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ABSTRACT
As software becomes increasingly important, its quality becomes
an increasingly important issue. Therefore, prior work focused on
software quality and proposed many prediction models to identify
the location of software bugs, to estimate their fixing-time, etc.
However, one special type of severe bugs is blocking bugs. Block-
ing bugs are software bugs that prevent other bugs from being fixed.
These blocking bugs may increase maintenance costs, reduce over-
all quality and delay the release of the software systems.

In this paper, we study blocking-bugs in six open source projects
and propose a model to predict them. Our goal is to help developers
identify these blocking bugs early on. We collect the bug reports
from the bug tracking systems of the projects, then we obtain 14
different factors related to, for example, the textual description of
the bug, the location the bug is found in and the people involved
with the bug. Based on these factors we build decision trees for
each project to predict whether a bug will be a blocking bug or not.
Then, we analyze these decision trees in order to determine which
factors best indicate these blocking bugs. Our results show that our
prediction models achieve F-measures of 15-42%, which is a two-
to four-fold improvement over the baseline random predictors. We
also find that the most important factors in determining blocking
bugs are the comment text, comment size, the number of developers
in the CC list of the bug report and the reporter’s experience. Our
analysis shows that our models reduce the median time to identify
a blocking bug by 3-18 days.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Software Quality Analysis
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Process Metrics, Code Metrics, Post-release Defects
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1. INTRODUCTION
Software systems are becoming an important part of daily life

for businesses and society. Most organizations rely on such soft-
ware systems to manage their day-to-day internal operations, and
to deliver services to their customers. This ever growing demand
for new and better software products is skyrocketing the software
production and maintenance cost. In 2000, Erlikh [1] reported that
approximately 90% of the software life-cycle cost is consumed by
software maintenance activities. Two year later, a study conducted
by the National Institute of Standards and Technology (NIST) found
that software bugs cost $59 billions annually to the US economy
[2].

Therefore, in recent years, researchers and industry have put a
large amount of effort in developing tools and prediction models
to reduce the impact of software defects (e.g., [3, 4, 5]). This work
usually leverages data from bug reports in bug tracking systems to
build their prediction models. Other work proposed methods for
detecting duplicate bug reports [6, 7, 8], automatic assignment of
bug severity/priority [9, 10], predicting fixing time [11, 12, 13, 14]
and assisting in bug triaging [15,16,17]. More recently, prior work
focused on specific types of issues such reopened bugs, perfor-
mance bugs and enhancement requests [18, 19, 20, 21]

In the normal flow of the bug process, someone discovers a bug
and creates the respective bug report1, then the bug is assigned to
a developer who is responsible for fixing it and finally, once it is
resolved, another developer verifies the fix and closes the bug re-
port. Sometimes, however, the fixing process is stalled because of
the presence of a blocking bug. Blocking bugs are software de-
fects that prevent other defects from being fixed. In this scenario,
the developers cannot go further fixing their bugs, not because they
do not have the skills or resources (e.g., time) needed to do it, but
because the components they are fixing depend on other compo-
nents that have unresolved bugs. These blocking bugs considerably
lengthen the overall fixing time of the software bugs and increase
the maintenance cost. In fact, we found that blocking bugs take
approximately two to three times longer to be fixed compared to
non-blocked bugs. For example, in one of our case studies, the me-
dian number of days to resolve a blocking bug is 48, whereas the
median for non-blocking bugs is 16 days.

To reduce the impact of blocking bugs, we build prediction mod-
els in order to flag the blocking bugs early on for developers. In par-
ticular, we mine the bug repositories from six open source projects
namely: Chromium, Eclipse, FreeDesktop, Mozilla, NetBeans and
OpenOffice to extract 14 different factors related to the textual in-
formation of the bug, the location the bug is found and the people

1We use the terms "bug" or "bug report" to refer to an issue re-
port (e.g., corrective and non-corrective requests) stored in the bug
tracking system.



who reported the bug. We determine the ground truth (i.e., infor-
mation of whether a bug is blocking or non-blocking ) from the bug
repositories. Based on these factors and employing machine learn-
ing techniques such as decision trees (C4.5), Naive Bayes, kNN,
Random Forests and Zero-R, we build our prediction models. Ad-
ditionally, we perform a analysis [22] in order to determine which
factors best identify blocking bugs. In particular, we would like to
answer the following research questions:

RQ1 Can we build highly accurate models to predict whether
a new bug will be a blocking bug?
We use 14 different factors extracted from bug databases to
build accurate prediction models that predict whether a bug
will be a blocking bug or not. Our models achieve F-measure
values between 15%-42%.

RQ2 Which factors are the best indicators of blocking bugs?
We find that the bug comments, the number of developers
in the CC list and the bug reporter are the best indicators of
whether or not a bug will be blocking bug.

The rest of the paper is organized as follows. Section 2 describes
the approach used in this work. Section 3 discusses and character-
izes blocking bugs. Section 4 presents our case study. We compare
the performance of different classifiers in Section 5. We discuss
the related work in Section 6. Section 7 highlights the threats to
validity. Section 8 concludes the paper and discusses future work.

2. APPROACH
In this section, we describe our approach as shown in Figure 1.

First, we discuss the data used in our case study and we list the
factors extracted from the bugs reports. Second, we describe the
prediction models and the performance metrics used in our study.

2.1 Data Used in the Case Studies
In order to perform our study, we used the bug reports from

six different projects namely: Chromium, Eclipse, FreeDesktop,
Mozilla, NetBeans and OpenOffice. Chromium is a web browser
developed by Google and used as the development branch of Google
Chrome. Eclipse is a popular multi-language IDE written in Java,
well known for its system of plugins that allows customization of
its programming environment. FreeDesktop is an umbrella project
hosting sub projects such as Xorg (official implementation of the X
Window System), Mesa (free implementation of the OpenGL spec-
ification), etc. Mozilla is a framework and umbrella project that
hosts and develops products such as Firefox, Thunderbird, Bugzilla,
etc. NetBeans is also another popular IDE written in Java. Al-
though it is meant for java development, it also provides support
for PHP and C/C++ development. OpenOffice is an office suite
initiated by Sun Microsystem and currently developed by Apache.
The reason we chose these projects is because they are mature and
long-lived open sources projects, with a large amount of bug re-
ports.

