
Community structure of modules in the Apache project

Jesús M. González-Barahona, Luis López, Gregorio Robles
Grupo de Sistemas y Comunicaciones �– Universidad Rey Juan Carlos

{jgb,llopez,grex}@gsyc.escet.urjc.es

Abstract

The relationships among modules in a software
project of a certain size can give us much information
about its internal organization and a way to control and
monitor development activities and evolution of large
libre software projects. In this paper, we show how
information available in CVS repositories can be used to
study the structure of the modules in a project when they
are related by the people working in them, and how
techniques taken from the social networks fields can be
used to highlight the characteristics of that structure. As
a case example, we also show some results of applying
this methodology to the Apache project in several points
in time. Among other facts, it is shown how the project
evolves and is self-structuring, with developer
communities of modules corresponding to semantically
related families of modules.

1. Introduction

Large libre software1 projects are usually organized as
a set of modules. Each one of them can correspond to a
given program, library, or any other unit identified by the
project as distinct. It is common that developers work in
several modules, according to their interests, skills, and
constraints, and that those modules to which they
contribute change over time. The relationships among
modules due to the people working in them constitutes a
sort of social structure of the project. In some sense,
those human relationships are the glue that maintain the
whole project together, and the chains that contribute to
spread information and uses from one part of the project
to others. In this paper, we explore how those developer
connections contribute to the making of the community
structure of the project, how it can be identified and
visualized and how it evolves over time.

The study and characterization of complex systems is a
very fruitful research area nowadays with may interesting
open problems. Special attention has been paid recently to
complex networks, where graph and network analysis

1 Through this position paper we mean by libre software any
program which is either open source software (according to the
Open Source Initiative definition) or free software (according to
the Free Software Foundation definition).

plays and important role and is gaining great popularity
due to its intrinsic power to reduce a particular system to
its simple components and relationships. Thanks to this,
network characterization is widely used in many scientific
and technological disciplines as neurobiology [1],
computer networks [2][3], linguistics [4], etc.

Among complex networks, social networks appear in a
quite natural way as a method for analyzing the structure
and interactions of people and groups of people within
complex organizations [5][6][7][8][9]. To understand the
structure of those networks, we are interested in
determining how the different nodes interact and form
groups that, in turn, interact with each other giving rise to
higher order groups. The set of groups obtained, as well
as their relationships, is which we call the community
structure of the network.

All the information we need for such an analysis is
available in the CVS repository of the project. Using it,
we construct the network of modules at a given time,
considering a link when there is a common set of
developers that have contributed to both modules. Later,
we apply on it some techniques from the social networks
field.

There have been some other works analyzing social
networks in the libre software world. [10] hypothesizes
that the organization of libre software projects can be
modeled as self-organizing social networks and shows
that this seems to be true at least when studying
SourceForge projects. [11] proposes also a sort of
network analysis for libre software projects, but taking
into account this time a technical connection between
modules as code dependency is.

How libre software projects organize themselves in
subprojects is an issue that has been already discussed in
literature. For instance, in [12] it is argued that projects
that require a number of core developers that is larger
than a given amount (10 to 15 persons) create in effect
several related projects if no other means of code control
are introduced. In the conclusions of this paper we will
discuss the validity of this hypothesis.

In the rest of this paper we detail the methodology we
are using to build the network of modules, and how we
identify communities in that network. Later, we show
some results of applying this methodology to the Apache

project, and present some conclussions and future lines of
work.

2. Methodology

The network which we use to identify communities is
built as follows. From the CVS repository we extract, for
each module, the list of people committing changes to it,
and the number of of those changes (commits) [13]. With
this list we compute, for each pair of modules, the set of
committers who have collaborated in both modules and
the number of commits they have contributed to them.
Using these data, we can build a network by considering
modules as vertices, and establishing a link among any
two vertices if the corresponding modules have common
committers. We use wheighted edges, with the wheight
being proportional (although not linearly) to the number
of commits that common authors have contributed2.

To obtain the community structure of the resulting
network, we perform community analysis based on the
Girvan-Newman (GN) algorithm [14] which has been
proved to be one of the most accurate3 (see Figure A-1),
and has already been successfully used to obtain the
informal collaboration network of organizations (showing
that it is self-similar [17]). The GN algorithm produces as
output a minimal binary expanding tree, in which we have
used colored4 vertices (modules) to show visually how the
extracted communities follow a certain pattern. The size
of a vertex is proportional to the size of the module in
LOC (lines of code), so that bigger modules can be
identified visually.

