databagee for their project. If the project
does not solve all the needs of the company, they will haveltbthe features themselves, or hire
someone to do it. But as long as those additions are less sixpehan buying the whole product
from a commercial vendor, it might be beneficial to choose &rOgource product. The main
benefit is that you are in complete control of the product, gmuld modify it as you wish. The main

1A database engine such as Oracle, is a good example as thepgsherally is considered to complex, and requires
specialization. Even huge companies such as the busingsrsyendor SAP do not make their own database engines, but
utilizes third party solutions.

19th October 2004

1.3. A short note on licenses 3

Conpany

Conpany

OpenSour ce
Communi ty

—[> Customers
—[> Customers

Free-Ri ders

QG her Contributors

Figure 1.3: A model of an Open Source community model

disadvantage is that if there is nobody else is interestedearsame features, you most likely will
have to add them yourselves.

1.3 A short note on licenses

An introduction to Open Source could not be complete unlessliscuss the foundation that keeps
it all together. How do we ensure that free-riders do notl $keawork done by the community and
leaves off.

The intellectual property created by programmers is alvpagtected by copyright, an individual
can not resign their copyright rights to their works. Insteétrying to resign from their rights, they
have used the copyright system to their benefit. By releatsialy works under various licenses,
stating exactly what one may do with the source code, theyreahassured that nobody could

violate their rules.
There are a large number of licenses used, the GNU Publio&é&and the Lesser GNU Public

License are the most popular oAes

Those licenses are constructed to ensure that the softsvaneliremains available to the commu-
nity, the various licenses differ to some degree but the (Bmnce Initiative have defined a number
of basic principle a license should follow in order to be edlbpen [33].

Free redistribution

Access to source code

Must allow derivate works

. Must protect the integrity of the author

. Must not discriminate certain users

No Discrimination against fields of endeavor
. Distribution of license

. The license must not be specific to a product

© 0o N o g A~ w N P

. The license must not restrict other software
10. The license must be technology-neutral

It is important to understand that the license is a very e¢igsue when it comes to Open Source
development. At a quick glance one might interpret the keeas restrictions on how you are
allowed to use and distribute the provided source code. &wgdr, this contract is a simple legal
document, regulating what you may and may not do with thexsoét. But to many developers, it is

2See Appendix B

19th October 2004

1.4. When to choose Open Source 4

much more than that. The decision on what license to use igtdyhideological decision, different
licenses reflects different views on what is right and wranthe world of Open Source.

Software licenses are often divided into two main categokigzal and non-viral licenses.

Viral licenses is the most restricted license. The namertatgs from the fact that once a piece of
software is “infected” with a small snippet of source codetised under a viral license, the whole
project must be relicensed under this license and given latike community. This restriction
disables many commercial companies from using this kinétefise, as it forces them to give away
their whole product if they borrow a single module contagnanviral license.

The non-viral license is a slightly less restricted, it riegsi that improvements in the current
code is to be given back to the community, but that other meslusing the code could be licensed
under another license.

1.4 When to choose Open Source

After this short introduction, the question remaining uswaared is the single one pure economists
really are interested in: when shall we go for the open wagmahall we go for the third-party way
and when should we do everything in-house.

Lucky for us, pure economics are built up by rather simplgjdaules, and the answer is as
obvious as the question: when the profit of choosing the op®n i greater that the cost. This of
course simply ignores that the actual estimate of costs aims gre the hard part, but that is business
economics as usual.

This chapter will not go deep below the surface on when to se@pen Source, and when to not
do it, as my main goal is to question whether the widely usedragtions are true or not. Starting of
by using them to discuss the benefits and disadvantages of 8pece might not be all that bright.

Open source have been used in many companies, for many yéidusut anyone caring about
it, as this kinds of decisions were often delegated downed TS staff. As IT/IS have become a
critical success factors for many companies, managers oy hegels have started to care about the
strategies and policies, making this decisions managatia¢r than technical.

19th October 2004

Chapter 2

Method and Delimitations

The researches of many commentators have already throwh dawkness on this sub-
ject, and it is probable that if they continue we shall soonwmothing at all about
it.

— Mark Twain

The purpose of this chapter is to define the methods and datioris | will use for this thesis.

2.1 Background

The increasing interest in Open Source software is full atess stories and strategies instructing
companies in how to get their free lunch by converting thiategies in order to benefit from the
Open Source software (OSS) community. A few years agongl&bout Open Source were a fool-
proof way to raise the value of your stocks. When the hype®fiw economy crashed, one might
have believed that it would be the end of the Open Source logpdristead, the hype have increased,
so that even governments around the globe are evaluatimgiitier to scare Microsoft to lower their
prices. Open Source is often described as a revolutionsamething which radically changes all
our previous knowledge.

2.2 Research Question

Does Open Source methodology and business models fundaipetiffers from traditional soft-
ware development, is it necessarily better?

2.3 Description

The aim is to study the conceptions of OSS and determine wh#iby are misconceptions or not.
OSS is often described as a very effective methodology t@aterguperior products, however, initial
research shows that there are much redundancy and burepircthis environment.

Much have been written regarding Open Source softwaregitple, its ideologies and method-
ology. As this field of research still is emerging the lastrgdsave been something of a golden era
for scholars and journalists exploring this area, oftendsid by the hype. Many scholars of today
are building their works on this foundation built during #r@ of the New Economy, affected by the
early IPO success of companies which today either are deatleast struggling to survive. Is the
praise about Open Source well grounded?

2.4 Phases

1. Identify the mythical properties of the free lunch, whaaid to be significant about Open
Source Software. How is the phenomena covered in presstaratlire.

5

2.5. Delimitations 6

2. Question the properties from a critical perspective Wmtidiscussing the rhetoric and by
collecting data from the Open Source communities (OSC) tiadves.

3. Exemplify how the difference between myth and reality affect decisions regarding opening
the source code by discussing the release of the Netscapes®&ro

2.5 Delimitations

The properties of Open Source could be discussed to an efamigth, in order to be able to narrow
it down | will single out a limited number of assumptions tefis on.

2.6 Method

The main emphasis of this thesis is to discuss how curremersron the topic reasons on the topic,
therefore a major part of the study will be carried out by gind what has been written on the
subject so far. In order to discuss the culture, two quaiuiénvestigations will be carried out.

2.6.1 Investigation 1: Who is paying for free software

The aim of this study is to identify to what extent Open Sowwaiware developmentis carried out
by amateurs of professionals. By studying the activity amérious development mailing-lists for a
number of the most popular Open Source projedtwill be able to identify the most active persons
and their employers, thus creating a picture of how manyeftlthat are working for free.

2.6.2 Investigation 2: A study on Open Source projects that ever took off

The other study will aggregate statistics from over 35.0p@1®Source projects hosted on Source-
forge.Net, the largest community for Open Source developim®jects. By studying those projects

| will be able to provide statistics about not only what kinfdsoftware projects and platforms that
are most popular, but also how long projects usually liveotethey either become a success or a
failure, as well as how many developers there usually aredpen Source project.

2.7 Potential conclusions to be reached

As the era of the new economy have exaggerated the conceppaaf Source, | expect to find
out that some of the properties of the culture and methogalkeyt as beneficial for commercial
companies as earlier described. My initial research shbasthe vast majority of Open Source
projects dies long before they become viable software isoisit My research further determines
that most of the developers working on the most popular Omemc® projects are actually paid by
various software companies, the Open Source culture haredmverted into a loosely connected
system of co-operation between companies, rather thanytmofects for computer nerds.

| also expect to find out that the effects of Open Source haga lagely exaggerated, and that
some of the assumptions actually are based on myths, while pooves more viable.

1Such as the Apache Web server, Linux Kernel, SAMBA file ser@OME desktop, WINE windows emulator. Full
data is included in appendix A

19th October 2004

Chapter 3

Open Source praise

The Linux philosophy is to laugh in the face of danger. Oopsorn/one. “Do it
yourself” That's it

— Linus Torvalds

The purpose of this chapter is to discuss, identify and eX&nmphat statements | have found to be
significant assumptions when discussing the concepts ofi Sparce.

Recently there has been an increasing buzz in the media &ymit Source, companies are
investing large amounts of money and resources into an driedn\wave yet not been fully explored.
Governments all over the world is investigating how to repléheir existing software in order to
lower their costs. There have been a number of studies on Sperce from various aspects, but
some of them have been written rather hasty and sometimiéadpge homogeneous perspective. In
this chapter | will present some praise about Open Sourcener@l to illustrate that it is in fact a
praised topic, as well as focus in on a few, what | call mytbgids in special which | will return to
in the following chapters.

IBM is one of the companies which openly states that theyraresiting huge amounts of money
on Open Source software. In year 2000, IBM announced thgttleee to spend over 1 billion USD
on Linux related activities during the next year, and thitreir servers should be able to run Linux.

Open source is gevolution in software development- a revolution well underway. In
fact, many of the Internet’s key technologies were develpp®d continue to evolve
using open source methods

—IBM [15]

Even though Microsoft initially met the success of Linux abgden Source first with ignorance,
and then with FUD-marketing, they have recently turned adoand now acknowledges this new
movement as a serious competitor to their de facto monopbihey are now trying to find new

ways to compete with something that is free and cannot be@cjuvhich is a fundamentally new
situation for them.

"Linux is a serious competitor,” said Ballmer. "We have tonpete with free software,
on value, but in a smart way. We cannot price at zero, so we togegtify our posture

and pricing. Linux isn’'t going to go away—our job is to progid better product in the
marketplace."

He acknowledged there was more to Linux than free softwheestain benefit of
the open-source movement was the community developingaidtand sharing ideas.
"Linux is not about free software, it is about community,"dzed. "It's not like Novell,
it isn’t going to run out of money—it started off bankruptamway."

— Steve Ballmer, Microsoft [16]

Hewlett Packard have also been keeping their eyes of Operc&esaftware, they are not often seen
in the Open Source communities in the same way as IBM, nore&pfdature Linux servers in their
TV-commercial, but they are committed to Open Source aseafidat changes the current game in
the software industry.

Chapter 3. Open Source praise 8

Open Source is a revolutionary perspective on how softwaoeld be created. It de-
fies the stereotypes of what is to be a technical person invtbety-first century. It
challenges the very foundation of the current software $trgu

Using Linux and open source technologies, thousands ofparges are cutting costs,
gaining flexibility, and discovering powerful new sourcédosiness value.

— Matrtin Fink, Hewlett Packard [10]

To give you a taste of what the media is writing, | have addedaeafrom News.com below. There
are many others, too many to mention them here, but the costeften resembling what Olson has
to say.

Quietly, over the past two years, open-source software lagemn enormous difference
in the way businesses operate. It's already deep in thenetterMore importantly,
though, smart companies are finding ways to use open sousmlgi They’re building
better products faster-and more cheaply—than they evéd before. If you're not at
least thinking about doing that yourself, you could be inbie.

— Michael A. Olson, News.com [31]

The first potential myth | will look into is that Open Sourceaften market as a bullet-proof way
to get a pool of developers, contributing to your projectjrig back state of the art computer code
which you could migrate back into your commercial productfie community is described as a
huge pool of developers, spending their time on contrilgubin different computer projects, without
any economical motives at all. If i only open up my softwareergbody will start using it and
contribute to it.

e Myth: If | give away my software to the Open Source community, tlamas of developers
will suddenly start working for me for nothing

The Open Source methodology has been described as the rficshéfvay to develop large soft-
ware projects in an efficient manner. Using the Linux kersedaexample, writers often concludes
that the Open Source way of doing things is the most efficiayttw develop software. Much of this
comes from the essay “The Catherdral and the Bazaar”, bySEfRaymond [36], one of the chief
ideologists originating from the culture itself. Raymorahcludes that Brooks law [3], which stated
that adding developers to a software project only adds cexitgland that development therefore
must be carried out by single individuals or very small tegmase finally been over-proved.

As Linux is marketed as a better operating system than thaseéded by Microsoft, one presses
the point that Open Source development projects will be &bléevelop, and if left alone, will
produce state of the art software. For example, investigathave shown that the networking code
in Linux have fewer errors in the code than many commerciatating systems [37].

Raymond further reasons in his introduction why he decidesittdown and write his book:

What | saw around me was a community which had evolved the efiiesttive software-
development method evand didn’t know it![36]

Hewlett Packard have accepted this fact and are trying tiean internal Open Source community,
using Open Source methods in-house as a way to increaswityesid efficiency [23].

e Myth: Open Source methods is a highly efficient way to develop sofw

The beauty of Open Source is that everyone can contribudghanthe best solution will be selected.
This makes the software evolve in a Darwinistic way, wheeestinongest pieces of source code will
be accepted into the program, hence making the program gebssible solution.

Russel C Pavlicek writes that:

It does not matter whether the best solution comes from sometth three Ph D’s and
30 years of experience or from a bright 18-year-old who is pegjinning college. The
project will benefit most by using the best solution. The peek of the author makes
little difference. The issue is the solution [34, p. 15]

19th October 2004

Chapter 3. Open Source praise 9

Which greatly exemplifies the theory that the best (tecHpgmdution will always win and make it
into the project, no matter from whom it may come. This hambregarded as one of the greatest
benefits with Open Source. The survival of the fittest.

e Myth: The best solution will always win

One successful part of proprietary software and hardwardas is that they lock you into a specific
platform. When you buy a Playstation game console, it wiliydre able to play games which have
been certified by Sony, the producer of the console. The heriddicking in the end user is obvious,
if the user chooses your platform, and it is locked, you essstiat the customer will return to you,
no matter how satisfied they are with your services. As loniguging upgrades from your current
vendor is cheaper than replacing the whole platform witleotlendors, the customer will stay with
you. The more Playstation games you buy, the less likely tisat you will buy another console
instead, and by making the next generation backwards-ctiniga/ou further lock in the customer
into your platform. This is why game consoles are often sbll@rice below cost of production, as
it will lead to revenues from new games for years to come.

| will try to avoid comparison between Open Source and Miofpsas it is like comparing
Microsoft to lets say, Balanced Scorecard. One could coepampanies basing their products on
Open Source, with Microsoft, but you can not compare a coypad a methodology or culture.

However, as Microsoft is the master example of this stratéggy will here be used as an ex-
ample of lock-in effects. Microsoft with their Office Suitegty hold a monopoly of office software
such as word processors and spreadsheet software. The eacformat of the Microsoft Office
programs is secret, and although it has been reverse engilteea certain level, it is virtually im-
possible to ensure that another office suite is 100% condpatiind for every letter written, for
every spreadsheet created, you are further locked in tol#iti®pn. As long as the cost of licensing
Microsoft Office is less than the cost of converting all athearoduced documents as well as tutor-
ing all users in a new system, the customers will stay. Heme&jng their products more proprietary
enables them to increase prices.

Many countries are adopting policies in order to make suae@pen Source products are eval-
uated together with proprietary products when considesimghases.

Open Source Software within UK Government, published byGhaéinet Office this
week, spells out key decisions over open source use by ther@wment, including its
intention to "seek to avoid lock-in to proprietary IT prodsiand services". [18]

e Myth: Open Source avoids lock-in effects

Another strength of the Bazaar model, or Open Source madsdidl to be the concept of releasing
early and often, and that this policy enables users to exaarid test the software continually during
the development process and thereby contribute with bugg-fird ideas. By tightening the feedback
loop, and enabling users to act as co-developers, your hesemsnes more committed, and they can
help improve the software.