Table 1 shows the number of closed bugs for each project. For
Chromium, we extracted all bugs published before April 17, 2013.
The total number of extracted bugs was 206,125 bugs. We removed
bugs with a status other than verified or closed. Bugs with empty
fields were also filtered out, because our prediction models require
instances with non-empty values. After this preprocessing step, the
number of bugs was reduced to 39,619, of which 924 (2.3%) were
blocking bugs and 38,695 were non-blocking bugs.

For the remaining five projects, we extracted bug reports that
were verified or closed before October 18, 2013. Similar to the
Chromium extraction, we filtered out those bugs with empty fields.
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Figure 1: Approach overview

The total number of valid bugs for these five projects was 363,343.
From the table, we can see that Eclipse is the largest project with
130,694 valid bugs. We can also notice that for most of the projects,
the percentages of blocking bugs was less that 3% of the set of bugs.
The only two exceptions were FreeDesktop and Mozilla with 8.9%
and 12.5%, respectively.

2.2 Factors Used to Predict Blocking Bugs
Since our goal is to be able to predict blocking bugs, we extracted

different factors from the bug reports so the blocking bugs can be
detected early on. In addition, we would like to determine which
factors best identify these blocking bugs. We consider 14 different
factors to help us discriminate between blocking and non-blocking
bugs. To come up with a list of factors, we surveyed prior work. For
example, Sun et al. [23] included factors such product, component,
priority, etc in their models to detect duplicate bugs. Lamkanfi et al.
[10, 24] used textual information to predict bug severities. Wang et
al. and Jalbert et al. [7], [25] used text mining to identify duplicate
bug reports. Zimmermann et al. [19] showed that the reporter’s
reputation is negatively correlated with reopened bugs in Windows
Vista. Furthermore, many of our factors are inspired in the metrics
used by our prior work [18], predicting reopened bugs. We list each
factor and provide a brief description for each below:

1. Product: The product where the bug was found (e.g., Firefox
OS, Bugzilla, Thunderbird, etc). Some products are older or more
complex than others and therefore, are more likely to have block-
ing bugs. For example, Firefox OS and Bugzilla are two Mozilla
products with approximately the same number of bugs (≈ 880),
however there were more blocking bugs in Firefox OS (250 bugs)
than in Mozilla (30 bugs).
2. Component: The component in which the bug was found (e.g.,
Core, Editor, UI, etc). Some components are more/less critical than
others and as a consequence more/less likely to have blocking bugs
than others. For example, it might be the case that bugs in critical
components prevent bugs in other components from being fixed.
Note that we were not able to have this factor for Chromium be-
cause its issue tracking system does not support it.
3. Platform: The operating system in which the bug was found
(e.g., Windows, GNU/Linux, Android, etc). Some platforms are
more/less prone to have bugs than others. It is more/less likely to
find blocking/non-blocking bugs for specific platforms.



4. Severity: The severity describes the impact of the bug. We an-
ticipate that bugs with a high severity tend to block the development
and debugging process. On the other hand, bugs with a low severity
are related to minor issues or enhancement requests. We excluded
the severity for Chromium because, we found that around 98% of
its bugs have an empty value for this factor.
5. Priority: Refers to the order in which a bug should be attended
with respect to other bugs. For example, bugs with low priority
values (i.e., P1) should be prioritized instead of bugs with high pri-
ority values (i.e., P5). It might be the case that a high/low priority
is indicative of a blocking/non-blocking bugs.
6. Number in the CC list: The number of developers in the CC
list of the bug. We think that bugs followed by a large number of
developers might indicate bottlenecks in the maintenance process
and therefore are more likely to be blocking bugs. For blocking
bugs, we only counted the developers subscribed right before they
were identified as being blocking bugs.
7. Description size: The number of words in the description. It
might be the case that long/short descriptions can help to discrimi-
nate between blocking and non-blocking bugs.
8. Description text: Textual content that summarize the bug re-
port. We think that some words in the description might be good
indicators of blocking bugs.
9. Comment size: The number of words of all comments of a bug.
Longer comments might be indicative of bugs that get discussed
heavily since they are more difficult to fix. Therefore, they are more
likely to be blocking bugs. For blocking bugs, we only consider
comments posted before the bugs were marked as blocking.
10. Comment text: The comments posted by the developers dur-
ing the life cycle of a bug. We think that some words in the com-
ments might be good indicators of blocking bugs. Similar to com-
ment size, for the blocking bugs, we only include the comments
posted before the bug was marked as blocking.
11. Priority has Increased: Indicates whether the priority of a bug
has increased after the initial report. Increasing priorities of bugs
might indicate increased complexity and can make a bug more
likely to be a blocking bug. Note that we were unable to obtain
this information for Chromium.
12. Reporter Name: Name of the developer or user that files the
bug. We include this factor to investigate whether bugs filed by a
specific reporter are more/less likely to be blocking bugs. Since we
are interested in the impact of non-sporadic developers, we group
reporters with less than five contributions into a category named
"others". Additionally, we try to consolidate reporters with more
than one email. We perform a semi-automatic inspection of the
emails. The levenshtein distance is calculated for every pair of
emails and then we check manually the pairs with a distance less
than five.
13. Reporter Experience: Counts the number of previous bug re-
ports filed by the reporter. We conjecture that more/less experi-
enced reporters may be more/less likely to report blocking bugs.
14. Reporter Blocking Experience: Measures the experience of
the reporter in identifying blocking bugs. It counts the number of
blocking bugs filed by the reporter previous to this bug.

Once the aforementioned factors are extracted, we use them to
build classifiers to predict blocking bugs. It is important to mention
that the description text and the comment text factors need special
treatment before being included in our prediction models. We de-
scribe this special preprocessing in detail in the next sub-section.