3. A case study: the Apache project

2 We have used other weights for the edges, for instance the number
of aggregated LOC (lines of code) committed by the common
developes instead of the number of commits. However, in the cases
we have studied the resulting networks are very similar.

3 Other different alternatives proposed in the literature for obtaining
the community structure of a social network can be seen in [15]
[16].

4 There exists a colored on-line version of this paper at
http://libresoft.dat.escet.urjc.es/html/downloads/woss-icse-2004.pdf

We have applied the described methodology to the
Apache project CVS repository. To color the nodes, we
have followed in general the naming conventions of the
project, which correspond to families of modules. That
way, we have used red for those modules related to the
HTTP server (apache/httpd), orange for those related to
modperl, green for XML related modules, dark blue for
Jakarta, light blue for Avalon, yellow for TCL-related
modules and black for generic modules like CVSROOT
(administrative files of the CVS repository) or the web
site (site).

Thanks to the coloring, it can be observed how the
project self-structures itself. For instance, in January,
1999 (Figure 1), modules related to modperl are seen only
in the upper-left branch, which means that those modules
have already some differences in authorship with the rest
of the project.

Later, in January 2000 (Figure 2), the community of
modperl modules is also clearly seen as a branch (in the
center of the figure). Meanwhile, a branch for Jakarta and
XML-related modules can be identified (left bottom).
Nine months later (Figure 3) Jakarta has differentiated
itself (two close branches at the bottom of the figure)
from XML-related modules (branch at the bottom right).

Illustration 1Structure January 1st, 1999

Illustration 2Structure January 1st, 2000

Illustration 3Structure September 1st, 2000

Illustration 4 Community structure of the Apache project. January 1st, 2002

Illustration 5 Community structure of the Apache project. February 1st, 2004

On the other hand, modperl modules are now spread
through several branches, mixed with the apache/httpd
modules (top part of the figure).

The figures in early 2002 and 2004 (Figure 4 and
Figure 5) show how modperl is still somewhat spread
through the project, while there are clear communities
(branches) for the apache/httpd (red, not too split in large
branches), Avalon (light blue, clearly differentiated as a
community), Jakarta (dark blue, present in several
different communities, intermixed with green, XML-
related modules) and Tcl related modules (yellow
community).

4. Conclusions and further work

In the Apache project, the structure seen after several
years of development is rather similar to that in early
1999, which seems to be the epoch in which it stabilized.
It is interesting to see how, even when the project grows a
lot during that time, the conservation of the structure
means that the pairs of nodes related by the developers
working on them remain more or less the same. In
addition, it is clear that developers tend to work in the
projects within its thematic community (apache/httpd,
Jakarta, TCL, Avalon, etc.), but even within these
communities there are clear differentiations (see for
instance the many large branches of the Jakarta-XML
modules).

One of the more impacting cases that come into view
through the evolution of the structure of the Apache
project is how apache/httpd-related modules (red) and
Jakarta-related modules (blue) represent separated
communities in the computed binary trees, in all dates
during the life of the project. Of course, technological
aspects are a key fact for understanding this (Jakarta is
mainly based in Java, while apache/httpd uses basically
C).

Regarding our methodology, we believe this technique
can be used to obtain and compare the community
structure of modules in large libre software projects.
From this structure, it can be inferred whether there are or
not strong communities within the projects, the evolution
of these communities, and their interrelationships. These
implications can be used to estimate information flow
within the project, collaboration patterns, and other
important characteristics of the project.

In comparison to previous works, such as [10] this
view is a step forward at least in the aspect of offering a
way to visually identify an affiliation network. Such a
classical network analysis would offer a graph as in
Figure 6, where the structure can be hardly infered.

Inspite of the findings in [12] this analysis does not
show an effective splitting of modules when the size of
the main contributing group exceeds a certain number of
persons. In fact, two other behaviours can be deduced: the
emergence of new modules around consolidated ones and
the specialization of developers in time (which can be can
be derivated by the fact that a branch splits in two).

This paper offers also a first dynamic vision of the
evolution of the structure, although future work on this
issue is pending, specially regarding relationships
between the different graphs in time.