The Bazaar model allows motivated users to examine andhesiftware while it
is in development [34, p. 11]

This assumption was one of the reasons Netscape decideéndlogir browser. Brian Rehlendorf
developer on the Apache project argues that:

Furthermore, depending on the license applied, you mayosesr lcosts involved with
development of your software. You're likely to see bugs fikgdnotivated customers,
for example. You're also likely to see new innovations in yeaftware by customers
who contribute their code to the project because they waségoit maintained as a a
standard part of the overall distribution. [6, p. 155]

e Myth: The Bazaar model allows motivated users to examine andhestiftware while it is
in development

19th October 2004

Chapter 3. Open Source praise 10

The story that a bunch of nerds, working for free, is threiaigthe Microsoft empire, is a catchy
slogan which have been popular among journalists. It is &agjtch stories such as the revenge
of the nerds, or the cyberpunk communists. As a legacy fraeelstories, Open Source projects
is often described as ruled by pimpled nerds working for &kaights long, without any monetary
motives.

It all began when Linux where to be explained to the massekttanposter boys actually were
nerds working for free. TV series such as “Triumph of the séahd “Revolution OS” [25], best
selling books like “Accidental Empires: How the Boys of &din Valley Make Their Millions, Battle
Foreign Competition, and Still Can't Get a Date”, or Tongatvn book , “Just for fun” [42], helps
to nurture this myth.

In March 2003, Business Week had an issue titled “The Linuksilpg” carrying the subtitle

How a ragtag band of software geeks is threatening Sun anetift—and turning the
computer world upside down

e Myth: The Open Source communities is built up by nerds workingree f

The myths lives on.

19th October 2004

Chapter 4

Results from data collection

Get your facts first, then you can distort them as you please.
— Mark Twains

The purpose of this chapter is to summarize collected datd thave gathered.

4.1 Open Source developers

One of the few studies that has been done on Open Source pexgipas carried out by the Boston
Consulting Group (BCG) in cooperation with the Open Souresdlopers Network (OSDN) [1].
The study was done as a web questionnaire running on the gropabsites run by OSDN. Even
though the study have been questioned by some develpjiersuld be used for some basic con-
clusions regarding the developers demographics and ntiotiga A more detailed study were done
in the EC founded FLOSS project, and may be found in SectiontHsir final report [18].

The age span of Open Source developers are rather largesdhyin all ages. There is a large
cluster of developers in the ages of 20-35, with strong mateidance. (est. over 95% of the active
developers). Two fifth of them are singles, the rest, arouhéldives in some kind of partnership,
which to some extent defies the rumour of introvert nerdsingntihe Open Source communties.

The ratio of paid vs. unpaid work various between differentjigrts. The most famous and
mature Open Source project as the Linux Kernel have a largeianof professional contributcts
where smaller, hobby projects often have none. There sezbesa connection between the matu-
rity/popularity of the project and the ratio of paid contribrs, although this has not been thoroughly
investigated.

Project % professionalg % amateurs
The Apache Webserver 68 32
The GNOME Desktop | 48 52
The Linux Kernel 86 14
The SAMBA Server 64 38
WINE 33 67

Table 4.1: The ratio of paid vs. unpaid developers in vardpen Source projects.

Table 4.1 indicates that what once were pure hobby projeetge evolved, due to the impact
of commercial interests, into a loosely connected systeanoperation between various companies
interested in the technology offered by the project.

While there are a large share of professional developersdget few popular projects, other
investigation shows that there are a larger share of hotshpi®ther, smaller, projects. Our

1Claims were that some of the questions and alternatives altered during the survey.

2See Appendix A for full information.

11

famous
Open Source
projects are
not built up by
nerds working
for free, but
professionals,
employed by
commercial
companies to

4.1. Open Source developers 12

The BCG Study clearly shows that the Open Source communitgtisa homogeneous environ-
ment, they chose to group the respondents into four subgidyp. 18]:

e Believers, stating that code should be open for ideologeadons.
e Skill enhancers, hacking to learn.
e Fun seekers, hacking for joy.

o Professionals, hacking for money.

This grouping is done as there is almost as many opinions divations and reasoning as there are
respondents to the study. | believe that the main conclssiimm this data is not that those four
groups could be identified, but that the terms hacker and Quemce developer should be used
with care, as the meaning could be very diverse. It is possitivide people into different groups
depending on how they reason regarding their developmétsfbut the generalizations will be
very inexact as many people tend to affiliate themselvesmihy of those groups.

The question of motivation is often being discussed, fongxa, a recent article on the com-
munity website Slashdot argues that there on a single dag twey new articles discussing this
matter [2], reaching mutually exclusive conclusions.

As the most famous essay on Open Source development, Thedtalthnd the Bazaar [36], is
based upon an authors own experience with a Open Sourcefpragny other introspective articles
have followed thereafter. Many developers states thathladlenge is what really motivates them.
Once they are presented to the problem, they feel that thdy coeate a better solution themselves,
rather than using something existing.

Raymond starts by suggesting that:

Every good work of software starts by scratching a devekjeln.
Soon to be acknowledged by famous hacker Larry Wall [6, p] 127
Three great virtues of programming are laziness, impagiamc hubris.

Many of us recognize the inspiration we will get if someonis ties that we can not do a certain thing.
Itis something that have motivated people for centuriemglstuff not only to impress others, but to
show themselves that they can do the impossible. A prograrrigdht enough not to be challenged
by school, could easily find themselves challenges in thddaafrOpen Source software. When
Richard Stallman, the authority on free software, spokehah & task was to difficult, someone
where bound to step up to the task.

Stallman said that the job was to difficult - it would requireaamplete rewrite of all the
tools, and it would be too difficult to maintain. Gumby toldrhit wasn’t such a “Big
F*cking Deal” and hence named this new creation the BFD tipré@/\e explained to
our customers that BFD stood for the binary file descriptmaliy.) [6, p. 81]

19th October 2004

4.2. Open Source projects 13

4.2 Open Source projects

The media often focus on a few established, successfulqisoj@he reason is obvious, it is easier
to identify them and it is easier to tell the story of a heroc&ss is more interesting than failure. In
order to gain a wider understanding on how many Open Souageqts actually fits in to the patterns
of the larger projects | have studied a larger number prejettvarious sizes and success. The study
contained roughly 34 000 projects hosted on the largest Qpeince developer community on the
net.

My first finding is that most projects are small, over half of gtudied projects are single man
projects, over 75% have less than three developers. Lessghaer cent have five or more devel-
opers.

Projects | Percentagel Aggregated| Developers
20242 | 59.08 % 59.08 % 1
6223 18.16 % 77.24% 2
2797 8.16 % 85.41 % 3
1515 4.42 % 89.83% 4
5
6
7

952 2.78% 92.61 %
575 1.68 % 94.29 %
444 1.30 % 95.58 %
1244 3.63% 99.21% Other

Table 4.2: A table showing how many developers the projeat®h Projects with more than 7
developers have been grouped as Other.

Over time, only a third of the registered projects have hadaativity. Most project are com-
pletely dead or have very low activity.

Number of active/inactive projects each month
14000 -

12000 -
10000 -
8000

6000 -

Number of active/inactive projects

4000

ol

1999-11 2000-4 2000-9 2001-2 2001-7 2001-12 2002-5 2002-10
Year-Month

Figure 4.1: A figure illustrating the number of active vs. dtige projects. The high bars denotes
inactive projects.
Many Open
Open Source projects fails for many reasons, if the proj@ihtainer fails to create a communitysgurce
around the project it might die as soon as the maintainer salved the problem, which he had inproject ~ are
mind when he created the project. Projects also fades aweag #ie developers switches to anothesjlyres
project with similar interests.

3See Appendix B for the full report.
19th October 2004

4.2. Open Source projects 14

Table 4.3 shows that only a third of all Open Source projentgts the end users, most projects
are tools for developers or system administrations. Fumibee, most of the projects is targeted
towards users Unix operating systems such as Linux and B®Brrénan, Microsoft Windows (table
4.4).

Audience| Percentagel Aggregated| Projects

20755 38.08 % 38.08 % Developers

18044 33.11% 71.19% End Users/Desktop
8833 16.21 % 87.40 % System Administrators
4488 8.24 % 95.64 % Other Audience

762 1.40% 97.04 % Information Technology
558 1.02% 98.06 % Education

1057 1.94% 100.00% | Other

Table 4.3: A table showing who the projects are targetingm# below 1% has been grouped as
Other

Targeting developers and system administrators is of edheseasiest way to build a community
around a project. If the users actually are developers,dhegble to read the source code and might
just help out with changes and fixes. After all, that is whatythre paid for. What is interesting to
note here is that most of the efforts are kept within the comitgiitself. Most of the projects are

targets the persons within the system, not the great magseslasers outside the communities. Open Source

projects often
targets the
community
itself, rather
than external
actors.

Operating System Percentage| Aggregated| Projects

13288 27.94 % 27.94 % Linux

12181 25.62 % 53.56 % OS Independent
4471 9.40 % 62.96 % Windows 95/98/2000
3624 7.62% 70.59 % POSIX

3405 7.16 % 77.75% Windows

2551 5.36 % 83.11% Windows NT/2000
1148 2.41 % 85.53 % SunOS/Solaris
852 1.79% 87.32% MacOS X

825 1.73% 89.05 % FreeBSD

676 1.42% 90.47 % BSD

664 1.40% 91.87% Other OS

594 1.25% 93.12% Microsoft

3272 6.88 % 100.00% | Other

Table 4.4: A table showing which Operating Systems projantstargeting. Items below 1% has
been grouped as Other

The fact that most efforts are targeted to end within the canity, not mainly for people outside
it, is a fact we must consider carefully when illustratinggdsource as altruistic communism, or as
a gift-economy. Before assuming that people are intendirgjve away the fruits of their work to
total strangers, we must assert whether this intentioriseaisnof'.

Projects do follow the principle of early releases, timedpeffirst download is often less than
one month within the registration of the project. This is il iccordance with the principles of
releasing early and releasing ofter in order to make enablereto see what you are doing and
helping out if they share your visions.

Even though a large part of the projects have stalled, theg hat reached mature state. Most of
the stalled projects are in the planning or pre-alpha stiiguer€ 4.5). This is important to show that

4An sarcastic analogy: Even though we throw out our garbagerais might benefit from this, we are not considering
garbage disposal as a gift-economy.

19th October 2004

4.3. Open Source communities 15

projects not only die as they are finnished, but that progerds long before the program becomes
stable.

Month | Percentage| Aggregated| Projects

7259 | 34.62% 34.62 % 1 - Planning

4735 | 22.58 % 57.20 % 2 - Pre-Alpha

3241 | 15.46 % 72.65 % 3 - Alpha

3057 | 14.58% 87.23% 4 - Beta

2365 | 11.28% 98.51 % 5 - Production/Stable
269 1.28 % 99.79 % 6 - Mature

43 0.21% 100.00% | 7 - Inactive

Table 4.5: A table showing the maturity of the projects wtach inactive.

4.3 Open Source communities

Another main reason for the success of the Open Source ewdsiof today is the evolution of
the Internet. Even though people sometime meets in persaomierences and occasional travel,
most of the communication is carried out through the Interriehe Open Source culture could
be described as a form of transactional community, which maially sound like an oxymoron.
Kollock argues that a community is built up by persons slgtive same values, and that Internet-
based relations and communities may indeed be as real d#omaticommunities [19]. The Open
Source community is built up around the transactions iretlioy coordinating the development,
and the discussions on how the project should evolve. Afigrite, people might start saluting each
other and asking some questions on social matters such athewwacation were.

Let us go back to the definition of community. Pollock condsidhat a community is built up
by persons sharing the same values. There is really nothithgidefinition of community itself that
requires it to be built upon trust-relations, even thougé tiave traditionally been the case.

The FLOSS report further shows that most of the developeporese that they began their Open
Source development during the 1990s, and most of them wéunaigersity’-age when they began.
The Open Source culture is said to be rooted in the academimament, and it does share many
values with the academic world in general. Another reasow tlik universities have been active
recruiters might be that during university education, ¢hieroften free access to computer resources
coupled with lots of free time and freedom to focus on hoblmjguts. The universities themselves
might not be active recruiters, but the environment theywiol@for their students has been proved
to be a solid base for Open Source engagements.

The rapid growth during the 90s is probably partly becausthefbirth of the Open Source
label, before the 90s, Open Source hackers where mereletgacEarlier, there were not enough
hackers with similar interests, in the same district, sa they could form a community. Internet
changed all that, communities can now be formed around marew topics than ever before, fans
of flintknapping could join together and discuss their iaggs with peefs

Other reasons for the growth during this time is of coursestiecess of Linux, as well as the
heavily increased number of computer science studentaglthie era of the new economy. As we
have seen, most of the Open Source projects are not targstaddt end-user systems, but toward
Unix/Linux systems, an area which were disabled for norfgmsionals before the birth of Linux
and its competitofs

Many writers dates the concept of Open Source back to 1980;Hie to the fact that the spirit
of the early university computer labs praised sharing obueses. To be historically correct, we
must pay some tribute to the early hackers as there are soeelboked upon as ancient gods, but
the culture as we know it today, is a product of the last 10-d&ry.

5Actually, they have, on http://www.flintknapping.com
6There were Unix systems available before then, such as M&iKvarious BSD variants, but they simply did not take
off in the same way, so timing was of essence.

19th October 2004

4.3. Open Source communities 16

In fact, there are only a very minor number of people stilerahg to “the early days”, primarily
Richard Stallman, originator of the GNU initiative, folled by a few others. Even though Stallman
often yells as if he were a large crowd, he is becomings beogmbre and more isolated as people,
even though they do recognize his efforts in the past, ileathemselves rather as a member of the
culture of today, a world-wide distributed community, trmamember of the culture that existed in a
single lab in MIT before they were born.

There is something of a schism between the remaining oldjgesenting the old culture, and the
majority of the developers who are younger. It could be dbsdras idealists versus pragmatists
Stallman tries to achieve his almost religious utopia, &/fibrvalds and many others simply wants
to get things done in the best way possible. Torvalds comsngrdn Stallman in his book:

The thing that drives me crazy about Richard is that he seexytng in black and
white. And that creates unnecessary political divisionse ri¢ver understands the
viewpoint of anybody else. If he were into religion, you wdbwall him a religious
fanatic.[42, p. 195]

Open Source
The fact that the culture is not as it were in the 1960s is figant as many works are based upogylture is a

this assumption. The most famous description of the 196€ksdn@ulture is Levy's book “Hackers, product of the
heroes of the computer revolution” [21]. This book is basadh® stories told by Richard Stall-gos, not the
man and others in the MIT A.l. Lab, the homebrew computer @ob other communities of that7gg

time. The work is cited in many pieces about Open Source,wstiould be an indicator for taking

precautions.

Considering Open Source communities as a product of the élsles us to analyze it from
the perspective of how communities of today are evolving, laow the youth of today looks upon
community engagements. Putnam investigates how most coitahengagement is declining, and
how we are becomming increasingly reluctant to commit te kitid of engagement [35].

If community efforts are diminishing, we are becoming irasiagly transactional and afraid to
commit, how come Open Source survives where other comregrfdils? There are a number of
properties of Open Source which matches the current statecidty.

Keeping money out of the system, or at least not as one of theapy motivators, Open Source
enables people from all phases of life to participate, witlthe need of large amounts of founds.
This does not rule out that people are active Open Sourcdapmrs even when they enter the
working age, but what is somewhat unique is that money ismeeentral issue the same way as it
is in sports where various participation fees and competjtrizes are common, embedded elements
of the game. As there are no initial financial investmentgjgipants are free to enter and leave at a
very low transaction cost, hence risk. As we are becomingrmisk averse when we feel less secure
in our environment, this is definitely attractive. Of coyras we have entered the community, and
begin to build relations, our fear for the uncertainity mates us to stay rather than searching for
new community.

One common assumption is that when working life takes areasingly large part of our life,
we replace our traditional social relations through asgams, by relations to our co-workers. Then
Again, Putnam argues, with what | believe is justified, agaihe idea that our workplaces is be-
coming our new arena for new relations as there are sociaiaténs in a work-place. Therefore,
as social animals, we need to find another arena for socigitgictvhich fits our habits of life. |
believe that Open Source communities are constructed iryadhad meet this need.