2.3 Textual Factor Preprocessing
Although all of the bugs reports in the bug repositories were ex-

tracted, we needed to discard a number of bug reports. The total

Table 1: Dataset description

Project Blocking Non-blocking Total
Chromium 924 [2.3%] 38,695 [97.7%] 39,619
Eclipse 3,654 [2.8%] 127,040 [97.2%] 130,694
FreeDesktop 424 [8.9%] 4361 [91.1%] 4,785
Mozilla 8,476 [12.5%] 59,121 [87.5%] 67,597
NetBeans 2,424 [3.2%] 74,307 [96.8%] 76,731
OpenOffice 2,520 [3.0%] 81,016 [97.0%] 83,536
All Projects 18,422 [4.6%] 384,540 [95.4%] 402,962
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Figure 2: Converting textual factor into Bayesian-score

number of extracted bug reports for all the projects were 582,938.
After calculating the factors, filtering out those bugs with empty
values and preprocessing the comments we kept only 402,962 valid
bug reports. Some of these factors were extracted directly from the
bug reports, however, other factors required special preprocessing.

The description and comments in bug reports are two factors that
required special preprocessing, since they represent a rich source of
unstructured information. These factors contain discussions about
the bugs and can also provide snapshots of the progress and status
of such bugs. However, not all the comments are valid, at least for
the purpose of this work. For example:

• After two months of closing the bug 302295 in Eclipse, a
developer identified that the bug 309220 in Eclipse was its
duplicate and posted the comment "Bug 309220 has been
marked as a duplicate of this bug".

• The bug 7430 in Eclipse is a blocking bug and has 22 com-
ments before the closing date, but 8 of them were posted after
it was marked as blocking. If we want to predict and warn
about these blocking bugs, no information after the blocking-
date (i.e., the earliest date on which the bug is marked as
blocking bug) should be used.

To deal with cases like those described earlier, we followed two
criteria. First, for the non-blocking bugs, we filtered out comments
written after the closing-date. Second, for the blocking bugs, we
kept only comments before the blocking-date. Once we collected
the valid comments and the descriptions, the next step was to con-
vert them into numerical values.

One way to deal with text based factors is using a vector repre-
sentation. In this kind of representation, a new factor is created for
each unique word in the data set. Similar to prior work [18,26], we
followed this simple approach. In Figure 2, we show our adapted
approach to convert textual factors into numerical values. We used
a Naive Bayes classifier to calculate the Bayesian-score of these



two factors. Basically this metric indicates the likelihood that a de-
scription or comment belongs to certain kind of bug (i.e., blocking
or non-blocking).

We divide the entire data set into two training sets using strati-
fied random sampling. This ensures that we have the same num-
ber of blocking and non-blocking bugs in both training sets. We
train a classifier with the first training set and use it to obtain the
Bayesian-scores on the second training set. We also do the same in
the opposite direction. We build a classifier using the second train-
ing set and apply it on the first training set. This strategy is used in
order to avoid the classifiers from being biased toward their train-
ing sets; otherwise, it will lead to optimistic (unrealistic) values for
the Bayesian-scores.

In our classifier implementation, each training set is split into
two corpora (corpus1 and corpus0). The first corpus contains the
descriptions/comments of the blocking bugs. The second corpus
contains the description/comments of the non-blocking bugs. We
create a word frequency table for each corpus. The textual con-
tent is tokenized in order to calculate the occurrence of each word
within a corpus. Based on these two frequency tables, the next step
is to calculate the probabilities of all the words to be in corpus1
(i.e., blocking bugs), because we are interested in identifying these
kinds of bugs. The probability is calculated as follow: if a word is
in corpus1 and not in corpus0, then its probability is close to 1.
If a word is not in corpus1 but in corpus0, then its probability is
close to 0. On the other hand, if the word is in both corpora, then
its probability is given by p(w) = %w in corpus1

%w in corpus1+%w in corpus0
.

Once the classifiers are trained, we can obtain the Bayesian-score
of a text based factor by mapping its words to their probabilities and
combining them. The formula for the Bayesian-score is p(text) =∏

p(wi)∏
p(wi)+

∏
(1−p(wi))

. For this calculation, the fifteen most relevant
words are considered [27]. Here, "relevant" means those words
with probability close to 1 or 0.

2.4 Prediction Models
For each of our case study projects, we use our proposed factors

to train a decision tree classifier to predict whether a bug will be a
blocking bug or not. We also compare our prediction model with
four other classifiers namely: Naive Bayes, kNN, Random Forests
and Zero-R.

2.4.1 Decision Tree Classifier
We use a tree-based classifier to perform our predictions. One of

the benefits of tree-based classifiers is that they provide explainable
models. Such models intuitively show to the users (i.e., developers
or managers) the decisions taken during the prediction process. The
C4.5 algorithm [28] belongs to this type of data mining technique
and like other tree-based classifiers, it follows a greedy divide and
conquer strategy in the training stage.

The algorithm begins with an empty tree. At each level, the goal
is try to find the feature that maximize the information gain. Con-
sider for example a data set with p feature-columns: X1, X2, . . . Xp

(e.g., severity, platform, comment-size, etc) and a class-column: C
(e.g., Blocking/Non-Blocking). The C4.5 algorithm splits the data
into two subsets with rules of the form Xi < b if the feature is
numeric or into multiple subsets if the feature is nominal. The al-
gorithm is applied recursively to the partitions until every leaf con-
tains only records of the same class, or no further splitting can be
performed or the number of records in the leaf reaches a predefined
threshold [28].

In Figure 3, we provide an example of a tree generated from the
extracted factors in our data set. The sample tree indicates that a
bug report will be predicted as blocking bug if the Bayesian-score
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Figure 3: Example of a Decision Tree

of its comment is > 0.74, there are more than 6 developers in the
CC list and the number of words in the comments is greater than 20.
On the other hand, if the Bayesian-score of its comment is ≤ 0.74
and the reporter’s experience is less than 5, then it will be predicted
as a non-blocking bug.