A. The Girvan-Newman algorithm

When we apply to the network in Figure 7 the GN
algorithm, we get as output the tree in Figure 8, which
represents its community structure. The GN algorithm
proceeds by splitting the network recursively until single
nodes are left. The information about the community
structure of the original network can be deduced from the
topology of the binary tree that represents this splitting
procedure. Basically, each branch of this tree can be seen
as a community of nodes of the original network.

Illustration 8Example of the GN algorithm: input network

Illustration 6 "Classical" network analysis. Feb 1st 2004

Illustration 7 Example of GN algorithm: input network

The GN algorithm is based on a parameter called the
betweenness of edges, which measures the number of
shortest paths connecting pairs of nodes which go through
that edge [5]. Edges connecting high clustered
communities must have higher betweenness. So, the GN
algorithm proceeds by calculating the betweenness of all
edges and eliminating the edge with the highest
betweenness. These steps are repeated until the network is
split into two connected components. After that, the
process is recursively executed on each of the two
separate components. To represent the splitting process,
we use a binary tree which is built in the following way:
each time a split is carried out, we add a virtual node in
the tree (marked with numbers in Figure A-2) which is
connected to the two novel components. When these
components are single vertices of the original network,
we add them as terminal nodes of the tree (marked with
letters in Figure A-2).

10. References

[1] D.J. Watts and S.H. Strogatz, Collective dynamics of
small-world networks, Nature 393, 440-442, 1998 .

[2] R. Albert, A.-L. Barabasi, H. Jeong, and G. Bianconi,
Power-law distribution of the World Wide Web, Science
287 2115a (2000).

[3] R.F. Cancho and R. Sole, The small world of human
languaje, Proc. R. Soc. 268, 2261-2265, 2001.

[4] R. Kunar, P. Raghavan, S. Rajagopalan, and A.
Tomkins, The Web and social networks, IEEE Computer
35(11) 32-36, 2002.

[5] M.E.J. Newman, Scientific collaboration networks: I.
Network construction and fundamental results, Phys. Rev.
E 64, 016131 (2001).

[6] M.E.J. Newman, Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality, Phys.
Rev. E 64, 016132, 2001.

[7] R. Guimera, A. Daz-Aguilera, F. Vega-Redondo, A.
Cabrales, and A. Arenas, Optimal network topologies for
local search with congestion, Phys. Rev. Let. 89, 248701,
2002.

[8] L. Lopez and M.A.F. Sanjuan, Relation between
structure and size in social networks, Phys. Rev. E. 65,
036107, 2002.

[9] L. Lopez, J.F. Mendes, and M.A.F. Sanjuan,
Hierarchical social networks and information flow,
Physica A, 316, 591-604, 2002.

[10] Greg Madey, V. Freeh, and R. Tynan, The Open
Source Software Development Phenomenon: An Analysis
Based on Social Network Theory, 2002,
http://www.nd.edu/~oss/Papers/amcis_oss.pdf.

[11] Rishab Aiyer Ghosh, Clustering and dependencies in
free/open source software development: Methodology
and tools, Abril 2003,
http://www.firstmonday.dk/issues/issue8_4/ghosh/index.h
tml.

[12] Audris Mockus, Roy T. Fielding, and James D.
Herbsleb, Two Case Studies of Open Source Software
Development: Apache and Mozilla,
http://www.research.avayalabs.com/techreport/ALR-
2002-003-paper.pdf.

[13] Gregorio Robles, Jesús González-Barahona, José
Centeno-González, Vicente Matellán-Olivera, and Luis
Rodero-Merino. http://opensource.ucc.ie/icse2003/3rd-
WS-on-OSS-Engineering.pdf.

[14] M. Girvan and M. E. J. Newman, Community
structure in social and biological networks, Proc. Natl.
Acad. Sci. USA 99, 7821-7826, 2002.

[15] M.E.J. Newman, Detecting community structure in
networks., Eur. Phys. J. B, in press.
http://www.santafe.edu/~mark/pubs.html.

[16] M.E.J. Newman and M. Girvan, Finding and
evaluating community structure in networks., Phys. Rev.
E, in press. http://www.santafe.edu/~mark/pubs.html.

[17] R. Guimera, L. Danon, A. Daz-Aguilera, F. Giralt,
and A. Arenas, Self-similar community structure in
organizations, http://arxiv.org/pdf/cond-mat/0211498.

Illustration 10Example of the GN algorithm: output tree

Illustration 9 Example of GN algorithm: output network