The status system of Open Source communities is far morsacsional than more traditional
civic associations. We are no longer interested in invgstiany years of hard, unpaid work in order
to gain social status sometime in the future unless we amaanguvered by someone else. Doing
voluntary work without a guarantee of social status is a gidater than we will accept. In Open
Source communities one gain reputation for what you actuddl your transactions adjusts your
status.

The concept of fun is fundamental when it comes to Open SouPesple often tries to find
pseudo-rational explanations why they are doing thinggrOpource developers have converged

I am sad to admit that this description was not invented byatfiyForvalds referes to it in his book, telling that it is not
his either, but without mentioning the original source af giatement.

19th October 2004

4.4. Open Source business models 17

around the concept of fun as reason. The transactional caiityractually enables us to take part
in a community, at the same time as we are not breaking the dfilglay. It is carried out on freely
accepted rules, and we are free to leave at any time we pa¢tle time we shut or computer down,
or stops reading the newsgroup, we are back in reality. Bhis full accordance with the rules of
play as identified by Huizinga [13] and Callois [4].

4.4 Open Source business models

If the collapse of the Berlin Wall had taught us anything, é@sthat socialism alone was
not a sustainable economic model.

— Robert Young, Red Hat

Making money on a large number of people who is working foirtben joy has been proved

to be very hard. The problem has a striking resemblance Wélptoblems of making money on

sport$, where you have the same problem with non-paid workers | Igvibre all ludicrous business

models which received seed capital during the era of the mewamy, only to fade away quickly

when the streams of money diminished. The companies whavedrvcould be divided up into a

small number of business models. The models which havevaghgeems a lot less visionary and
revolutionary than one might expect from this revolutionaay of conducting business. Companies
benefiting
from Open
Source are
Every community needs a number of basic services to funeteElh Open Source developers needsften based
hosting services, development tools, community websitesder to function as a group and be ablen traditional

4.4.1 Services for the players, the communities and the garsie

to develop software efficiehit business
models rather

4.4.2 Repackaging and distribution than rev-
olutionary

One of the easiest way to earn money from the communitiesnplgito repackage and distributeyisions
what the team is doing so that it is available for a wider pubfis well in sports as in Open Source
projects there is a large difference between the number tdfeaparticipators and the potential
number of people interested in it or benefiting from it. In gpave have small core of players,
pursuing a game which a smaller audience have the posgituilénjoy, as they know that there is

a game, and manages to get hold of a ticket. Open Source gharsame attributes (figure 4.2),

there is a core development group, which contains the maireps$, a larger number of contributing

users who use the software and occasionally fixes bugs, haswehuge number of potential users,
which could benefit from the software if it was only packadeel tight way (figure 4.3).

The gap between the core and the potential users is a obviacs where there is money to
be made. And therefore there are companies working withagol and distribution of the soft-
ware/game¥ as well as other user groups which works to narrow this gapéow

There are a number of reasons why people chooses to buy agpbfonim a vendor rather than
downloading it themselves. If we are to depend on a certanepdf our software for business
critical applications we often prefer to have someone tbwelaén there is a malfunction. Therefore
there is a huge market for repackaging Open Source softW@aras Robert Young, CEO of Red Hat
says [6, p. 114]:

Drinking water can be had in most industrial countries sinipl turning on the nearest
tap, so why does Evian sell millions of dollar of French tagievanto those markets? It
boils down to a largely irrational fear that the water comiram your tap is not to be
trusted.

8A more in-depth discussion about the relation between Opencg and play can be found in Appendix C

9Companies like Cygnus Solutions, Bit Keeper and the Opemcgddevelopment Networks (http://www.osdn.net) rep-
resents examples of this strategy.

1%F0r instance Red Hat Software and Eurosport

11soccer news at hitp://www.soccernews.com, Linux Insteditfat http:/linux.ucla.edu/events/installfest.php3

19th October 2004

4.4. Open Source business models 18

Potential Users

Potential Spectators

Contri buting

St adi um

Spectators

Figure 4.2: A figure illustrating the gap between the corethiedhotential users/spectators

Potential Users

Contri buting

User G oups
and ot her
Communi ty support

Support & Packagi ng
Conpany

Figure 4.3: A figure showing how organizations is narrowimg gap.

19th October 2004

4.5. Open Source methodology 19

4.4.3 Brands, Trademark and spin-offs

In a world where brands gains a steadingly increasing inapog, companies invests in the games
and the players in order to be able to use their investmertadsmarks and gain from their brands.
This strategy which have been established in the world oftsgor a long while, is now gaining a
larger momentum in the world of Open Source. The most famaaokérs are recruited by companies
in order to build a brand both within the community as well essae it. Hiring an established name
is a way of saying to the community, - we come in peace, loadk,dhy understood that and you
trust him, as well as using it in their marketing. As we sawhia previous section, the brand is a
key component to building trust, which is why people buy ympackaged stuff rather than getting
them for free from the Internet.

This kind of efforts could be described as what Veblen wowdll conspicuous consumption.
Consumption with the purpose to illustrate your prowessndée support for Linux started of as
pure conspicuous consumption, a vendor gave away a smabewof units of their product to a
number of nerds in order to have them write software driveréf This was raised to another level
as IBM committed to invest 1 billion USD on Linux related husss.

4.4.4 Coopetition

The fourth type of business model is the one that defies tleetihak Open Source business models
is strongly related to sports. The term coopetition wasioally invented by Ransom Love, CEO
of Caldera, in order to describe what happened when a nunflmangpanies joined together in a
Open Source project to cooperate on one module, but to cengpethe final products. The main
difference between this model and pure repacking is thatpemies are using the Open Source
product as a (hidden) part of a certain product, rather thae ppackaging.

In the beginning of this paper | stated that companies shosédOpen Source when the gain
from having the project open was won by the cost. This oftggpkas when a company finds use
for a hobby project, and decides that it is less costly to hegtoduct created by the hobbyists and
giving back their improvements rather than developing thele product from scratch. This is what
have happened to the projects studied in Appendix A, theg akonce small hobby projects, before
companies found the use for the products they created. 8iroethe projects have convertedinto a
loosely connected system of co-operation between the coegp®ho are interested in the product.

As an example, the Linux Kernel is used in a large number odipets such as firewalls, routers,
refrigerators and cell-phones. The operating system wivich originally developed by a Finnish
student is now being developed by a large number of companaireer than hobbyists. As | said,
this is the business model that is unique for Open Source,teeeigh companies could join together
and develop a certain product, or part of a product togeligecosts associated with agreeing on the
terms of the co-operation would be rather large.

Coopetition could be described as yet another step in tleetitin of specialization of corpora-
tions, outsourcing everything but their competitive adages. Both IBM and Oracle is embedding
the Apache web-server in their solutions, saving money whitables them to focus on their key
areas. Even though coopetition might sound revolutioritiry,basically the same thing as utiliz-
ing third party modules in your software, which have beetizeiil in software development for
centuries.

4.5 Open Source methodology
4.5.1 Brooks Law

Every universe has its laws. One of the most famous in soé@eavelopmentis Brooks Law, stating
that

Adding manpower to a late software project makes it latep[25]

This statement alone could be considered to be fundamergalligdge in project management, and
not important enough to get a name from someone who did nentritz However, Brooks further
argues in his essays that developing software in large teaitis complexity which is larger than

19th October 2004

4.5. Open Source methodology 20

the task itself. Therefore software must be developed in serall, tight-knit teams. The concept of
“Mythical-Man Month” is that you cannot estimate the numbeman-months a certain project will
take simply by aggregating the time of each task, as the efiigi of a solitary mind is multitudes
larger than a mind which is a part of a team.

The origin of the concept “Mythical-Man Month” also origites from one of the great Upan-
ishads of the hacker culture, the story of the lonely hackeo sat down a month and rewrote a
whole operating system from scratch. Or as Eric S. Raymonakels it

In the beginning, there were Real Programmers [6, p. 19]

The essence of Brooks statement is that all development&fbould be organized so that the

number of minds involved in the programming decisions stidid minimized at any cost, with a

stab of assistants to help them out. When writers statespah Source methodology has over-

proved Brooks Law, they are not referring to the law itselft tather that development could be

carried out not only with a large number of minds, but with dirscattered over the whole world. Brooks law is
We have seen previously that most projects are single-n@eqts. Those project does not havstill valid in

the problems Brooks described. As they occupy only one mntimete are no coordination costsOpen Source

Projects with a large number of developers are often godawith a large number of hierarchicalprojects

levels, with one or a few developers at the highest levels Té&ads to the fact that most decisions are

made at the head level, by a small level of minds, in full adaace with Brooks Law. Therefore,

one cannot, based on this, say that Brooks Law is no longit. val

4.5.2 Bureaucracy

As | stated above, Open Source projects take on a strictroiécal organization in order to avoid
the effects of Brooks Law. Different Open Source projectgetdifferent ways of handling this, but
when the project reaches a larger number of contributors;egroup is singled out, either formally
or informally to be able to cope with the situation. The depehent of the Linux Kernelis structured
in a 4 level hierarchy.

Level 1 Linus Torvalds
Level 2 Linus’s Lieutenants
Level 3 Module maintainers
Level 4 Developers

Torvalds acts as the chief maintainer, having the final word/bat is to be included and not, as well
as releasing the official versions of the kernel. Each mqduleh as various file-systems, hardware
drivers etc. has a separate maintainer [44], who are coatetirby the middle-layer, referred to as
lieutenants.

The lieutenants are people who Torvalds trusts to a verglargent, they are responsible for
collecting changes from the module maintainers, revievtirgn and and acknowledging that they
may be included in the kernel. Lieutenants are also resplenfsir maintaining bug-fixes for older
versions of the kernel. This middle layer of abstractionaniatroduced in early 2002, when people

started to complain that Torvalds were unable to catch ulp kg work [20]. Large Open
Source

/ r oot/ dev/lexj obb/ Ker nel - Hi er archy. eps nd%ro*eé:asn-d!are

often” “hiérar-

chical and

Figure 4.4: A figure showing the hierarch of the Linux Kernedjpct bureaucratic

In order for a infamous developer to get a feature into theddehe must find the correct main-
tainer, convince him not only that he have done a great johdithe bug or adding the feature, but
also that the maintainer should push it up to the lieutenadttey to convince him that this is so
good that it should survive to yet another level.

The strong minded reader notices that this is in fact a fohieahrchy, designed in accordance
with the ideas of Brooks.

19th October 2004

4.6. Lock-in effects 21

4.5.3 Efficiency

Efficiency is a measure indicating how well we utilize theawses available. In the area of eco-
nomics, we often choose to divide efficiency into multiplpag of measures, a common way is to
divide efficiency into external and internal efficiency. dmial efficiency is what we traditionally
think of when discussing efficiency, it measures how muchreehble to produce with the available
resources. External efficiency measures a wider perspeatitether we are producing the right
products.
External efficiency in Open Source is provided by utilizing most basal properties of Darwin-
ism. Even though the community is well connected and indegyithg us the means to ensure that
there are no redundandy developers choose to create it. When you are in the need iete pf
software, perhaps a word processor or a piece of softwalete $Varez over the Internet, you have
two choices. Either you use an existing piece of softwargparstart a project of your own. Even
though it often is multitudes easier to use an existing fogmpeople choose to create their own.
If you look upon the Open Source communities as a companyjging products, this seems
ludicrous, compare it to a company reasoning; we have novithedour customers want, so we will
produce one of each and see which they buy. On the other Ham iook upon it as the anthill, it
seems more wise for the ants to spread out, searching foirfiatitferent directions. Open Source
This time, the ant-perspective seems more appropriate, iiao external efficiency in the Operbreeds diver-
Source communities as the developers themselves only a¢ted own will, not aiming to meet sity, not a sin-
any need of an external actor, such as a customer. To puskmahegg a bit further, even thoughgle winner
the ants are most likely unable to observe that they have terred efficiency requirements or
that they are lacking directions by a wise leader, the surh@if activities creates an environment
that provide them with the resources they need in order taiva@ir The efficiency of Open Source
could be described as an anthill, a large number of indivgsrving their own interests, creating
something that appears to be engineered.
Internal efficiency measures how you use your resourcesderdo produce as much of what
you are producing, with as few resources as possible. How thi®work on our anthill? Basically,
everyone adds the parts which they need in order to make ftveage to fulfill their needs. If all
developersworking on a project share the same goals, Opané&tevelopment could be as efficient
as traditional development, depending on how efficient éis&g are divided up to the appropriate
persons. If people have fundamentally different visionb@iv the program is supposed to work,
or how it should be achieved, a high level of efficiency is kelly. Even if people agree on what
they should do, many people might compete on the the beseimgitation. One example is the
schedule?® of the Linux Kernel, a kernel only needs one of them, but theyaalarge number of
implementations available as it is a prestigious task. Aga have Darwinism rather than efficiencyDpen Source

which obviously seems like a waste of resources to many. iS not neces-

sarily an ef-

People mistakenly say “open-source software works bectiigsevhole Internet be- ficient way to

comes your R&D and QA departments!” In fact, the amount céritdd programmer develop soft-
effort available for a given set of tasks is usually limit&@dhis, it is usually to everyones ware

interests if parallel development efforts are not undenasimply because of semantic
disputes between developers. [6, p. 161]

4.6 Lock-in effects

| stated earlier, that lock-in effects is one of the singlestradfective ways for companies to ensure
that their customers will return, no matter on how satisfrez/tare with the product itself.

Let us try some linear formulas, a favorite among economi&tsnake it a bit more interesting,
I will assign some letters to the formula. The new producté,.., in license, Phardware iN

12If | need a certain piece of software, a few quick Internercless provides a full overview of whether a solution exist
or if someone is working on one. This is the benefit of the “Bsteearly, release often” policy. This enables develogers t
avoid redundancy if they want, in comparison to academiarevtiés hard to find papers even after they are published.

13Aas there often are a number of programs running at the sanediithe operating system, sharing a single CPU someone
have to decide which program to be run, this is the work of teduler. By switching the capacity of the CPU between the
programs the user is given the impression that multiplestas& carried out simultaneously.

19th October 2004

4.6. Lock-in effects 22

purchase of new hardware ait},;;; in basic installation. Upgrading the old platform co&tg,.
Then we have to consider the legacy effects. Convertingldltiata costs”;.;,and retraining all
staff on the new system cosi&,+y.

The formula rewritten becomes:

Pnew + Phardware + Pinstallation + C’data + Cstaff < Uold

In the traditional non-Open Source scenario, all thosescarg existent and significantly larger
than zero. The absolute and relative sizes of the costssvdepending on what scenario we are
studying. If we have a supercomputer, we have large invedsie non-standard hardware, a very
small number of staff to train to the new system, but a largenimer of home made software which
might need to be rewritten to the new platform. In most nonnegaurce cases, the left side is
multitudes bigger than the right side of the formula, and thithe main reason why there are large
amounts of money to earn for after-sales consulting. Sorftaa@ vendors such as SAPsells
a huge, complex system, which cannot be started withoutomdlspent on customization of the
system itself. And as soon as the system is purchased, tisailcamts lives happily for ever after.
With good knowledge of the formula stated above, they phieg services not on the actual required
work, but on the pain threshold of the buyer.

Let us consider the ultimate Open Source scenario, in oodestimate how well we may avoid
the lock-in effects. In the best-case scenario, we haveasmdie costs, we are able to reuse our
current hardware and in-house resources are able to ittetedbftware themselves.

This leaves us with:

Pinstallation + Cdata + Cstaff < Uold

In most cases, a company would probably chose to buy the prédum a vendor specializing
in Open Source, where the cost of license purchase wouldenp¢io, but in this scenario, we take
the luxury of assuming that we are in fact able to downloadstifevare from the Internet for free.
Even though the installation is carried out in-house, it esiwith a cost.