2.4.2 Naive Bayes Classifier
We use this machine learning method for two purposes: to con-

vert textual information into numerical values (i.e., to obtain the
probability that a description/comment belongs to a blocking-bug),
and to build a prediction model and compare its performance with
that of our decision tree model.

The naive bayes algorithm classifies a new record x = 〈x1, . . . xp〉
to the class k that maximizes the conditional probability:

P (C = k|X = 〈x1, . . . xp〉)

In other words, it chooses the most probable class k based on the
piece of information x (and the training set as we will see later).
Under the assumption that the factors are random independent (which
is uncommon in real world) and using the Bayes’ theorem, the clas-
sifier can be re-written as:

f(x) = argmax
k

P (C = k)
∏

i P (xi|C = k)

P (X = x)

Here, P (C = k) is called the prior-probability and can be es-
timated with the percentage of training records labeled as k (e.g.,
percentage of blocking or non-blocking). The conditional probabil-
ities P (xi|C = k) also known as the likelihood can be estimated
with Nk,i

Nk
, where the numerator is the number of records labeled as

k for which the ith-factor is equal to xi and the denominator is the
number of records labeled as k. The probability P (X = x) can be
neglected because it is constant with respect to the classes.

On the other hand, if we want the probability of a text to belong
to a blocking bug, we need to calculate: P (C=block)P (text|C=block)

P (text)
.

In Section 2.3 (Textual Factor Preprocessing), we presented a more
detailed discussion of this matter.

2.4.3 K-Nearest Neighbor Classifier
The k-nearest neighbor classifier is a simple, yet powerful mem-

ory based technique which has been used with relative success in
previous bug prediction works [13, 24]. The idea of the method is
as follows: given an unseen record x̂ (e.g., an incoming bug re-
port), we calculate the distance of all records x in the training set
(e.g., already-reported bugs) to x̂, then we select the k closest in-
stances and finally classify x̂ to the most frequent class among these
k neighbors. In this work, we considered k = 5 as the number of
neighbors, used the euclidean metric for numerical factors and the
overlap metric for nominal factors. Under the overlap metric, the
distance is zero if the values of the factors are equal and one oth-
erwise. For example, if two bug reports A and B have the same



platform, then the distance between Aplatform and Bplatform is
zero. On the other hand, if the platforms are distinct, then the dis-
tance is one.

2.4.4 Random Forests Classifier
Random Forests [29] is an ensemble classifier that makes its

prediction based on the majority vote of a set of weak decision
trees. This approach reduces the variance of the individual trees
and makes the classifier more resilient to noise in the data set. For
building a Random Forests of m decision trees, we need to gener-
ate m bootstrap samples taken from the training set (i.e., a random
sample with replacement of the same size as the training set) and
use each of them for training a tree. Unlike C4.5 models, weak trees
in a Random Forest are not pruned and the splitting at each node
only consider a random subset of the factors (which minimizes the
correlation among the trees). In general, this classifier outperforms
simple decision trees in terms of prediction accuracy [30].

2.4.5 Zero-R Classifier
Zero-R (no rule) is the simplest classifier because it always pre-

dicts the majority class in the training set. We use this classifier as
one of our baseline models in the comparison section.

2.5 Performance Evaluation
A common metric used to measure the effectiveness of a predic-

tion model is its accuracy (fraction of correctly classified records).
However, this metric might not be appropriate when the data set is
extremely skewed towards one of the classes [31]. If a classifier
tends to maximize the accuracy, then it can perform very well by
simply ignoring the minority class [32, 33].

We use a confusion matrix to evaluate the effectiveness of the
derived models. A confusion matrix stores the correct and incorrect
decisions made by a classifier. For example, if a bug is classified
as blocking when it truly is blocking, then the classification is a
true positive (TP); if it is classified as blocking when actually it
is non-blocking, then the classification is a false positive (FP); if
it is classified as non-blocking when it is actually blocking, then
the classification is a false negative (FN); finally, if it is classified
as non-blocking and it truly is non-blocking, then the classification
is a true negative (TN). Table 2 summarizes these four possible
outcomes.

Using the values stored in the confusion matrix, we calculate
the widely used Precision, Recall, F-measure and Accuracy metrics
for the blocking bugs to evaluate the performance of the predictive
models:

1. Precision: The ratio of correctly classified blocking bugs over
all the bugs classified as blocking. It is calculated as Pr = TP

TP+FP
.

2. Recall: The ratio of correctly classified blocking bugs over all
of the actually blocking bugs. It is calculated as Re = TP

TP+FN
.

3. F-measure: Measures the weighted harmonic mean of the pre-
cision and recall. It is calculated as F-measure = 2∗Pr∗Re

Pr+Re
.

4. Accuracy: The ratio between the number of correctly classified
bugs (both the blocking and the non-blocking) over the total num-
ber of bugs. It is calculated as Acc = TP+TN

TP+FP+TN+FN
.

A blocking precision value of 100% would indicate that every
bug we classified as blocking bug was actually a blocking bug.
A blocking recall value of 100% would indicate that every actual
blocking bug was classified as blocking bug.

We use stratified 10-fold cross-validation [34] to estimate the ac-
curacy of our models. This validation method splits the data set
into 10 parts of the same size preserving the original distribution
of the classes. At the i-th iteration (i.e., fold) , it creates a testing

Table 2: Confusion matrix

True class
Blocking Non-blocking

Classified as Blocking TP FP
Non-blocking FN TN

set with the i-th part and a training set with the remaining 9 parts.
Then, it builds a decision tree using the training set and calculate its
accuracy with the testing set. We report the average performance
of the 10 folds. Since our data sets have a low number of blocking
bugs, the stratified sampling prevents us from having parts without
blocking bugs. Additionally, we use re-sampling on the training
data only in order to reduce the impact of the class imbalance prob-
lem (i.e., the fact that there are many non-blocking bugs and very
few blocking bugs) of our data sets.

3. BUG CHARACTERIZATION
Before presenting our case study, we discuss three aspects of the

blocking bugs that we consider important to better understand their
impact.