Ignoring the practical issues that we have to run the twoesgystin parallel for a migration
period, and therefore most often are unable to use the sardevdy@ even though the software
might be compatible enough to run on the same platform. Watdkdeft with what would be the
two largest costs, converting the legacy data and traitiagtaff on the new software.

If we are trying to switch from Microsoft's Office Suite, inemother word processor/spreadsheet
package, every document we have created through historybausonverted in order to be able to
use them in the new systemy,,is often the single largest cost of systems migration.

There are three common misconceptions when arguing that Sperce avoids lock-in effects:

1. Open Source systems minimiz8g,:,,
2. The cost of retraining staff is small / zero

3. Open source systems have lower Total Cost of Ownershi@JTC

Itis hard to reach any general conclusions regarding tla¢ ¢ost of ownership as it is dependant on
too many parameters to be discussed. There are investigaimwing that Open Source systems
have lower TCO, and there are contradicting reports, mupbmging on who funded it. It is hard to
generalize software systems to a standard scenario, wéwehyi | will not discuss this point further
in this text. The other two points however, will be discussetthis section.

Proprietary systems often comes with proprietary file faenahich could make it harder to
convert data from one system to each other. Open sourcersgstgd be designed to minimize the
cost of converting data to other systems, yet again, so goolfgrietary systems. What Open Source
system guarantees is that it is possible to do the converierfile format could be reconstructed
by reading the source code, with the appropriate resouvedigble. It does not however, guarantee

14Number one accounting systems for Fortune 500 companies.

19th October 2004

4.7. Participation in commercial Open Source projects 23

that it will be easy. Therefore Open Source in it self progidaly the most basic level of protection
against lock-in effects.

Program # file formats| Open Source
AbiWord 18 yes

Lyx 5 yes
Microsoft Word | 25 no

Open Office 5 yes

Table 4.6: Number of file formats various word processorsagoort to.

My copy of Microsoft Office is able to save in 25 file formats, riyee Open Source word
processors, Lyx is able to export to 5, Abiword 18 and Openc@ffo 5 different file formats. As

you can see, the super-proprietary Microsoft Word, is nidhak proprietary after all. Open Source
The cost of retraining staff is often ignored or forgotterentdiscussing the savings of relying ois no guar-
Open Source software. As shown previously, most Open Squojects are not targeted end-usergntee for

yet most articles tend to describe Open Source as a poteatigletitor to manufacturers of end usereduced
software. If the software to be switched is not an end-usstesy, this cost is often very small inlock-in effects
comparison with the cost of converting legacy data. On therdtand, the silent knowledge existing
in the organization, on how the software should be handleslvgomething fails, often takes years
of failures and experiences to create. | have never seerote@trelearning this “experience” of
system administrators estimated in a financial proposéhereon proprietary nor on open systems.
In software projects where there is an end-user interfatiagystem, the cost of tutoring is huge.

Even when considering first deployment of a certain systlm cost of retraining staff is ex-
istent. The workers previous experience with similar systgives them an advantage which of-
ten could be benefited from when deploying standard systenpaced to customized ones. Even
though investigations have suggested that certificatioh as the EDCL should be created for Open
Source products as well as proprietary systems [41], this hat been realizéd

4.7 Participation in commercial Open Source projects

We have discussed a bit about motivation in hobbyists Opemncgoprojects. This section will
discuss a bit further what might happend if a company chotmsepen up their product in order to
get a number of developers to help them out with the developme

In order for a gift to be appreciated, it must contain somelkifivalue for the recipient. If you
give someone a artifact that they have use for, they will tisend possible, improve it if there is
something that they may do in order to make the artifact siblgi& problem in a more efficient way.

The previous sentence contains a number of weak pointsgwhere is a potential for a failure.
First off, the artifact given to the community, must have lgdor the community which is supposed
to contribute to the project. Further on they must be ablentteustand programming in general, and
the source code in particular. There are three main metloggksttsomeone to contribute to a certain
project:

1. The license requires you to contribute if you make impnogets
2. There are monetary (or other kind of external) motivatiamailable for contributors.

3. There exists a community where people want to be membetgantributing is a requirement
to belong to the community

In order to get thousands of developers to develop your soéywou must provide either of these
three motivations, they could be used either as a combingdwanly one of them.

15The suggestion in itself is rather sound, but the contexthichvit is given it gives the impression that the author have
misunderstood both the concept of EDCL and Open Source.

19th October 2004

4.7. Participation in commercial Open Source projects 24

The myth that an Open Source product attracts developees reh the assumption that you
easily could provide the community of method number threeething which only a few hobby
projects have been able to accomplish. | have not been alflad@ne single project where a
commercial entity have opened a commercial software prajeg way so that method three have
been fulfilled. The project which have come close is the Mazitoject which will be described in
the next chapter.
One of the most common ways for companies to engage in Operc&auativities is to open
supplemental products, around their core product. Thisisagegy which is utilized by for example
Oracle, who tries to lower their support efforts by relegsiartain non-core products as Open Source
in order to get help with the development and support effdeigen though this might seem like a
sound decision, as the products does not give any diredingatrihere should be no loss by giving
them away. This, of course, assumes that there are no cost&iming an open software project.
There exists a number of potential pitfalls when openingraroercial products. Opening your
If someone pays a vendor large amounts of money for a prodddha& support services coveringource does
it, they expects the vendor to take care of their problentkgrahan contributing to an Open Sourceot automat-
project themselvé$. After all, they have paid money in order to reduce the inggcwhich could ically lead
be argued is associated with Open Source projects, hemgestpect the vendor to do exactly thato a large
If you could save the license fees by using a free Open Souockipt, you are more likely to spendnumber of
a fraction of that cost on improving the product so that it tag@ur needs. To return to the Eviarcontributors
metaphore presented previously; if | have paid for Eviarxdeet it to come in bottle, rather than
having get it from my tap.
Michael Tiemann describes what happened when his compakyower the maintaintance of
the GNU compiler, suddenly, everyone expected that probleould fix themselves.

Tensions rose between sales and engineering while the Qpeonesmodel seemed to
be working in reverse: the more development we did on GNUiso#, the less we got
back from the Net, until we were doing over 50% of all GNU td@m development. [6,
p. 82]

Further, in order to have a large number of contributors tecgept, you naturally need to have a
large number of developers who uses and are familiar wittptbduct, who for some reason, are
interested to dedicate time on the project. Opening praduieich requires the purchase of a another,
often expensive, product limits the number of potentialdepers to the number of customers.

As shown previously, most of the Open Source projects tam@@telopers, not end users. This
is because there is a often hidden assumption that the usergertain project are themselves
developers. If you have a product targeting developersayeunore likely to get cooperation, than
if you are targeting computer illiterates. If the users amahle to read and understand the source
code, they are unable to contribute with fixes and improveasen

This is an internal inconcistency in the discussion aboetféttt that everyone can participate
and fix bugs in Open Source Software. On one hand, people #rguprogramming is an art, the
creation of software is a highly artistic thing for which ybave a talent. On the other hand, people
argue that everyone can be developers, reading and fiximgesoade as they use their programs.

The popular quote from Torvalds that:

“given enough eyes, all bugs are shallow”

is valid in his limited context. If enough people uses theesahd learns how it works, most of the
bugs will be ironed out, as the bug likely will occur to somepwhich will the fix it. The problem
is that this is only valid for such a special context as a dpggaystem kernel, and even with such
a specialized software, it is only valid for the inner cirofgpeople developing the kernel.

When developing software for developers, the statemerg ame validity, and when you have
multiple companies interested in the same product, theltdwimore eyes from the developers of
the different perspectives of each company. The main befoefihe Linux users is not that they
are able to modify the software and fix bugs, most of them aasvare about what is running under
their hood.

180racle database products begins at approx. $30,000 ranpitmseveral millions.

19th October 2004

Chapter 5

The Concept of Open Source
exemplified - The Mozilla Project

Few things are harder to put up with than the annoyance of adgo@mple.
— Mark Twain

The purpose of this chapter is to illustrate how a Open Sopraject fails

5.1 The story of Netscape Communication Inc

Almost exactly ten years ago, Marc Andressen wrote a humbksage to the mailing-list WWW-
Talk, the forum for anyone who were involved in the new wwwarstards.

I'd like to propose a new, optional HTML tag IMG.

When Internet caught on, we learned that it had been thece #ie 60s, a result of cold war efforts
to keep computer networks up even though one node were brologin by the enemies, but it
simply never mattered to us before. In much the same way,tédmelards enabling us all browse
the web were formalized over ten years before this storyrisedihe story of web browsing did not
really matter before the day Marc Andreessen joined theygeard decided not only to write his own
web-browser, but to enable it to show pictures and otherirmddia content.

Mosaic 1.0 were released on 21 April 1993, this was when thedwas the youth knows it
began, if you are elder than that, write the date down to adyaaur kids about the world before the
Internet.

Remember, Internet had been at many campuses for yearsan@ahad e-mail, the technical
infrastructure were already there so the WWW were able thaan quicker than anyone might have
predicted, as soon as it could be illustrated to the massesgh on-line pictures of a coffee-pot in
Cambridgé.

Microsoft surely missed that it was coming, Edstrom and rEieggests in “Barbarians Led
by Bill Gates” that Microsoft were to focused on high-bandthiissues as Gates were building
his new, connected, home [8]. This should be taken by a gffagalg but the truth remains that
Microsoft were totally uninterested in Internet before 89®ne who did see what was coming, or
who made sure that it did come was Jim Clark. After being beri¢hl his supercomputer company
Silicon Graphics Inc. he was looking for new ventures wherstuenbled over Marc Andresseen.
They teamed up and started Mosaic Communications Corpargtiorder to make money on what
Mosaic had started.

1The Trojan Room Coffee Machine were the first web-cam in thedydt was set up at Cambridge University so that
the staff could check if there were fresh coffee in the pohuiitt leaving their desks. When Internet started to gain anedi
coverage, there was not much else to show, this was the npostihg you could do, and they attracted millions of visitors

25

5.1. The story of Netscape Communication Inc 26

Mosaic were later renamed to Netscape and continued toajethetir browser, which were sold
to corporations but free for students and non-profit usageésddpe also made money on selling the
servers delivering the web pages to the browser. By coirtgoioth the client and server Netscape
were able to add features to the system without going thraulging standardization process first.
As they were holding a de facto monopole on the browser matk#itat time, they were able to
sell products without much overhead, the company was immatut so was the market. The
heroistic biography of the Swedish web-site Torget illatds the frustration on using their products,
not properly adjusted for international characters aniiht taxes [14].

When Clark needed more money to build the boat of his dreantebigled to go public with
what had become Netscape and it became the first IPO of thenéttera, the bubble of the new
economy had started as early as 1995 [22].

If Microsoft had missed the opportunities before this paiméy acted rapid to adjust to the new
circumstances. Few times before in history have a large eosnfurned the ship that quick. The
first version of Internet Explorer Microsoft purchased fr@pyGlass Inc., the company holding the
rights to the old versions of Mosaic source code originadlyeloped at NCSA. The feature set were
highly reduced, it is my honest belief that the only use ot thrawser was to download a never
version, but it was done quick enough to bundle it with theamping version of Windows.

. . . LB
‘W3B Browserwatch: Womit gesurft wird . Epa% 8a.3% 90

1,7%

B8,1%
82,1%
75,87

73.9%

59,2%
52,5% g15% Netscape / Mozilia
e Microsoft Internet Explorer
Andere

60,2% 58,3%

TE0% 47,5%
40.7% £0,0%

33.5% 17.7%

25.8% 11,8%

oi%
6% 2,3% g o, o o ar o,
3.ﬂ/ 3 10% L5% 10% o7% o4% o2% o6% L1% 16% L5
11956 2/1go6 11957 2/igo7 1ol 2/1g08 1/ig5n 2/igop 12000 2/2000 1/z0m 2/z0m1 1f2002 23002

@ zoo3 fittkaumaass.de, 15. WWW-Benutzer-Analyse W3B; 1/ Frilhjahr, 2/ Herbst

Figure 5.1: A figure showing Web Browser market share

Figure 5.1 illustrates what happened when Microsoft atled@very resource available to suc-
ceed with their brand new Internet strategy. The browserhegan, and the trend were evident
early. Microsoft’s browser were tightly integrated to thgeoating system, making it quicker. Later
versions of the Windows operating system is so knit in with tinowser that everything from the
desktop to file-browsing windows really are instances ofitwavser, simply type in the web-address
anywhere and you will be redirected to the right web-pagis.iard to compete with that.

Jamie Zawinski, Netscape employee number 20 suggestshthaesult of the browser war is
not only due to the massive power of Microsoft but that Ngisdast their power to innovate as the
company grew bigger.

When we started this company, we were out to change the wdénhdl we did that.
Without us, the change probably would have happened anywaybe six months or
a year later, and who-knows-what would have played out ifftty. But we were the
ones who actually did it. When you see URLs on grocery bagdilboards, on the
sides of trucks, at the end of movie credits just after thdistlogos — that was us, we
did that. We put the Internet in the hands of normal people. Kitk-started a new
communications medium. We changed the world.

But we did that in 1994 and 1995. What we did from 1996 throug§89lwas coast
along, riding the wave caused by what we did before. [47]

19th October 2004

5.2. The birth of the Mozilla project 27

5.2 The birth of the Mozilla project

By early 1998, the trend became rather obvious. Netscapadtashly lost half of it market share
on the market place, they were also attacked on the serverstiere their revenues were found.
Microsoft servers came with a easy configurable Internetrmétion Server for free, together with
Open Source alternatives such as Apache. Netscape weteedtathere it hurt them the most.
Something had to be done, if nothing radically different peped Netscape would ultimately go
broke. Finally, Frank Heckner, a senior Netscape employesse/internal papers earlier had played
an important role for the company made a suggestion, so thazyt might just work. The paper
titled “Netscape Source Code as Netscape Product” analieashse for the company and suggested
that Netscape should be releasing their browser as Operé&otlihe exact contents of this paper
have not been released outside Netscape, so we can not bexsutly what he said, but it did
convince Netscape executives to be bold, or desperateghrioumake the move.

On 22 January 1998 Netscape announced that they had madecib®d to Open Source their
product, the Netscape Browser, commonly known simply aséégte [28]. In interviews following
the press release, Netscape cited the work by Eric S. Rayntten€athredal and the Bazaar as an
important inspiration for the decision.

This Open Source project became named Mozilla, after tieeriat name of the browser, in order
to separate the project from the company itself, and a separb-site and development team were
set up [29]. The Mozilla project was the first commercial proicto be released as Open Source by
a commercial company, it became the 1998 flagship of the Operc& movement which gained its
largest momentum right at that time. This were the early ddysdays Open Source movement,
the time when the concept reached the press, and the movearokmn.

Up until today, Mozilla still is the best known example of gmemed product.

5.3 The prerequisites of the Mozilla project

From an Open Source perspective the Mozilla project hadythieg rolled out right before its
feet. It was a project which gained much attention, both fthenpress and the community itself.
Members from varioush Open Source communities were intit@tiscuss not only how the project
should be organized, but how to agree on a license everyahe aocept [30]. It had a large number
of users, there were many potential developers as the agiplicran on many platforms and most
developers actually uses a web browser on a regular basigenthad the largest trump of it all, the
success of the Mozilla project would not only be the ultimaieof that the concept of Open Source
were viable as a way to for commercial companies to make bssijrit would also kick Microsoft
in the but, something Open Source developers often tenkeo li

Releasing the source code was not a small task. Most develupmere halted in order to have
every resource to help make it happened. There was much wdn done before the public could
be allowed to see the source. Each line of code had to be regdlisseamments removed etc, and
there were millions of lines of code. A big problem was thatddape were using a number of third
party modules, without the code would be unusable

One of the largest issues was the disposition of the thirtiypaodules included in the
browser. Communicator contained over seventy-five thirdypaodules in its source,
and all the code owners needed to be approached. [6, p. 199]

When the modules were removed, the government did its bestddo the workload of the engi-
neers:

The removal of the cryptographic modules was another trelmemtask for the engi-
neering team. Not only did the government insist that alptographic support had to
be removed, but every hook that called it had to be redadseq. [200]

Even though there were early attempts to reinsert crypte cbavas not until March 2000, nearly
two years later, the crypto code were reinserted into thedstal development tree, available for
testing [40]. The browser is usable even without crypto ¢dmle it makes it impossible to visit

encrypted pages such as banks or secure purchases atersetai

19th October 2004

5.4. The failure of the Mozilla project 28

Finally, after three months of hard work, the source wereastd on the 31st March 1998. The
lizard were finally free, and there was much rejoicing.

5.4 The failure of the Mozilla project

Shortly after the code was released, the problems begasetomithe horizon. There had been almost
no development at Netscape the first three months of 1998/tsineously as Microsoft were going
full speed ahead Netscape were stressed to get the next wargion of their browser out on the
market. The browser war were not over yet. The task to getleased source code to run well was
a too huge task as there were plenty of holes in the code dwrtoved modules. Therefore they
continued to work on an older code branch, pulling most ofrdsaurces from the Mozilla project
onto getting Netscape 4.6 out of the door. The first impomaomths, the Mozilla project were an
empty shell of a few project managers and millions of linegrdisable code.

Exactly a year after the initial release of the Mozilla s@ucode the head engineer Jamie Zawin-
ski quit the project as it was not progressing as he would hiaed to. His rather bitter resignation
letter [47] is a very interesting read for anyone who is iested in problems associated with opening
products. He concludes that there have been little outsidghiement in the project and concludes
that the released code really was not usable for a extermalajeer.

People only really contribute when they get something out.ofWhen someone is

first beginning to contribute, they especially need to semeskind of payback, some
kind of positive reinforcement, right away. For examplesdimeone were running a
web browser, then stopped, added a simple new command t@tiees recompiled,

and had that same web browser plus their addition, they woeilchotivated to do this

again, and possibly to tackle even larger projects.

We never got there. We never distributed the source code torkirvg web browser,
more importantly, to the web browser that people were algtusing. We didn't re-
lease the source code to the most-previous-release ofdpetddavigator: instead, we
released what we had at the time, which had a number of inaimfdatures, and lots
and lots of bugs. And of course we weren'’t able to release awy dr crypto code at
all.

What we released was a large pile of interesting code, butlit'tdmuch resemble
something you could actually use.

Finally, after spending three months cleaning up the codkeatat could be released, spending more
months developing old code in order to push out a new relefabe @ld browser, the result was not

only a slip by at least six months, but a resulting Open Sopregct with code nobody understood

how to use. A piece of software that was increasingly hardamtain and update in order to support
new standards. The code was ripped away, and work began bath@w rendering engine and new
interface code, basically a total rewrite of the whole brexvs

Early 1999, AOL acquired Netscape, a merge which questitheefliture of the project [39]. As
Mozilla was no keystone in the business strategy of AOL, &edschedule were already slipping,
they considered killing the project off from the start. Diégsghe fact that they kept the project
running, the AOL merge, and later on the merge with Time Wapu Mozilla further and further
away from the core business of the main funder.

Shortly before Mozilla’s first birthday Netscape had to |df&50 workers. On its birthday,
Jamie Zawinski, project leader left the project, due to tloevprogress. During this time, many
talented people left Netscape, and many more got fired. A g#ar the project were started they
had reached the point where they had thrown out all the olcegiand started putting new pieces
into work, people who had been reassigned to the Mozillaggtdyom the work on legacy code
were leaving, and the project yet again became drained.

In August 2000, the license were changed into a dual licgnsiadel, using both the Netscape
specific license as well as the Gnu Public License, later dghird license option the Lesser Gnu
Public License were introduced. The reasons for changasméie was both that there was a lack
of developers from outside of Netscape, as well as to meeé switicism from the Free Software
Foundation [11] that the original license was too restddtebe called free [26].

19th October 2004

5.5. The epilogue of the Netscape era 29

Mozilla 1.0 was released 12th June 2002, over four yearstatemagic April fools day in 1998,
and there was some rejoicing.

5.5 The epilogue of the Netscape era

The decision that would give Netscape a lead in the browserhwyancreasing their development
efforts by opening the product created a huge slip in thedidkeeof development. A year after the
lizard were freed, there were no sign of any new generatiasddpe browser, and Microsoft had
gained an even larger lead with their next major releaseriaté=xplorer 5.0 [46].

Last year became a rather good year for Mozilla, the code uwssd to a number of new clients
and the total market share rose up to 1.7% of the Internes usteraling the third place from Opera.
Mozilla developed as a platform for various network acidstand books were published on how to
embed Mozilla in various solutions, but as for now, the brensar is over.

Frank Heckner concludes on Mozilla.org web-pages that [12]

There is no "royal road" to open source for commercial saféwampanies. To quote
Jamie Zawinski, you can't "sprinkle [a project] with the nagixie dust of 'open
source,” and have everything magically work." To elabgrateompany cannot sim-
ply release source code, put a few newsgroups up, and exigethuated development
to magically self-organize; it will need to make a sustaia#drt requiring various peo-
ple’s time and attention in order to get a distributed openrse development effort to
the point where it can produce results.

Opening the product obviously did not help Netscape to wenttowser war. What happened to the
great efficiency of Open Source methodology?

At this point, shortly after Mozilla’s fifth birthday, thelare a number of Mozilla based projects.
There are over 15 different browsers based on the sourceltaldetscape released the spring 1998,
not one of them manages to compete with Microsoft on the nhatiare, but a lot of developers got
to build the browser they wanted. But then again as Tim OliRethtes it [6, p. 194]

Evolution breeds not a single winner, but diversity

Few of the outside developers who joined the Mozilla profead any reasons for following the
agenda put out by Netscape, like ants they built their owat&mis, walked their own paths.

Then again, if Mozilla had not been released as Open Sourt898, who knows what might
have happened, most likely the project would have beerdidted hidden in a drawer long ago after
some of the mergers and acquisitions the company have gamegth Studying the browser usage
graph above indicates that the decision what a somewhatddsmttempt to win the war. They did
not win the war but they secured the future existence of tbduymt.

Mozilla is larger than Netscape, and evolves in differemections every day, but Netscape are
unable to direct the evolution. The opening of the produeady delayed Netscape at the most
critical moment, Many have created efficient solutions HaseMozilla, but Netscape is not one of
them.

19th October 2004

Chapter 6

Conclusions

All generalizations are false, including this one
— Mark Twain

The purpose of this chapter is to summarize what conclugibiase reached and give pointers to
further potential research areas.

6.1 The myths revisited

Brooks law states that software development must be caotgdn such a way that there are a
minimum of brains involved, as the efficiency of programndgsreases the more people having
to agree on different things. Open Source project has beesidered a proof that Brooks was
wrong, that a large number of people are able to create gofmiase. | have shown that Open
Source projects either is so small that the problem Broolsesses is not applicable, and that large
projects are organized in accordance to brooks theorieowantd minimize the number of brains
involved in each task.

e Conclusion: Brooks law is still valid in Open Source projects

In contradiction to what one might have assumed from readitigles about Open Source, most of
the projects fails. Project often dies at early stages, reefeleasing any stable products, without
building a sustaining community of developers and users.

e Conclusion: Most Open Source projects are failures

The Open Source culture is often dated back to the early 7Bsranpeople working in MIT labs
and other places shared values of freedom. Even tough thelflsy who are still active in the
community often emphases their work, most developers ¢bémel formed the culture and commu-
nities around Open Source during the 1990s. We showed thaadraction of todays hackers had
freedom as a primary motive.

As many papers are based upon the works stating that therewfutodays Open Source is
derived from the older hacker culture of the 70s, we must befabon what false conclusions may
have been drawn from this assumption.

e Conclusion: Open Source culture is a product of the 90s, not the 70s

There are many costs involved with switching between diffiésystems, only a minor part of them
could be reduced by using Open Source software. The majts sash as installation, data mi-
gration and staff retaining remains even though Open Sarongonents are used. Open Source
guarantees that it will be possible to convert the legacy dathe system to another system, but it
does not assure that it will be easy.

e Conclusion: Open Source is no guarantee for reduced lock-in effects

30

6.1. The myths revisited 31

The era of the new economy featured nerds on the front pagégbnpinofile magazines such as
Fortune, Time Magazine, Forbes etc. The story of a group mfseerrifying “big bad Microsoft”
is still a easy way to write a story, the David versus Goliatins Evidence shows that in large
projects where there are commercial interests, up to 709 déeelopment efforts are carried out
by professionals employed by the companies benefiting frenptoduct.

e Conclusion: Our most famous Open Source projects are not built up by neodking for
free, but professionals, employed by commercial compdaiesntribute to the projects.

The beauty of Open Source should be that anyone could paatiégiand that It didn’t matter whether
the solution came from a Ph.d. or a high school student. Ondhg&ary, evidence were presented
that large Open Source Projects are built up in an hierafabhion, and your solution is more likely

to be accepted the higher you are in the hierarchy. The mia@tts the one who has the final word,
and his trustees are more likely to get their will through.

e Conclusion: Large Open Source projects are often hierarchal and buratizic

The Mozilla project taught us that, despite good precoon;j there is not necessary a large number
of people interested or competent enough to contribute tio pmject. There are many obstacles in
creating a successful Open Source project.

e Conclusion: Opening your source does not automatically lead to a larggyen of contribu-
tors

| showed both in our section about efficiency and in the Mazhample that Open Source efficiency

works as an anthill, where all the actors use a certain progefulfill their own interests. Open

Source breeds diversity, not a single winner. Perhapsshi$yy Open Source could be beneficial as

an innovator, as some ant is likely to travel a path which wtise should not have been evaluated.
Open Source is not efficient as a way for a company to develapjaqt in a certain direction,

if they are not willing to put in all the work themselves in erdo make sure that it evolves the way

they want.

e Conclusion: Open Source breeds diversity, not a single winner

With this in mind, it would be interested to know how HewlettdRard have thought about how they
are to direct their ants to create the products the compaggsnsolving the bugs that the customers
wants. Companies organize themselves in order to make stignty that there are no duplication
of work, but that all tasks which needs to be carried out distiga If organizing a company as an
anthill would be efficient, how people started to organizgrtbrganizations at all?

e Conclusion: Open Source is not necessarily an efficient way to develdwaoé

The investigation on Open Source projects showed that nidse@rojects targets the community
itself. Most projects were targeted developers and syséeiménistrators. Further they were targeted
Unix systems rather than Windows systems. As there is no oiéant to give the fruits of their
labours to total strangers, it might be premature to talludbtiruism.

e Conclusion: Open Source projects often targets the community itsetlfierathan external
actors

Even though a formal market study have not been carried aat of the well known companies |
have identified who engages in Open Source does so with tauitional buisness models, often
resembling models used in sports. The main business madeither to repackage the products to
target new customers, or to use the products as third partiplesin their own products.

e Conclusion: Companies benefiting from Open Source are often based atidred business
models rather than revolutionary visions

19th October 2004

6.2. Suggestions for further research 32

6.2 Suggestions for further research

Even though the areas of Open Source have been studied tgeaeldent, there are many areas left
to explore. This thesis have been a general overview, tBgretential to go deeper at virtually any
point discussed here but | will give some more concrete sstgges. First, it would be interesting to
investigate how the community reacts to the commerciatinaif the game, how is money affecting
the motivational factors. Why does the minority of hobbyistthe largest Open Source project keep
working for free, when up to 80 per cent of thier peers aredppiid for the same work. Second, it
would be interesting to put Open Source into a wider sociokdgerspective, how come the Open
Source communities are able to survive and attract peopémwiost other communities are on the
verge on abandonment.

19th October 2004

Bibliography

[1] The Boston Consulting Group (2008acker Surveyhttp://www.osdl.com/bcg/

[2] Broil, M. (2003), Why Do People Write Open Source Software?,
http://slashdot.org/articles/03/04/26/1417247 .shtml

[3] Brooks, Frederic Phillips, Jr (1995)he mythical man month: essays on software engineering.
[4] Caillois, Roger (2001)Man, Play and gamedhe Free Press of Glencoe, Inc.
[5] Elias, Norbert (1978)The History of MannerdJrizen Books, New York

[6] DiBona, Chris, Ockman, Sam and Stone, Mark (1999)en Sources: Voices of the Open
Source RevolutigrO’Reilly & Associates

[7] Elias, Norbert and Dunning, Eric (198&ran riddarspel till fotbollscup: sport i sociologisk
belysning Atlantis, Stockholm

[8] Eller & Edstrom (1998)Barbarians Led by Bill GatedHenry Holt and Company Inc.

[9] Eriksson & Wiedersheim-Paul (2001tt utreda, forska och rapporterd.ieber ekonomi,
Malmo

[18] European Commission (2002free/Libre and Open Source Software: Survey and Study
(FLOSS) http://www.infonomics.nl/FLOSS/

[10] Fink, Martin (2003);The business and economics of Linux and open spBearson Education,
Inc., New Jersey

[11] Free Software Foundation (2008)pmepagehttp://www.fsf.org/

[12] Heckner, Frank (1999), Mozilla at one: A Look Back and Head,
http://www.mozilla.org/mozilla-at-one.html

[13] Huizinga, Johan (1950homo ludensRoy Publishers

[14] Hornfeldt, Erik, Hansson, Mattias (1999)ww.torget.se - Den fantastiska historien om ett av
varldens mest framgangsrika internetproje&tnnier Icon Publishing

[15] IBM (2003),0pen source softwarattp://www-3.ibm.com/software/info/topic/opensoeitatml

[16] Judge, Peter (2002Ballmer: We'll outsmart open sourcéttp://zdnet.com.com/2100-1104-
959112.html

[17] Karp, Stefan (2000)Barn, Foraldrar Och Idrott: En intervjustudie om fostranam fotboll
och golf Umea universitet

[18] Kelly, Lisa and Ranger, Steve (2002Whitehall vows to end proprietary locks;in
http://www.computing.co.uk/News/1133883

[19] Kollock, Peter and Smith, Marc A. (1999Fommunities in cyberspacRoutledge, London

[20] Landley, Rob (2002}),inux-Kernel Mailinglist: A modest proposal — We need a patenguin
http://www.ussgiu.edu/hypermail/linux/kernel/02Q1.300.html

33

Bibliography 34

[21] Levy, Steven (1984)lackers: Heroes of the Computer Revolution

[22] Lewis, Michael (1999),The New New Thing - How some man you've never heard of just
changed your lifeHodder & Stoughton

[23] Melian, Ammirati, Garg, Sevon (200Building Networks of Software Communities in a Large
Corporation

[24] Moody, Glyn (2001)Rebel Code: The Inside Story of Linux and the Open SourcduRievn
Perseus Publishing, Cambridge, Massachusetts

[25] Moore, J.T.S (2003DVD: Revolution OShttp://www.revolution-os.com

[26] The Mozilla Organization (2003), Mozilla Relicensing FAQ,
http://www.mozilla.org/MPL/relicensing-fag.html

[27] Mozillazine (2000) Mike Shaver Leaving Netscagetp://www.mozillazine.org/talkback.html?articleda3

[28] Netscape Communications Corporation (1998j)essrelease: Netscape Announces Plans
to Make Next-Generation Communicator Source Code Avalablee on The Net,
http://wp.netscape.com/newsref/pr/newsrelease558.ht

[29] Netscape Communications Corporation (1998ressrelease: Netscape Announces
Mozilla.org, A Dedicated Team and Web Site Supporting gveént of Free Client Source
Code, http://wp.netscape.com/newsref/pr/inewsreledseiml

[30] Netscape Communications Corporation (1998), Pressrelease: Netscape
Makes Draft of Free Source Code License Available for Re-
viewhttp://wp.netscape.com/newsref/pr/newsrelease5v9.ht