3.1 Fixing Time
Blocking bugs are harmful for the maintenance process, they de-

lay the repair of other bugs (i.e., blocked bugs) not because there
is not enough resources to fix them, but because the components
affected by these blocked bugs rely on other components that need
to be fixed first. On the other hand, bugs without dependencies
(i.e., non-blocking) on other bugs can be fixed right away and as a
result, their fixing time might be shorter.

Table 3: Median fixing time in days

Project Blocking Non-blocking
Chromium 48 16
Eclipse 146 51
FreeDesktop 78 37
Mozilla 100 42
Netbeans 225 134
Open-Office 142 74

Table 3 reports the median of the fixing-time for blocking/non-
blocking bugs. Through all the projects, we observe that the fixing-
time for non-blocking bugs is shorter than for the blocking bugs.
To see if there is a significant difference between the blocking and
non-blocking bugs, we performed an unpaired Wildcoxon-test for
the hypothesis Ha : tblocking > tnonblocking . Table 4 shows the
fixing-time difference reported by the test. The p-values were sig-
nificant for all projects (p-value < 0.001), meaning that the fixing-
time for blocking bugs is statistically significantly longer than the
fixing-time for non-blocking bugs.�



�
	The median time to address a blocking bug 15-40 days longer

than the median time it takes to address a non-blocking bug.

3.2 Time to Identify a Blocking Bug
Consider, for example, bug 121120 in OpenOffice that was cre-

ated on 2012-09-27 and reported as blocker for the first time on
2012-11-16. This means, it took approximately 50 days to identify
this bug as blocking bug.

Some blocking bugs are harder to identify than other blocking
bugs. In this case, we can see this period of time as a measure



Table 4: Wildcoxon-Test for blocking and non-blocking bugs

Project tblocking − tnonblocking

Chromium 15.9 ***
Eclipse 52.7 ***
FreeDesktop 19.2 ***
Mozilla 37.0 ***
Netbeans 16.8 ***
Open-Office 40.1 ***

(***) p < 0.001

Table 5: Median time to identify a blocking bug in days

Project Time to identify
a blocking bug

Chromium 8
Eclipse 17
FreeDesktop 9
Mozilla 18
NetBeans 5
OpenOffice 3

of the degree of difficulty to identify blocking bugs. For example,
the bug 79342 in OpenOffice was reported as blocking in 30 days,
while bug 80769 in OpenOffice was reported as blocking in 5 days.

To calculate the time to identify a blocking bug for the projects
using Bugzilla, we look for the date of the first appearance of the
tag "blocks" in the history of the bugs. When no information can
be obtained from the bug’s history (e.g., bug 376141 in Eclipse),
we look up the histories of the related blocked bugs and select the
date of the first reported dependency. For the Chromium project,
we calculate this information by looking up the labels associated to
the comments of the bugs and the comments of the related blocked
bugs. In the Google’s bug tracking system the history of a bug is
embedded in the comments.

In Table 5, we present the median time to identify a blocking bug
for our six case study projects. We observe that for the Netbeans
and OpenOffice projects, half the of blocking bugs were reported as
blocking in less than 3-5 days. For the Chromium and FreeDesktop
projects, the median time to identify a blocking bug was 8-9 days,
while, for Eclipse and Mozilla, it took 17-18 days on median.�� ��The median time it takes to identify a blocking bug is 3-18 days

3.3 Degree of Blockiness
The degree of blockiness refers to the number of bugs that de-

pends on the same bug and it can be seen as a measure of sever-
ity of a blocking bug. For example, the bug 309165 in Eclipse is
blocking four other bugs, this means that its degree of blockiness
is equal to four. The presence of bugs with high blockiness might
become bottlenecks for the maintenance and evolution of the code.
These blocking bugs could be the result of low quality design in
critical components (e.g., tightly coupled), significant changes in
the requirements, etc.

Table 6 reports the percentages of bugs by degree of blockiness.
Only the percentages for degrees ≤ 7 were reported. We notice
that the FreeDesktop project does only have bugs that block 1 or
2 or at most 3 bugs. The number of bugs with degree "1" is 1082
(74.8%) in Chromium, 3039 (83.1%) in Eclipse, 368 (86.7%) in
FreeDesktop, 5671 (66.9%) in Mozilla, 2217 (91.4%) in NetBeans
and 2304 (91.4%) in OpenOffice. At first sight, it is easy to see that
approximately 96% of the bugs for all projects have a blockiness of

Table 6: Degree of blockiness

Blockiness Chromium Eclipse FreeDesk Mozilla NetBeans OpenOffice
1 74.84% 83.17% 86.79% 66.91% 91.46% 91.43%
2 18.78% 11.71% 11.56% 20.07% 6.64% 6.94%
3 3.46% 2.76% 1.65% 6.30% 1.20% 0.95%
4 1.45% 1.09% 0.00% 2.76% 0.29% 0.40%
5 0.76% 0.44% 0.00% 1.36% 0.25% 0.04%
6 0.48% 0.22% 0.00% 0.97% 0.00% 0.16%

7 ≥ 0.23% 0.61% 0.00% 1.64% 0.17% 0.08%

"1" or "2". As a consequence, bugs with high degree of blockiness
are uncommon.

We manually examined some of the bugs with blockiness > 7 for
Eclipse and NetBeans. Many of the Eclipse bugs were enhance-
ments with low priority (P3, P4) instead of real defects. On the
other hand, for the NetBeans bugs, we found that indeed they were
defects with high priority (P1, P2).�� ��The majority ( 96%) of blocking bugs block at most two bugs.

4. CASE STUDY
This section reports the results of our study on six open source

projects and answers our two research questions. First, we built
different prediction models to detect whether a bug will be or not a
blocking bug. Second, we performed Top Node analysis to deter-
mine which of the collected factors are good indicators to identify
blocking bugs.

RQ1. Can we build highly accurate models to predict whether
a new bug will be a blocking bug?

Motivation. We see that blocking bugs take much longer to be
fixed than non-blocking bugs. We want to help developers flag
blocking bugs early on, so that they can avoid that wasted of time
and effort. Therefore, we want to build prediction models to help
developers to identify these blocking bugs and we want to know if
we can accurately predict these blocking bugs using the factors that
we proposed.
Approach. Our prediction models are based on the C4.5 decision
tree algorithm, because it is an explainable model that can easily
be understood by practitioners. We use stratified 10-fold cross-
validation to estimate the accuracy of our models. To evaluate their
performance, we use the precision, recall and F-measure metrics.
The reported performance of the models are the average of the 10
folds. These metrics are compared to the performance of our base-
line model. Here, our baseline corresponds to a model that ran-
domly predicts blocking bugs. The precision for our baseline clas-
sifier is the percentage of blocking bugs in the data set. Since our
baseline model is a random classifier with two possible outcomes
(e.g., blocking/non-blocking), its recall is 50%.
Results. In Table 7, we present the performance results of our pre-
diction models. The precision values achieved by our decision tree
models are better than the precision values of the baselines for all
the projects. Our models present precision values ranging from
9.1% to 29%. Comparing these results with those of the baseline
models (2.3% - 12.54%), we observe that our prediction models
provide a ∼2 to ∼5 fold improvement over the baseline models in
terms of precision.
The recall values achieved by the decision trees of four of the six
projects are better than the recall values of their corresponding
baseline models. The only two exceptions are Chromium and Eclipse
with recall values (49% and 47%) slightly below the baseline recall
(50%). For the four other projects our models achieve recall values
of 59.3%-76.7%. We notice that our prediction models provide a



Table 7: Performance of the decision tree models

Decision Tree model Baseline model
Project Precision Recall F-measure Precision Recall F-measure
Chromium 9.1% 49.9% 15.3% 2.33% 50.0% 4.46%
Eclipse 9.2% 47.0% 15.4% 2.80% 50.0% 5.30%
FreeDesktop 20.4% 73.6% 31.9% 8.86% 50.0% 15.05%
Mozilla 29.0% 76.7% 42.1% 12.54% 50.0% 20.05%
NetBeans 12.8% 59.3% 21.1% 3.16% 50.0% 5.94%
OpenOffice 15.9% 65.9% 25.6% 3.02% 50.0% 5.69%

∼0.9 to ∼1.5 fold improvement over the baseline models in terms
of recall. Although, we achieved low recall values for some of our
projects, what it really matters for comparing the performance of
two models is the F-measure, which is a trade-off between preci-
sion and recall.
Similar to the previous metrics, the F-measure values of our predic-
tion models present an improvement with respect to the F-measure
values of the baseline models. Our F-measure values range from
15.3% to 42.1%, whereas that the F-measure values of the baseline
models range from 4.4% to 20.05%. The improvement ratio of our
F-measure values vary from ∼2 to ∼4.5 folds.�

�
�



We can build highly accurate prediction models that
can achieve F-measure values of 15%-42% when

detecting blocking bugs.

RQ2. Which factors are the best indicators of blocking bugs?

Motivation. Besides warning about potential blocking bugs, we
would like to identify the factor or group of factors that have a sig-
nificant impact on the determination of these blocking bugs. With
this information, we can advise developers of which factors to use
in order to detect blocking bugs early on.
Approach. We perform Top Node analysis in order to determine
which factors are the best indicators of whether a bug will be a
blocking bug or not. In the Top Node analysis, we examine the
decision trees created by the 10-fold cross validation and we count
the occurrences of the factors at each level of the trees. The most
relevant factors are always close to the root node (level 0, 1 and 2).
As we traverse down the tree, the factors become less relevant. For
example, in Figure 3, the comment is the most relevant factor be-
cause it is the root of the tree (level 0). The next two most relevant
factors are num-CC and reporter’s experience (both in level 1) and
so on. In the Top Node analysis, the combination of the level in
which a factor is found along with its occurrences determines the
importance of such as factor. If, for example, the product factor
appears as the root in seven of the ten trees and the platform fac-
tor appears as the root in the remaining, we would report product
as the first most important factor and platform as the second most
important factor.
Results. Table 8 reports the Top Node analysis results for our six
projects. The comments included in the bugs and the sizes of those
comments are the most important factors. In five of the projects,
the comment text is the most important factor. The only exception
is Mozilla in which the comment text is the second most important
factor. The comment-size is the second most important factor in
Chromium and OpenOffice and the third most important in Mozilla
and NetBeans. Words such as "dtrace", "pthreads", "scheduling",
"glitches" and "underestimate" are associated with blocking bugs
by the Naive Bayes Classifier. On the other hand, words such as
"duplicate", "harmless", "evolution", "enhancement" and "upgrad-
ing" are associated with non-blocking bugs.

The number in the CC list is the most important factor for Mozilla.
It also appears in the second level (level 1) of NetBeans, OpenOf-
fice and Chromium as the second, third and forth most important
factor respectively.
The reporter’s name is the second most important factor for Eclipse
and FreeDesktop. It also appears in the third level (level 2) of
Chromium, NetBeans and OpenOffice. Although its importance
differs from project to project, it consistently appears in five of the
six projects.
The description of a bug is a relevant factor only for Chromium
(third most important). Other factors such as priority, product, re-
porter’s experience, description-size, etc are only present in the sec-
ond and third levels of two or less projects. In other words, among
the factors reported in Table 8, they are the less important.�

�
�
�

The Comment text is the most important factor in
determining blocking bugs for all the projects except
Mozilla project in which the most important factor is

the Number in the CC list.

5. COMPARISON USING DIFFERENT
CLASSIFIERS

Besides decision tree classifiers, there are other popular machine
learning algorithms that can be used to predict whether a bug will
be a blocking bug or not. In this section, we compare the perfor-
mance of four other classifiers namely: Zero-R, Naive Bayes, kNN
and Random Forests.