[31] Olson, Michael A (2002)A business case for open sourbétp://news.com.com/2010-1078-
901341.html

[32] The Open Source Initiativéjomepagehttp://www.opensource.org

[33] The Open Source Initiative, The Open Source definition,
http://www.opensource.org/docs/definition.php

[34] Pavlicek, Russel C. (2000mbracing Insanity: Open Source Software Developimsains
Publishing

[35] Putnam, Robert D. (2000Bowling Alone - The Collapse and Revival of American Comtyuni

[36] Raymond, Eric S. (2001};he Cathedral and the Bazaar: Mustings on Linux and Openc&our
by an Accidential Revolutinary, Revised Editi@iReilly & Associates, Inc., Sebastopol

[37] Reasoning Inc. (2003)jow Open-Source and Commercial Software Compare: A Quantit
tive Analysis of TCP/IP Implementations in Commercial \Baf¢ and in the Linux Kernel,
http://www.reasoning.com/downloads/Open_Source éVRaper v1.1.pdf

[38] Rehn, Alf (2001) Electronic PotlatchKTH INDEK, Stockholm
[39] Slashdot (1999A0L Cosiders Ending MozillaPttp://slashdot.org/article.pl?sid=00/08/16/2157@#A®de=thread

[40] Slashdot (2000), Mozilla With Crypto Code released,
http://slashdot.org/article.pl?sid=00/03/09/105224® de=thread

[41] Statskontoret (2003Pppen Kallkod (2003:8)ttp://www.statskontoret.se/pdf/200308.pdf

[42] Torvalds, Linus and Diamond, David (2003yst for fun: the story of an accidential revolu-
tionary, HarperCollins Publishers Inc., New York

[43] Veblen, Thorstein (1994)he theory of the leisure cladSover Publications Inc., Toronto

19th October 2004

Bibliography 35

[44] Vlasenko, Denis (2003), Linuk-Kernel Mailinglist: [k maintainers
http://www.ussg.iu.edu/hypermail/linux/kernel/0324323.html

[45] Williams, Sam (2002)Free as in Freedom: Richard Stallman’s Crusade for Free &
O'Reilly & Associates

[46] Wired (1999) Where's Netscapes new browsgdrtp://www.wired.com/news/technology/0,1282,18B0html

[47] Zawinski, Jamie (1999)esignation and postmorterhttp://www.jwz.org/gruntle/nomo.html

19th October 2004

Appendix A

Open Source Development - Who Is
paying for free software?

Introduction and method

This document aims to investigate whether open source olgwvednt (OSD) in large open source
projects (OSP) is still a matter of a group of individualsrapdevelopment on their free time as a
way to increase their knowledge and having fun. Or if thegupjafter reaching a critical size where
large companies incorporates the product into their gieéebecomes a loose system of cooperation
between corporations instead.

In order to investigate this further | have collected stafisfrom the mailing-lists archives from
five of the largest, and most well known open source projétasnely;

e The Apache Web server, the single most popular web servertogday with a market share
over 60%.

e The GNOME desktop, an user interface for the X windowingesyst, currently shipped with
most of the large Linux distributions as well as the defagkldop for Sun Workstations.

e The Linux Kernel

e The SAMBA server, a piece of software that enables Unix sereeact as Windows NT/XP/2000
file servers.

e WINE (Wine is no Emulator), a piece of software that enableixUnachines using X86
processors (Intel/AMD) to run standard Windows software

The projects have been singled out not only because they @lt&kmown even outside the open

source community but also as they were once small projectshwtave grown so large that the

projects now have become strategic parts of traditionalpzories such as IBM and SUN. Not only

have they attracted the software giants of the valley, tteefalso nurtured a number of start-ups
focusing on packaging the projects above and thus enahtiogssoutside the community to benefit

from the efforts.

The study were carried out by collecting statistics fromrdhadf a million messages sent to the
projects development mailing-lists. Open source projectsually governed by the development
mailing-lists, therefore the activity on the mailing-siay act as an indicator of the efforts put
down by single developers. As the culture have low tolerdrara free-riders on the lists (people
making promises but never delivering) the number of peopl@ering nothing but talk on the lists
should be minimized. | do not state that this is the ultimasy ¥0 measure activity in open source
projects, there are many others which may, or may not leadot@ rmccurate results. | do however
state that this method is good enough to single out the maitribators over time.

36

Appendix A. Open Source Development - Who is paying for freecftware? 37

Making the classifications

After obtaining the names of the main contributors to thgemts, | have tried to identify whether
they are receiving financing by a commercial entity in ordeobtain whether the project is ruled
by commercial interests or if the project could still be slfied as a hobby. | will not question the
integrity of the developer obtaining the financial aid to thowe working on the project full time
instead as a hobby, neither will | try to assess whether thieldper find themselves affected by the
goals of their funder or if they feel that they are free to dawnthey want.

In order to make this work possible | have made some genestihdiions in order to be able
to classify the funders into black and white categories. Rettgper which is paid to develop on
a certain project, is classified as a company contributicadldimes. Even though there are some
people out there not only contributing on working-hours&igb on other parts of their projects on
their free time, they are threated as paid on all their woHer€ are no distinctions done whether the
company is actively encouraging the developer or if he singelts away with doing free software
work without the knowledge of his superiors.

During the data collection phases these data have beendpmstthe mailing-list and | have
received many valuable comments and corrections on my @atacomment that | have disregarded
is the common focus on what a contributor is. | have receivievacomments such as; | wouldn't
classify me as a major contributor, | just hang around ang bekrs, | seldom write any code.
This focus on writing code is perhaps natural in an enviramnoé developers, but my experience
is that there is a lot more into developing software thanimgitode. Therefore those people have
been included, as we are not counting lines of written codethe effort for the project and the
community.

Validity of the data

Please do not read to much into the numbers presented heee.tiaugh they are presented with
an appearance of accuracy, you can not state that x.y% ofaircproject is funded by company z.

Focus on the patterns, the large trends. The goal is thatlyouid be able to back up a statement
such as “there is a significant amount of activity in projeethich is funded by corporations, the

main funders are y,z,w".

Acknowledgments

The world of Open Source Software is a wonderful place forseaecher. As the conversation is
often carried out via mailing-lists, which are archived @udblicly available, we are able to go back
in history and follow nearly every sentence since the baginaf the project. Not only is the history
archived carefully, the tools to index and process it islatég right at my hands. I'd like to thank,
not only the developers which made the research meaningfalo the people keeping the archives
as well as the creators and teams behind some interestitvgasefsuch as the Perl language, the
MySQL database engine and theX_editor for KTEX. A special thank should also go to Mark
Overmeer and the others behind the Perl-module Mail::Boiclvhaved me some work in parsing
the archives.

The use of trademarks have been use very respect-less itexhisise of a term in this paper
should not be regarded as effecting the validity of any tnaaié or service mark.

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 38

The Apache Web Server

Background

According to the July 2002 Netcraft survey, over 60% of atemnet websites were powered by
the Apache Web Server. Apache was once a small set of patzhies original NCSA web server
but have grown to be a part of web-solutions from large congsasuch as IBM and Oracle. |
have studied 89 502 messages in the apache-dev mailingetiseen 1995-02-28 and 2002-12-17
in order to measure the activity.

Activity over time

Activity on the apache-dev mailinglist over time
2000

1800 -

1600

1400

=
N
o
o

1000

Number of messages

o]
o
o

600

400

200

0
1995-3 1996-1 1996-11 1997-9 1998-7 1999-5 2000-3 2001-1 2001-11 2002-9
Year—Month

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 39

Main development contributors during year 2002

Mails | Percentagel Aggregated| Person

736 6.90 % 6.90 % Justin Erenkrantz, Unknown / Self-financed
702 6.58 % 13.48 % Jeff Trawick, IBM

676 6.34 % 19.82 % William A. Rowe, Covalent Technologies

603 5.65 % 25.47 % Ryan Bloom, Covalent Technologies

591 5.54 % 31.01% Cliff Woolley, Unknown / Self-financed

489 4.58 % 35.60 % Aaron Bannert, Covalent Technologies

404 3.79% 39.38% Brian Pane, Cnet

402 3.77% 43.15% Jim Jagielski, JaguNET

398 3.73% 46.88 % Bill Stoddard, IBM

271 2.54% 49.42 % Greg Ames, IBM

262 2.46 % 51.88 % Sander Striker, Unknown / Self-financed

254 2.38% 54.26 % Rodent Of Unusual Size, IBM

244 2.29% 56.55 % Joshua Slive, Unknown / Self-financed

241 2.26 % 58.81 % lan Holsman, Cnet

219 2.05% 60.86 % Graham Leggett, Unknown / Self-financed
204 1.91% 62.77 % Greg Stein, Unknown / Self-financed

158 1.48% 64.25 % Pier Fumagalli, Sun Microsystems

140 1.31% 65.57 % Dirk-Willem Van Gulik, Covalent Technologies
128 1.20% 66.77 % Bojan Smojver, Rexursive

121 1.13% 67.90 % Thom May, The Positive Internet Company Ltd
88 0.82% 68.73 % Brad Nicholes, Novell Inc.

83 0.78 % 69.50 % Roy T. Fielding, Day Software Inc.

82 0.77 % 70.27 % Jerry Baker, Unknown / Self-financed

79 0.74 % 71.01% André Malo, Unknown / Self-financed

77 0.72% 71.74 % Martin Kraemer, Fujitsu-Siemens Computers
76 0.71 % 72.45 % Doug Maceachern, Covalent Technologies
69 0.65 % 73.09 % Paul J. Reder, IBM

66 0.62 % 73.71% Sebastian Bergmann, Unknown / Self-financed
59 0.55 % 74.27 % Stas Bekman, Unknown / Self-financed

57 0.53 % 74.80 % Madhusudan Mathihalli, HP

Table A.1: A table listing the most active persons on the bBpatev mailinglist during 2002.

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 40

Main financial contributors during year 2002

Mails | Percentage| Aggregated| Company

2542 31.86 % 31.86 % Unknown / Self-financed
1984 24.87 % 56.72 % Covalent Technologies
1694 21.23% 77.95% IBM

645 8.08 % 86.04 % Cnet

402 5.04 % 91.08 % JaguNET

158 1.98 % 93.06 % Sun Microsystems

128 1.60 % 94.66 % Rexursive

121 1.52 % 96.18 % The Positive Internet Company Ltd
88 1.10% 97.28 % Novell Inc.

83 1.04 % 98.32 % Day Software Inc.

77 0.97 % 99.29 % Fujitsu-Siemens Computers
57 0.71% 100.00% | HP

Table A.2: A table listing the most active companies on thachp-dev mailinglist during 2002.
(Only persons in the previous figure is included.)

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 41

The GNOME desktop

Background

GNOME is the graphical user interface (GUI) project led byl de Icaza. The project aims to
create an easy-to-use interface to the X Window System ugeatbist UNIX systems. GNOME is
not only one of the most popular GUIs to Linux, it is also stags the default GUI on workstations
from SUN Microsystems. In this study, | have studied 12 744sages from the gnome-devel
mailing-list between 1998-07-07 to 2002-12-16.

Activity over time

Activity on the gnome-devel mailinglist over time
800

700

600 -

al

o

o
T

Number of messages
N
o
o
T

w

o

o
T

200 |

100

0
1999-2 1999-12 2000-10 2001-8 2002-6
Year—Month

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 42

Main development contributors during year 2002

Mails | Percentage| Aggregated| Person

105 6.64 % 6.64 % Havoc Pennington, RedHat

64 4.05% 10.68 % Elliot Lee, RedHat

63 3.98 % 14.66 % Michael Meeks, Ximian

47 297 % 17.64 % Sean Middleditch, Unknown / Self-financed

44 2.78 % 20.42 % Ali Akcaagac, Unknown / Self-financed

42 2.65% 23.07% Cristiano De Michele, Unknown / Self-financed
36 2.28% 25.35% James Henstridge, Unknown / Self-financed
30 1.90 % 27.24 % Sergey V. Udaltsov, Unknown / Self-financed
26 1.64 % 28.89 % Sander Vesik, Sun Microsystems

25 1.58 % 30.47 % Philip Van Hoof, Unknown / Self-financed

24 1.52% 31.98% Shane W. Clancy, Northrop Grumman

24 1.52% 33.50 % Kjartan Maraas, Unknown / Self-financed

22 1.39% 34.89 % Malcolm Tredinnick, Unknown / Self-financed
21 1.33% 36.22 % Jacob Berkman, Ximian

20 1.26 % 37.48% Miguel De Icaza, Ximian

19 1.20% 38.69 % Owen Taylor, RedHat

18 1.14% 39.82% Michael Honeyfield, Unknown / Self-financed
18 1.14% 40.96 % Martin Sevior, Unknown / Self-financed

17 1.07 % 42.04 % Allin Cottrell, Unknown / Self-financed

16 1.01% 43.05 % David Moles, Unknown / Self-financed

16 1.01% 44.06 % Franck Martin, Unknown / Self-financed

15 0.95% 45.01 % Mikael Hallendal, CodeFactory

15 0.95% 45.95 % Biswapesh Chattopadhyay, Unknown / Self-financed
15 0.95 % 46.90 % Thomas Vander Stichele, Unknown / Self-financed

Table A.3: A table listing the most active persons on the garalevel mailinglist during 2002.

Main financial contributors during year 2002

Mails | Percentage| Aggregated| Company

385 51.89 % 51.89 % Unknown / Self-financed
188 25.34 % 77.22% RedHat

104 14.02 % 91.24 % Ximian

26 3.50 % 94.74 % Sun Microsystems
24 3.23% 97.98 % Northrop Grumman
15 2.02% 100.00% | CodeFactory

Table A.4: A table listing the most active companies on thernge-devel mailinglist during 2002.
(Only persons in the previous figure is included.)

The Linux Kernel

Background

The Linux kernel is perhaps the most well known Open Sourogept in the world. Started, and
still maintained by Linus Torvalds in 1991. Linux has becoone of the fastest growing Operating
Systems today, with millions of users over the world. Manynpanies use Linux as a large brick
in their strategy, both as delivering products and serviggsg the system as well as using it to

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 43

power its servers. This study covers 358 910 messages frofintix-kernel mailing-list between
1996-03-01 and 2002-12-25

Activity over time

Activity on the linux—kernel mailinglist over time

12000 -

10000 -

8000

6000

Number of messages

4000

2000

0
1996-3 1997-1 1997-11 1998-9 1999-7 2000-6 2001-4 2002-2
Year-Month

Main development contributors during year 2002

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 44

Mails | Percentagel Aggregated| Person

3561 427 % 427 % Alan Cox, RedHat

1907 2.29% 6.56 % Andrew Morton, Moxi.com

1403 1.68 % 8.24 % David S. Miller, RedHat

1343 1.61% 9.85% Linus Torvalds, Transmeta

1143 1.37% 11.23% Greg Kh, IBM

1076 1.29% 12.52 % Jeff Garzik, Mandrake Software

1035 1.24% 13.76 % Daniel Phillips, Innominate

934 1.12% 14.88 % Dave Jones, SUSE

931 1.12% 15.99 % Pavel Machek, SUSE

928 1.11% 1711 % Rik Van Riel, Conectiva

877 1.05% 18.16 % William Lee Irwin 1ll, IBM

873 1.05% 19.21% Rusty Russell, IBM

869 1.04 % 20.25% Robert Love, MontaVista Software

864 1.04 % 21.29% Ingo Molnar, RedHat

756 0.91% 22.19% Jens Axboe, SUSE

732 0.88 % 23.07 % Martin Dalecki, Evision Ventures?

698 0.84 % 23.91% Andrea Arcangeli, SUSE

688 0.83% 24.73 % Christoph Hellwig, SGI

613 0.74% 2547 % Andre Hedrick, Pyx Technologies

598 0.72% 26.19% Bill Davidsen, TMR Associates

598 0.72% 26.90 % Russell King, Independant/ Consulting for ARM Ltd
581 0.70% 27.60 % Alexander Viro, RedHat

576 0.69% 28.29% Keith Owens, SGI

575 0.69% 28.98 % Zwane Mwaikambo, Unknown / Self-financed
558 0.67 % 29.65 % Thunder From The Hill, Unknown / Self-financed
558 0.67 % 30.32% Martin J. Bligh, IBM

558 0.67 % 30.99 % Vojtech Pavlik, SUSE

546 0.66 % 31.65% H. Peter Anvin, Transmeta

520 0.62 % 32.27% Richard B. Johnson, Analogic Corporation
471 0.57% 32.83% Andi Kleen, SUSE

435 0.52% 33.36 % Roman Zippel, Unknown / Self-financed

434 0.52% 33.88 % Adrian Bunk, Unknown / Self-financed

430 0.52% 34.39% Larry Mc\Voy, BitMover

392 0.47 % 34.86 % Andreas Dilger, Cluster File System

390 0.47 % 35.33% Eric W. Biederman, Unknown / Self-financed
378 0.45% 35.78 % Denis Vlasenko, Unknown / Self-financed
367 0.44 % 36.22 % James Simmons, Transvirtual

363 0.44 % 36.66 % George Anzinger, MontaVista Software

354 0.42 % 37.08 % Adam J. Richter, Yggdrasil

346 0.42 % 37.50 % Anton Altaparmakov, Unknown / Self-financed
345 0.41% 37.91% Davide Libenzi, Unknown / Self-financed
334 0.40 % 38.31% Andries Brouwer, Unknown / Self-financed
299 0.36 % 38.67 % Arnaldo Carvalho De Melo, Conectiva

285 0.34 % 39.01% Benjamin Lahaise, RedHat

282 0.34 % 39.35% Tomas Szepe, Unknown / Self-financed

280 0.34 % 39.69 % Roy Sigurd Karlsbakk, Unknown / Self-financed
280 0.34% 40.02 % Randy.Dunlap, OSDL

279 0.33% 40.36 % Rob Landley, Unknown / Self-financed

272 0.33% 40.69 % Trond Myklebust, Unknown / Self-financed
268 0.32% 41.01 % David Woodhouse, RedHat

Table A.5: A table listing the most active persons on thexikarnel mailinglist during 2002.

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 45

Main financial contributors during year 2002

Mails | Percentagel Aggregated| Company

6962 20.37 % 20.37 % RedHat

4908 14.36 % 34.72 % Unknown / Self-financed
4348 12.72 % 47.44 % SuSE

3451 10.10 % 57.54 % IBM

1907 5.58 % 63.12 % Moxi.com

1889 553 % 68.65 % Transmeta

1264 3.70% 72.34% SGI

1232 3.60% 75.95 % MontaVista Software
1227 3.59% 79.54 % Conectiva

1076 3.15% 82.68 % Mandrake Software
1035 3.03% 85.71 % Innominate

732 2.14% 87.85% Evision Ventures?
613 1.79% 89.65 % Pyx Technologies
598 1.75% 91.40% TMR Associates

598 1.75% 93.15% Independant / Consulting for ARM Ltd
520 1.52% 94.67 % Analogic Corporation
430 1.26 % 95.92 % BitMover

392 1.15% 97.07 % Cluster File System
367 1.07 % 98.15 % Transvirtual

354 1.04 % 99.18 % Yggdrasil

280 0.82% 100.00% | OSDL

Table A.6: A table listing the most active companies on thexikernel mailinglist during 2002.
(Only persons in the previous figure is included.)

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 46

The SAMBA Server

Background

SAMBA is a server enabling Unix workstations to speak the SM&tocol which is used by Win-
dows 95/NT/2000/XP in order to share files. This softwaradwa Unix server into a full featured
Windows server at not additional cost. A few years ago, an(&iflavor of Unix for SGI machines)
were the fastest Windows File Server available. This studyers 26 052 messages from the samba-
technical mailing-list between 1997-01-04 and 2002-12-17

Activity over time

Activity on the samba-technical mailinglist over time
1200

1000

800

600

Number of messages

400 -

200~

0
1998-3 1999-1 1999-11 2000-9 2001-7 2002-5
Year—Month

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 47

Main development contributors during year 2002

Mails | Percentage| Aggregated| Person

636 7.95 % 7.95% Andrew Bartlett, Unknown / Self-financed
465 5.81% 13.75% Gerald Carter, VA Linux

426 5.32% 19.08 % Richard Sharpe, Pansas

364 4.55% 23.62 % Jeremy Allison, VA Linux

227 2.84 % 26.46 % Simo Sorce, Xsec

203 2.54 % 28.99 % Stefan Metzmacher, Unknown / Self-financed
185 2.31% 31.31% Tim Potter, VA Linux

156 1.95% 33.25% Christopher R. Hertel, Unknown / Self-financed
131 1.64% 34.89 % Jelmer Vernooij, Unknown / Self-financed
127 1.59 % 36.48 % Steve Langasek, Unknown / Self-financed
125 1.56 % 38.04 % Andrew Esh, TriCord ?

110 1.37% 39.41% David Collier-Brown, SUN Microsystems

100 1.25% 40.66 % \olker Lendecke, Service Network GmbH

87 1.09 % 41.75% Rafal Szczesniak, Unknown / Self-financed

85 1.06 % 42.81 % Jim McDonough, IBM

85 1.06 % 43.87 % Alexander Bokovoy, Sam-Solutions

75 0.94 % 44.81 % Luke Kenneth Casson Leighton, Unknown / Self-financed
71 0.89 % 45.70 % Bradley W. Langhorst, University of New Hampshire
67 0.84 % 46.53 % Don McCall, HP

62 0.77 % 47.31% Urban Widmark, Enlight

62 0.77 % 48.08 % UIf Bertilsson, Unknown / Self-financed

61 0.76 % 48.84 % Mike Gerdts, Alcatel

59 0.74 % 49.58 % Luke Howard, PADL Software Pty Ltd

57 0.71% 50.29 % David Lee, University of Durham

55 0.69 % 50.98 % Juergen Hasch, Unknown / Self-financed

54 0.67 % 51.66 % Steven French, IBM

51 0.64 % 52.29% Andreas Moroder, Unknown / Self-financed

Table A.7: A table listing the most active persons on the saiebhnical mailinglist during 2002.

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 48

Main financial contributors during year 2002

Mails | Percentage| Aggregated| Company

1583 37.82% 37.82 % Unknown / Self-financed
1014 24.22 % 62.04 % VA Linux

426 10.18 % 72.22% Pansas

227 542 % 77.64% Xsec

139 3.32% 80.96 % IBM

125 2.99 % 83.95 % TriCord ?

110 2.63 % 86.57 % SUN Microsystems

100 2.39% 88.96 % Service Network GmbH

85 2.03% 90.99 % Sam-Solutions

71 1.70% 92.69 % University of New Hampshire
67 1.60 % 94.29 % HP

62 1.48 % 95.77 % Enlight

61 1.46 % 97.23% Alcatel

59 1.41% 98.64 % PADL Software Pty Ltd

57 1.36 % 100.00% | University of Durham

Table A.8: Atable listing the most active companies on thmatsatechnical mailinglist during 2002.
(Only persons in the previous figure is included.)

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 49

WINE

Background

WINE is an implementation of many of the APIs used by Microdindows. The software enables
Linux/Unix users to run Windows programs in their local eomment. WINE is also a library,
enabling companies to cross-compile their windows softvt@arun under Linux/Unix without any
performance loss. Several companies has been foundedantoriéike advantage of the possibilities
given by the WINE project, bringing Microsoft Office to thenix Desktop (Without the permission
from Microsoft) as well as porting many applications and ganThe increase in commercial interest
made the developers change to a more restrictive licensgnfpthe companies to give back their
work to the community. This has led to a fork of the projectr@sd¢ompanies involved claimed that
they were frightened of violating the Digital Millennium @gright Act (DMCA). This study covers
14 034 messages from the wine-devel mailing-list betwe&®20-04 and 2002-12-17.

Activity over time

Activity on the wine—devel mailinglist over time

1800 -

1600

1400

1200

1000~

800

Number of messages

600

400

200

0
2000-10 2001-8 2002-6
Year—Month

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 50

Main development contributors during year 2002

Mails | Percentage| Aggregated| Person

768 8.28 % 8.28 % Dimitrie O. Paun, Unknown / Self-financed
682 7.36 % 15.64 % Alexandre Julliard, Codeweavers

364 3.93% 19.57 % Francois Gouget, Codeweavers

309 3.33% 22.90% Eric Pouech, Unknown / Self-financed

293 3.16 % 26.06 % Andreas Mohr, Unknown / Self-financed
278 3.00 % 29.06 % Sylvain Petreolle, Unknown / Self-financed
265 2.86 % 31.92% Andriy Palamarchuk, Unknown / Self-financed
262 2.83% 34.74 % Steven Edwards, Unknown / Self-financed
228 2.46 % 37.20% Martin Wilck, Fujitsu-Siemens Computers
220 2.37% 39.58 % Patrik Stridvall, Unknown / Self-financed
209 2.25% 41.83 % Uwe Bonnes, Unknown / Self-financed

166 1.79% 43.62 % Dmitry Timoshkov, Codeweavers

166 1.79% 45.41 % Greg Turner, Unknown / Self-financed

165 1.78 % 47.19 % Shachar Shemesh, Unknown / Self-financed
160 1.73% 48.92 % Dustin Navea, Unknown / Self-financed

156 1.68 % 50.60 % Tony Lambregts, Unknown / Self-financed
143 1.54% 52.14 % Ove Kaaven, Transgaming

137 1.48% 53.62 % Bill Medland, ACCPAC International Inc.
122 1.32% 54,93 % Michael Cardenas, Lindows

106 1.14 % 56.08 % Lionel Ulmer, Unknown / Self-financed

100 1.08 % 57.16 % Duane Clark, Unknown / Self-financed

96 1.04 % 58.19% Vincent Beron, Unknown / Self-financed

95 1.02 % 59.22 % Marcus Meissner, SUSE

82 0.88 % 60.10 % Brett Glass, Unknown / Self-financed

80 0.86 % 60.96 % Lawson Whitney, Unknown / Self-financed
75 0.81 % 61.77 % Michael Stefaniuc, Unknown / Self-financed
75 0.81% 62.58 % Dan Kegel, Unknown / Self-financed

Table A.9: A table listing the most active persons on the wdeeel mailinglist during 2002.

19th October 2004

Appendix A. Open Source Development - Who is paying for freecftware? 51

Main financial contributors during year 2002

Mails | Percentage| Aggregated| Company

3865 66.61 % 66.61 % Unknown / Self-financed
1212 20.89 % 87.50 % Codeweavers

228 3.93% 91.43% Fujitsu-Siemens Computers
143 2.46 % 93.90 % Transgaming

137 2.36 % 96.26 % ACCPAC International Inc.
122 2.10% 98.36 % Lindows

95 1.64 % 100.00% | SUSE

Table A.10: A table listing the most active companies on tlrewdevel mailinglist during 2002.
(Only persons in the previous figure is included.)

Conclusions

This paper is primarily a collection of data in order for madgossible others, to prove various
points in other papers. The separation of the data and mgtiis@bout it is highly intentional as
this gives me the ability to verify my data from the partiegiilved without having my conclusions
being questioned. This is not a statement saying that | dowaot to have my conclusions discussed,
simply that | want them to be discussed separately from timisesvhat objective data, so that this
data will remain unpolluted.

Further research

This paper reflects over a simple snapshot of a few Open Spugects (even though the snapshot
is an aggregation during 2002) and there are therefore mgpscts still to be investigated. How
did this commercialization happened - it would be interestio follow the community over time
(forward or backward) to see how this all happened, and tigegs if developers put in more effort
now when they are paid than when they weren't.

It would also be interesting to further explore the thougiftthe minority that is still unpaid,
even though they are doing as much work as they who are. Whigayokeep on doing it, working
for the community, when the community has been bough andeeglby corporations?

Any person interested in investigating this further in argyvis welcome to contact the author
in order to obtain useful tools as well as a database contathe archives.

On a side-note one should be able to observe a shift in gctivér time as a result of the change
in motivations. In the early stages, development effortdpbly increased heavily during holidays,
as the hobby-developers had more time then. When largeqgdaints efforts are done in corporations,
development decreases when people leave the office. | arn@istnced, even though this have not
been studied here, that the working-hours also are afféated evenings and weekends to regular
business hours.

19th October 2004

Appendix B

A study of the Open Source projects
that never took off

Introduction and method

This is a study of over 34 000 Open Source projects residingherpopular project repository
SourceForge.net. The aim with this paper is to study smadiiCfource Project and show that there
are large efforts done in projects that never become knownimle audience.

The data used in this study were collected between 20027Ehd 2002-12-25. The data is es-
sentially information about all the projects hosted on $ekbrge.net. The reason for using Source-
Forge as the only primary data source is that they host a faxgeer of projects and they do it in
a very structured way, simplifying an automatic classifaabf projects. SourceForge.net have not
taken any active part in this research, the data is colldeyettie author, from the website, and has
not been verified by staff from SourceForge.net.

The observant reader will notice that there is quite a diffiee between the 34 262 projects (and
36 337 developers) covered in this paper and the numbedsiateww.sourceforge.net. This study
only covers project that have been fully registered on theeand have an assigned administrator
as well as some assigned property, we have thus filtered ojgqgts that never started. We have
also limited the research to developers actually assigmed least one project, filtering out people
registering on the site for other reasons.

This document is a collection of data, and will solely cortcate on the numbers, rather on what
conclusions you might draw from it. There are two main reagonthis, the first one is that | would
like to separate any discussion over the actual numbers &onconclusions made as a result of
them and other data, and vice versa. Secondly, | believeeiméintality to release early and release
often. If this study could be useful for other parties, | st pollute it with my thoughts on other
subjects,.

Concurrent Versions System

Most terms in this paper will not be explained further by mbeefie is however one conceptto which |
will return to several times, that is necessary to know ireotd grasp this document. The Concurrent
Versions System, or more commonly cvs is a piece of softwseel by most development projects
in order to keep control of the versioning of the code as itva& In practice this means that each
developer is able to keep a local copy of the code-base,afewal it and send back the changesin a
formalized way. The system keeps track of possible confliotdtiple persons trying to change the
same piece of code) and enables the developer to check whelhhaged between different versions
of the code.

Each project on SourceForge.net gets a own CVS-server éalékielopers to store their code,
as this is the most convenient way to develop software, nmogqts use it and therefore it is a great
source for measuring activity in a project. Each changeoiestin the server and we can therefore
go back and find out when development began, and possiblgdtal

52

Appendix B. A study of the Open Source projects that never tok off 53

Acknowledgments

I'd like to thank, not only the developers which made the aeslke meaningful but also the folks at
SourceForge.netfor the data as well as the creators and testnnd some interesting software such
as the Perl language, the MySQL database engine andykedlitor for BTEX. A special thank
should also go to the people behind the LWP Perl-modulestwddged me some work in collecting
the data.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off

54

Results

Number of developers per projects

By counting the number and registered developers in eagbginge found that most project were in
fact very small, over half of the projects were projectsiearout by a single developer. This doesn’t
rule out that projects are developed in a collective faskind there are possibilities for users to
contribute without being listed as a developer. The comnidewever tend to be very small for this
kind of projects.

Projects | Percentagel Aggregated| Developers
20242 | 59.08 % 59.08 % 1

6223 18.16 % 77.24 % 2

2797 8.16 % 85.41 % 3

1515 4.42 % 89.83% 4

952 2.78 % 92.61 % 5

575 1.68% 94.29 % 6

444 1.30% 95.58 % 7

1244 3.63% 99.21% Other

Table B.1: A table showing how many developers the projeatseh Projects with more than 7
developers have been grouped as Other.