In Table 9, we report the precision, recall and F-measure achieved
by these classifiers. If we look at the accuracies, we see that Zero-R
presents the highest accuracy among all the projects. This happens
because, first, the Zero-R algorithm always predicts the majority
class (i.e., non-blocking bugs) and second, the percentages of non-
blocking bugs account for approximately 95% of the total (in most
of the projects). Clearly, it is useless to have a highly accurate
model that cannot detect blocking bugs. For this reason, we use the
F-measure metric to compare the performance of the four classi-
fiers against the performance of our prediction model.

The Naive Bayes algorithm is only slightly better for Chromium
and Eclipse with F-measure values equal to 16.9% and 15.5%. In
the other projects, it performs worse than our model.

The models based on the kNN algorithm are slightly worse for
all the projects. To give an example, consider the Mozilla project
which has a F-measure of 34.9%. In this case, our model with a F-
measure of 42.1% outperforms the kNN algorithm for over 7.2%.

The Random Forests classifier performs better in all the cases.
For example, for the Chromium project, we observe that the F-
measure improves from 15.3% to 22.8%. However, the Random
Forests classifier does not provide easily explainable models. Prac-
titioners often prefer easy-to-understand models such as decision
trees because they can explain why the predictions are the way
they are. What we observe is that the C4.5 classifier is close to
the Random Forests classifier in terms of F-measure, however if
one is more concerned about accuracy to detect blocking bugs, the
Random Forests would be the best classifier. If one wants accurate
models that are easily explainable, then they would need to sacrifice
a bit of accuracy and use the C4.5 classifier.

6. RELATED WORK
Re-opened bug prediction: Similar to our work, however fo-

cusing on different types of bugs, prior work by Shihab et al. [18]
studied re-opened bugs on three open-source projects and proposed
prediction models based on decision trees in order to detect such



Table 8: Top Node analysis results

Level Chromium Eclipse FreeDesktop
# Attribute # Attribute # Attribute

0 5 Comment text 10 Comment text 10 Comment text
5 Comment size

1 17 Description text 12 Reporter 4 Reporter
3 Num. CC 8 Comment text 3 Num. CC

2 Priority has Increased
2 15 Num. CC 704 Comment size 14 Rep. Blocking experience

14 Reporter 613 Description size 13 Rep. experience
3 Description text 536 Comment text 8 Description text

8 Comment size

Level Mozilla NetBeans OpenOffice
# Attribute # Attribute # Attribute

0 10 Num. CC 10 Comment text 10 Comment text

1 15 Comment text 10 Num. CC 10 Comment size
1 Comment size 10 Comment size 9 Num. CC

1 Rep. Blocking experience
2 15 Comment size 12 Reporter 21 Comment text

11 Priority 28 Comment text 10 Comment size
1 Comment text 9 Reporter
1 Product

Table 9: Predictions different algorithms

Project Classif. Precision Recall F-measure Acc.

Chromium

Zero-R NA 0% 0% 97.6%
Naive Bayes 10.0% 54.2% 16.9% 81.5%
kNN 9.0% 47.1% 15.1% 81.5%
Rand. Forest 18.6% 29.6% 22.8% 93.0%
C4.5 9.1% 49.9% 15.3% 80.7%

Eclipse

Zero-R NA 0% 0% 97.2%
Naive Bayes 8.8% 66.4% 15.5% 79.7%
kNN 8.1% 53.0% 14.0% 81.8%
Rand. Forest 16.5% 24.0% 19.5% 94.5%
C4.5 9.2% 47.0% 15.4% 85.5%

FreeDesktop

Zero-R NA 0% 0% 91.1%
Naive Bayes 18.7% 74.3% 29.9% 69.0%
kNN 19.4% 72.6% 30.6% 70.7%
Rand. Forest 27.8% 60.2% 37.9% 82.4%
C4.5 20.4% 73.6% 31.9% 72.0%

Mozilla

Zero-R NA 0% 0% 87.4%
Naive Bayes 29.5% 68.0% 41.1% 75.6%
kNN 23.3% 69.3% 34.9% 67.5%
Rand. Forest 36.1% 53.6% 43.2% 82.3%
C4.5 29.0% 76.7% 42.1% 73.6%

NetBeans

Zero-R NA 0% 0% 96.8%
Naive Bayes 9.9% 73.3% 17.3% 77.1%
kNN 11.4% 59.3% 19.1% 84.2%
Rand. Forest 26.3% 37.6% 30.9% 94.7%
C4.5 12.8% 59.3% 21.1% 86.0%

OpenOffice

Zero-R NA 0% 0% 96.9%
Naive Bayes 12.9% 78.1% 22.1% 83.3%
kNN 14.2% 66.1% 23.4% 87.0%
Rand. Forest 32.9% 46.7% 38.6% 95.5%
C4.5 15.9% 65.9% 25.6% 88.4%

type of bugs. In their work, they used 22 different factors from
4 dimensions to train their models. Xia et al. in [35] compared
the performance of different machine learning methods to predict
re-opened bugs. They found that Bagging and Decision Table al-
gorithms presents better results than decision trees when predicting
re-opened bugs. Zimmermann et al. [19] also investigated and char-
acterized re-opened bugs in Windows. They performed a survey to
identify possible causes of reopened bugs and built statistical mod-
els to determine the impact of various factors. The extracted fac-
tors in our data sets are similar to those used in the previous works
(specially in [18, 35]). Additionally, we also use decision trees as
our prediction models. However our work differs in that we are
not interested in predicting reopened bugs, but instead in predict-
ing blocking bugs.

Fix-time prediction: A prediction model for estimating the bug’s
fixing effort based on previous bugs with similar textual informa-
tion has been proposed by Weiss et al. [13]. Given a new bug re-
port, they use kNN along with text similarity techniques for finding
the bugs with closely related descriptions. The average effort of
these bugs are used to estimate the fixing effort of the given bug
report. Panjer et al. in [12] used decision trees and other machine
learning methods to predict the lifetime of Eclipse bugs. Since the
classifiers do not deal with a continuous response variable, they
discretized the lifetime into seven categories. Their models con-
sidered only primitive factors taken directly from the bug database
(e.g., fixer, severity, component, number of comments, etc.) and
achieved accuracies of 31%-34%. Marks et al. [11] used Random
Forest to predict bug’s fixing time. Using the bugs from Eclipse
and Mozilla, they examined the fixing time along 3 dimensions:
location, reporter and description. Following an approach similar
to Panjer, Marks et al. discretized the fixing time into 3 categories
(within 1 month, within 1 year, more than a year). For both projects
their method was able to yield an accuracy of about 65%. In our
work, we also used decision trees as prediction models, but instead
of predicting the bug’s lifetime, we try to predict blocking bugs.