Number of projects per developer

Even though the projects are small, there is a large speaimn, most developer is only active in
their own project.

Developers| Percentage| Aggregated| Projects
29608 81.48% 81.48 % 1

4725 13.00 % 94.48 % 2

1280 3.52% 98.01 % 3

392 1.08 % 99.09 % 4

323 0.89 % 99.98 % Other

Table B.2: A table showing how many projects the developersative in.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off

Intended Audience

Only a third of the projects are intended to be used by endsuse. users without any knowledge
about software development. Most of the tools developedraeaded for developers and system

administrators.

Audience| Percentagel Aggregated| Projects

20755 38.08 % 38.08 % Developers

18044 33.11% 71.19% End Users/Desktop
8833 16.21 % 87.40 % System Administrators
4488 8.24 % 95.64 % Other Audience

762 1.40% 97.04 % Information Technology
558 1.02% 98.06 % Education

1057 1.94% 100.00% | Other

Table B.3: A table showing who the projects are targetingmk below 1% has been grouped as

Other

Programming languages used

Projects | Percentage| Aggregated| Programming Language
9180 20.62 % 20.62 % C

8690 19.52 % 40.13 % C++

6998 15.72% 55.85 % Java

5278 11.85% 67.71 % PHP

3903 8.77 % 76.47 % Perl

1976 4.44 % 80.91 % Python
1065 2.39 % 83.30 % Visual Basic
952 2.14% 85.44 % Assembly
948 2.13% 87.57 % Unix Shell
933 2.10% 89.66 % JavaScript
850 1.91% 91.57 % Delphi/Kylix
606 1.36 % 92.93 % PL/SQL
591 1.33% 94.26 % Tcl

487 1.09 % 95.36 % C#

2068 4.64 % 100.00% | Other

Table B.4: A table showing how many developers the projeateh Items below 1% has been

grouped as Other

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 56

Natural languages used

Even though English is the most popular natural language ursepen source communities there
are diversities as about a fifth of all projects utilizes otlamguages. In order for the community
to be totally global, the participants must be able to comigate in a convenient way and English
is the de facto standard on the Internet even though therktingother languages which are more
represented within the actual project.

Natural Language| Percentagel Aggregated| Projects
14870 79.45 % 79.45 % English
1533 8.19% 87.65% German
911 4.87% 92.51 % French
593 3.17% 95.68 % Spanish
252 1.35% 97.03 % Russian
556 297 % 100.00% | Other

Table B.5: A table showing how many developers the projeateh Items below 1% has been
grouped as Other

Software license used

In order for open software to be open, the issues of copyrigldt be resolved. Large projects tend
to create their own licenses such as the Sun Community Lécemsl the Mozilla Public License in
order to make them fit better to serve the interest of the compa Small projects settle with the
most commonly accepted licenses in order to protect theditsi The GNU Public License, drafted
by the Free Software foundation seems to be overwhelmirapular. This is the same license used
in for instance the Linux Kernel and are considered to bd aisat forces derivate works to inherit
this license.

License| Percentage| Aggregated Projects

23484 | 68.16 % 68.16 % GNU General Public License (GPL)

3390 9.84 % 78.00 % GNU Library or Lesser General Public License (LGPL)
2287 6.64 % 84.64 % BSD License

999 2.90 % 87.54 % Public Domain

874 2.54 % 90.07 % Artistic License

639 1.85% 91.93 % Other/Proprietary License

541 1.57% 93.50 % Apache Software License

524 1.52 % 95.02 % MIT License

1716 4.98 % 100.00% | Other

Table B.6: A table showing how many developers the projeateh Items below 1% has been
grouped as Other

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 57

Target Environment

Environment| Percentage Aggregated| Projects

4882 22.57% 22.57% Console (Text Based)
4721 21.83% 44.40 % Web Environment
3415 15.79% 60.19 % Win32 (MS Windows)
3085 14.26 % 74.45 % X11 Applications
2089 9.66 % 84.11% Other Environment
1431 6.62 % 90.73 % No Input/Output (Daemon)
773 3.57% 94.30 % Gnome

508 2.35% 96.65 % KDE

344 1.59 % 98.24 % Curses

224 1.04 % 99.27 % Cocoa (MacOS X)
157 0.73% 100.00% | Other

Table B.7: A table showing how many developers the projeateh Items below 1% has been
grouped as Other

Project Maturity

Development status Percentage| Aggregated| Projects

10221 26.96 % 26.96 % 1 - Planning

7750 20.44 % 47.41 % 4 - Beta

6964 18.37 % 65.78 % 2 - Pre-Alpha

6369 16.80 % 82.58 % 3 - Alpha

5920 15.62 % 98.20 % 5 - Production/Stable
620 1.64% 99.83 % 6 - Mature

63 0.17% 100.00% | Other

Table B.8: A table showing how many developers the projeateh Items below 1% has been
grouped as Other

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 58

Target Operating System

Operating System Percentage| Aggregated| Projects

13288 27.94 % 27.94 % Linux

12181 25.62 % 53.56 % OS Independent
4471 9.40 % 62.96 % Windows 95/98/2000
3624 7.62% 70.59 % POSIX

3405 7.16 % 77.75% Windows

2551 5.36 % 83.11% Windows NT/2000
1148 241 % 85.53 % SunOS/Solaris
852 1.79% 87.32% MacOS X

825 1.73% 89.05 % FreeBSD

676 1.42% 90.47 % BSD

664 1.40 % 91.87% Other OS

594 1.25% 93.12% Microsoft

3272 6.88 % 100.00% | Other

Table B.9: A table showing which Operating Systems projaotstargeting. Items below 1% has
been grouped as Other

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 59

Type of software

Percentage| Aggregated| Projects | Topic

3388 6.03 % 6.03 % Software Development
2667 4.75% 10.78 % | Dynamic Content
1751 3.12% 13.90% | Site Management
1425 2.54% 16.44 % | Internet

1374 2.45% 18.89 % | Games/Entertainment
1139 2.03% 20.92 % | Systems Administration
1084 1.93 % 22.85% | Communications
1073 1.91% 24.76 % | Role-Playing

1060 1.89 % 26.65 % | Front-Ends

1048 1.87 % 28.51 % | Database

1031 1.84% 30.35% | Other/Nonlisted Topic
969 1.73% 32.07% | WWW/HTTP

883 1.57% 33.65% | Networking

842 1.50 % 35.15% | Education

829 1.48 % 36.62 % | Build Tools

799 1.42 % 38.05% | Chat

762 1.36 % 39.40 % | Code Generators

755 1.34% 40.75 % | Security

745 1.33% 42.07 % | Office/Business

743 1.32% 43.40 % | Internet Relay Chat
713 1.27% 44.67 % | CGI Tools/Libraries
694 1.24% 45.90 % | Scientific/Engineering
653 1.16 % 47.07 % | File Sharing

651 1.16 % 48.23 % | Artificial Intelligence
649 1.16 % 49.38 % | Desktop Environment
638 1.14% 50.52 % | Multi-User Dungeons (MUD)
630 1.12% 51.64 % | Monitoring

606 1.08 % 52.72 % | Simulation

596 1.06 % 53.78 % | Interpreters

25952 46.22 % 100.00 % | Other

Table B.10: A table showing how many developers the projeate. Items below 1% has been
grouped as Other

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 60

New projects over time

By aggregating the created-date of each project | were abtedonstruct the growth of projects
during the last few years.

Month | Projects

428 2000-1
392 2000-2
465 2000-3
509 2000-4
633 2000-5
666 2000-6
719 2000-7
804 2000-8
699 2000-9

822 2000-10
830 2000-11
743 2000-12

927 2001-1
949 2001-2
1160 | 2001-3
1031 | 2001-4
1030 | 2001-5
988 2001-6
1128 | 2001-7
1118 | 2001-8
905 2001-9

1027 | 2001-10
925 2001-11
916 2001-12

1219 | 2002-1
1210 | 2002-2
1183 | 2002-3
1346 | 2002-4
1215 | 2002-5
1152 | 2002-6
1287 | 2002-7
1207 | 2002-8
1229 | 2002-9

1329 | 2002-10
1093 | 2002-11
386 Other

Table B.11: A table showing how many new projects that weeaterd each month.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 61

Number of new projects created per month
1400 -

1200

1000 -

800 -

600 -

Number of projects

200

0
2000-1 2000-6 2000-11 2001-4 2001-9 2002-2 2002-7
Month

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 62

Cvs-activity over time

This data shows how many projects which had cvs-activigy (€hanges in the source code) each

month.

Month

Projects

30
97
224
355
455
559
717
761
863
979
1043
973
249
1154
1222
1411
1669
1808
1988
2047
2184
2356
2304
2492
2488
2488
2794
2446
2698
3078
3114
3117
3220
3415
3459
3551
3652
2628

1999-11
1999-12
2000-1
2000-2
2000-3
2000-4
2000-5
2000-6
2000-7
2000-8
2000-9
2000-10
2000-11
2000-12
2001-1
2001-2
2001-3
2001-4
2001-5
2001-6
2001-7
2001-8
2001-9
2001-10
2001-11
2001-12
2002-1
2002-2
2002-3
2002-4
2002-5
2002-6
2002-7
2002-8
2002-9
2002-10
2002-11
2002-12

Table B.12: A table showing how many projects that had cysdiceach month.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 63

Number of projects with cvs—activity over time
4000

3500

3000

2500

2000 -

Number of projects

1500

1000

500

0
1999-11 2000-4 2000-9 2001-2 2001-7 2001-12 2002-5 2002-10
Month

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 64

Initial cvs-activity for each project

This is an alternative way to measure when projects wereemteaThis data shows how many
projects which had their first activity on the cvs-serverreamnth.

Month | Projects

361 2001-2
435 2001-3
442 2001-4
475 2001-5
412 2001-6
437 2001-7
507 2001-8
410 2001-9

442 2001-10
383 2001-11
387 2001-12

491 2002-1
363 2002-2
484 2002-3
522 2002-4
492 2002-5
462 2002-6
549 2002-7
550 2002-8
538 2002-9

583 2002-10
546 2002-11
2841 | Other

Table B.13: A table showing how many projects began to useaeh month.

Number of new projects beginning to use cvs
600

500 -

Number of projects
w S
o o
o o
T T

N

=3

S
T

100 -

0
1999-11 2000-4 2000-9 2001-2 2001-7 2001-12 2002-5 2002-10
Month

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 65

First file downloaded

After some development, eventually there should be a firsioe of the software. This data shows
how many projects which released their first file each month.

Month | Projects

42 1999-11
82 1999-12
123 2000-1
163 2000-2
216 2000-3
214 2000-4
246 2000-5
280 2000-6
255 2000-7
284 2000-8
302 2000-9

330 2000-10
316 2000-11
265 2000-12

342 2001-1
364 2001-2
513 2001-3
478 2001-4
536 2001-5
497 2001-6
529 2001-7
553 2001-8
509 2001-9

543 2001-10
532 2001-11
517 2001-12

648 2002-1
686 2002-2
646 2002-3
689 2002-4
624 2002-5
634 2002-6
725 2002-7
724 2002-8
690 2002-9

668 2002-10
642 2002-11

Table B.14: A table showing how many new projects that reldats first file each month.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 66

Number of new projects releasing first file
800

700 -

500 -

Number of projects
B
(=3
o
T

W

=3

=)
T

100 -

0
1999-11 2000-4 2000-9 2001-2 2001-7 2001-12 2002-5 2002-10
Month

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 67

Time before cvs-activity began

How long is the path between though and action, this datashow long time that elapsed between
the project was created and the first lines of code were addtbe tserver.

Months Percentage Aggregated Projects

3194 24.07 % 24.07%| 1

916 6.90 % 30.98%| 2

546 4.12% 35.09%| 3

346 2.61% 37.70%| 4

285 2.15% 39.85%| 5

233 1.76 % 41.61%| 6

199 1.50 % 43.11%| 7

156 1.18% 44.28 %

891 6.72% 51.00 % | Other

Table B.15: A table showing the number of months between thation of a project and its first
download.

Months between creation and first download

Months

1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Number of projects

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 68

Time before first file downloaded

This data shows how many months that elapsed between theare&the project and the first file
release.

Months | Projects
3909 1
1155 2
613 3
451 4
358 5
6
7
8
O

275
227
193
986

ther

Table B.16: A table showing the number of months between thation of a project and its first
download (only projects with releases counted).

Months between creation and first download

Months

1 1 1 1 1 1 1 J
0 500 1000 1500 2000 2500 3000 3500 4000
Number of projects

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 69

Time until cvs-activity stalled

This data shows how many months elapsed between the firstativity and the last. i.e. how long
the project were active before it died.

Months | Percentage| Aggregated| Projects
1925 5.62 % 5.62 % 1
1100 3.21% 8.83% 2

857 2.50 % 11.33% 3

643 1.88% 13.21% 4

649 1.89% 15.10 % 5
492 1.44% 16.54 % 6
492 1.44% 17.97 % 7
483 141% 19.38% 8
412 1.20% 20.59 % 9
352 1.03% 21.61% 10
4364 12.74 % 34.35% Other

Table B.17: A table showing the humber of months between thation of a project and its last
cvs-activity. (only dead projects included)

Months between creation and last cvs—activity

Months
[e)]

10

Other

1 1 1 1 1 1 1 1 J
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of projects

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 70

Maturity of stalled projects
This data shows the level of maturity reached by the projbetishave stalled.

Month | Percentage| Aggregated| Projects

7259 | 34.62% 34.62 % 1 - Planning

4735 | 22.58 % 57.20% 2 - Pre-Alpha

3241 | 15.46 % 72.65% 3 - Alpha

3057 | 14.58 % 87.23% 4 - Beta

2365 | 11.28% 98.51 % 5 - Production/Stable
269 1.28% 99.79 % 6 - Mature

43 0.21% 100.00% | 7 - Inactive

Table B.18: A table showing the maturity of the projects wihéeze inactive.

19th October 2004

Appendix B. A study of the Open Source projects that never tok off 71

Number of active versus inactive projects

Active | Inactive | Percentage Month
30 96 31.25% 1999-11
97 224 43.30 % 1999-12
224 477 46.96 % 2000-1
355 702 50.57 % 2000-2
455 967 47.05 % 2000-3
559 1205 46.39 % 2000-4
717 1500 47.80 % 2000-5
761 1761 43.21% 2000-6
863 2037 42.37 % 2000-7
979 2363 41.43 % 2000-8
1043 | 2640 39.51 % 2000-9
973 2944 33.05% 2000-10
249 3251 7.66 % 2000-11
1154 | 3512 32.86 % 2000-12
1222 | 3835 31.86 % 2001-1
1411 | 4210 33.52% 2001-2
1669 | 4688 35.60 % 2001-3
1808 | 5126 35.27 % 2001-4
1988 | 5575 35.66 % 2001-5
2047 | 5985 34.20 % 2001-6
2184 | 6453 33.84% 2001-7
2356 | 6945 33.92% 2001-8
2304 | 7323 31.46 % 2001-9
2492 | 7743 32.18% 2001-10
2488 | 8118 30.65 % 2001-11
2488 | 8457 29.42 % 2001-12
2794 | 8895 31.41% 2002-1
2446 | 9328 26.22 % 2002-2
2698 | 9764 27.63 % 2002-3
3078 | 10202 | 30.17 % 2002-4
3114 | 10640 | 29.27 % 2002-5
3117 | 11059 | 28.19% 2002-6
3220 | 11545 | 27.89% 2002-7
3415 | 12004 | 28.45% 2002-8
3459 | 12476 | 27.73% 2002-9
3551 | 12922 | 27.48 % 2002-10
3652 | 13240 | 27.58 % 2002-11
2628 | 13262 | 19.82% 2002-12

Table B.19: A table showing how many projects that were afittactive each month (only projects

using cvs included).

19th October 2004