Severity/Priority prediction: Other works focused on the pre-
diction of specific bug report fields [9, 10, 24, 36]. Lamkanfi et
al. [10] trained Naive Bayes classifiers with textual information
from bug reports on Eclipse and Mozilla to determine the sever-
ity of such bugs. In another paper [24], the authors compared the
performance of four machine learning algorithms (Naive Bayes,
Naive Bayes Multinomial, kNN and SVM) for predicting the bug
severity and found that Naive Bayes Multinomial is the fastest and
most accurate. Menzies et al. [36] used a rule-based algorithm for
predicting the severity of bug reports using their textual descrip-
tions. They evaluated their method using data from a NASA’s bug
tracking system. Sharma et al. [9] evaluated different classifiers for
predicting the priority of bugs in OpenOffice and Eclipse. Their
prediction models achieved accuracies above 70%. Our work dif-
fers from the previous studies in that we used that information to
predict blocking bug rather than the severity/priority. In fact, we
used the severity and priority of the bug reports in our factors.

Bug triaging and Duplicate bug detection: Other studies use
textual information from bug reports such as summary, description
and execution trace for semi-automatic triage process [15, 17, 37,
38] and bug duplicate detection [6, 7, 8, 23, 25]. The key idea in
the majority of these works is to apply natural language processing



(NLP) and information retrieval techniques in order to find a set of
bug reports that are similar to a target bug (new bug). Based on this
suggested list of similar bugs, the triager can, for example, recom-
mend the appropriate developer to incoming bugs or filter out those
already-reported bugs. Similar to these works, we included textual-
based factors (comments and description) in our prediction models
with the difference that instead of using a vector space representa-
tion, we converted them into numerical factors following the same
approach used by [18], [26].

Bhattacharya et al. [39] performed multivariate regression test-
ing to determine the relationship strength between various bug re-
port factors and the fixing time. They found that the dependency
among software bugs (i.e., blocking dependency) is an important
factor that contributes to predict the fixing time. Our work is not
directly related to bug-fixing time prediction, but the results in [39]
motivate the study and characterization of blocking bugs.

7. THREATS TO VALIDITY

Internal Validity. For the reporter name, we grouped the reporters
with less than five contributions into one category. This approach
significantly reduced the number of different reporters. Consider-
ing all of the reporters may introduce noise and therefore impact
in our results. In addition, we used the number of previous re-
ported bugs as the experience of a reporter. In some cases, using
the number of previous reported bugs may not be indicative of ac-
tual developer experience, however similar measures were used in
prior studies [18]. Our data set suffers from the class imbalance
problem. In most of the projects, the percentage of blocking bugs
account for less than 5% of the total data. This causes the classifier
not to learn to identify the blocking bugs very well. To mitigate
this problem, we use re-sampling of our training data and stratified
cross-validation.
To calculate the Bayesian-scores, we filtered out all the words with
less than five occurrences in the corpora. Increasing this threshold
will produce different scores, however, it will introduce more noise.
Furthermore, the Bayesian-score of a description/comment is based
on the combined probability of the fifteen most important words of
the description/comment. Changing this number may impact our
finding.
Our work did not considered bugs with status other than resolved
or closed, because we wanted to investigate only well identified
blocking and non-blocking bugs. However, unlike non-blocking
bugs, the blocking bugs may not be restricted to verified or closed
bugs. In most of the cases, bugs marked as blocking bugs remain
that way until their closed-date. In the future, we plan to include
these blocking bugs in order to improve the accuracy of our model.
External Validity. In this work, we studied 402,962 bug reports
from six open source projects, therefore our findings may not gen-
eralize well to commercial software projects. In fact, although we
examined large open source projects that cover a wide range of
products and domains, there are other projects that use different
software processes, bug tracking systems, etc and therefore our re-
sults may not generalize to all of them.

8. CONCLUSION AND FUTURE WORK
Blocking bugs increase the maintenance cost, cause delays in

the release of software projects, and may result in a loss of market
share. Since these bugs have such severe consequences, it is im-
portant to identify them early on in order to reduce their impact.
In this paper, we build prediction models based on decision trees to
predict whether a bug will be a blocking bug or not. As our data set,
we used 14 factors extracted from the bug repositories of six large

open source projects. The results of our investigation shows that
our models achieve 9-29% precision, 47-76% recall and 15-42%
F-measure when predicting blocking bugs. On the other hand, our
Top Node analysis shows that the most important factors to deter-
mine blocking bugs are the comments, comment-size, number of
developers in the CC list and the reporter’s experience. In the fu-
ture, we plan to model the blocking dependency of the bug reports
as a graph structure and study it using network analysis. Particu-
larly, we are interested in deriving network measures to incorporate
them in our prediction models and examine whether they improve
the prediction performance (Zimmermann et al. followed a similar
approach in [40]). We also plan to extend this work by performing
feature selection on our factors. Employing feature selection may
improve the performance of our models since it removes redundant
factors. Furthermore, we plan to perform more qualitative analy-
sis on the different factors (e.g., severity and priority) in order to
better understand the influence of such a factors. Our results show
that blocking bugs take longer to be fixed than non-blocking bugs,
however it is unclear if blocking bugs require more effort and re-
sources than non-blocking bugs. To tackle this question, we plan to
link bug reports with information from the version control systems,
leverage metrics at commit level and perform a quantitative analy-
sis that may help us to confirm or refute our intuition that blocking
bugs indeed require more effort.
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