
Some Economic & Legal Aspects of
Open Source Software

Jonathon J. Frost1
University of Washington
Department of Economics

Mentors2
Prof. Keith Leffler

University of Washington
Department of Economics

Prof. Robert Gomulkiewicz

University of Washington
School of Law

Prof. Dan Laster

University of Washington
School of Law

This version: May 7th, 2005

Abstract
The emergence of open source software as a viable economic model has risen to the
forefront in the debate on the future of the information technology industry. However, at
first glance, the open source software development model is strikingly enigmatic and
counterintuitive. To help better understand this phenomenon, this paper, through market
data and economic theory, proceeds to ask and answer three related questions. First,
what is the economic relationship between open source software development
communities and proprietary software firms? Second, what are the resulting effects on
market innovation and innovation incentives? And third, what legal mechanisms allow
for the sustainability of open source software and should they be expanded or reduced?
This paper concludes that open source activity appears to be generating four economic
effects, whose net affect on innovation in the software market is ambiguous.

1 Jonathon J. Frost is a senior at the University of Washington majoring in Economics (Honors Program)
and can be contacted at jjfrost@u.washington.edu. This paper as well as its related topic proposal and other
relevant materials can be found at the following website: http://students.washington.edu/jjfrost/.

2 I would like to express my gratitude to my mentors, Prof. Keith Leffler, Prof. Bob Gomulkiewicz and
Prof. Dan Laster for taking the time out of their busy schedules to give me such helpful advice and
guidance. I would also like to thank Prof. Judith Thornton for her thoughtful suggestions during the early
stages of this paper (and later ones also).

mailto:jjfrost@u.washington.edu
http://students.washington.edu/jjfrost/

Table of Contents

 Table of Contents 2

Section I: Introduction 3

Section II: A Brief History of Open Source Software 7

Section III: Important Economic Issues of Open Source Software 15

Section IV: Open Source Software & Innovation 26

Section V: Open Source Software Legal Institutions & Policy 35

Section VI: Conclusion 41

 Bibliography 43

 - 2 -

Section I
Introduction

Executive Summary

Over the past ten years, open source software has made strong inroads into markets for

proprietary software (Torvalds and Diamond, 2001). Through economic theory and

analysis, this paper will seek to uncover what effects this change in the software market is

having on innovation. In order to accomplish this goal, this paper will look at some of

the economic effects generated by open source software, then attempt to apply them to

economic theories of innovation. This paper will then conclude by outlining four key

economic effects generated by open source activity, whose aggregate effect on innovation

in the software market is ambiguous. However, before we attempt to achieve these goals,

we must first understand what exactly open source software is.

What is Open Source Software?

In the simplest sense, open source software (OSS) is software that is distributed at

marginal cost and whose source code is freely available to be viewed, modified and

redistributed (Schmidt and Schnitzler, 2002).3 In a more complex sense, the term “open

source” describes two separate yet related entities, both of which form the basis of open

3 A software applications “source code” is the human-readable set of instructions that “tell” the computer
how to operate. Most modern software applications, in order to function, must have their readable source
code ran through a compiler to convert the human readable instructions into machine readable binary code
that is near impossible for humans to understand. Most commercial software is shipped only with this
cryptic binary code, thus making it nearly impossible to modify the functionality of commercial software (a
great intellectual property protection barrier). Open source software changes this by freely giving away its
easily readable and modifiable source code.

 - 3 -

source software4. The first of these is the open source development model, which is a

way of developing software based on decentralization, collaboration and reciprocity. It is

a system where individuals from across the globe voluntarily contribute patches,

enhancements and features to software projects that interest them (Raymond, 1999). Its

roots can be traced back to the scientific research organizations of the 1960’s and 1970’s

such as Bell Labs, Xerox Park and the University of California Berkeley where this type

of voluntary “code sharing” was quite prevalent (Raymond, 1999).

 Today we see this development model employed by a plethora of what have

become known as “open source development communities” (OSDCs). These

decentralized organizations are effectively non-profit providers of public goods5, in that

they are producing software that they freely distribute over the Internet for all to use with

very few restrictions6. Examples of these communities include the Linux development

community, the creator of Linux, an operating system in direct competition to Microsoft

Windows, and the Apache development community, the creator of the Apache web

server, an application that hosts a majority of the web sites currently on the Internet

(Lerner and Tirole, 2000).

4 I really must give credit to Stephen Mutkoski of the Intellectual Property & Licensing Group at Microsoft
for breaking down the concept of open source software into the clear dichotomy of a development model
and a licensing model. While writing this paper, I was lucky enough to sit in on Prof. Dan Laster’s
Advanced Copyright class at the University of Washington Law School where Stephan gave a highly
informational guest lecture on the legal issues surrounding open source.

5 A good is a public good when it exhibits the two key properties of non-rivalry and non-excludability.
Non-rivalry means that the good does not demonstrate scarcity, meaning one person’s consumption of the
good will not affect anyone else’s consumption of that good. Non-excludability means that it is difficult or
even impossible to prevent someone from using the good. Open source software in fact characterized by
both of these properties. It is non-rivalrous because, as it is software and can be reproduced indefinitely at
marginal cost, it can never be scarce. It is non-excludable because it is almost always distributed freely and
openly. Other examples of public goods include a national defense system and a system of property rights.

6 We will learn more about these restrictions in section 5 of this paper.

 - 4 -

 The other main entity that is often referred to by the term “open source” is the

open source style of software licensing. Similar to how commercial software firms like

Microsoft license software to the public to control how their products are used, the open

source licensing style is the way in which OSS developers license their software to the

public to restrict how it is used and distributed. There are in fact many different “open

source” licenses all of which adhere to the same loose set of principles. Some of these

principles include openly viewable and modifiable source code and free redistribution

(Fink, 2003).7

 Another important licensing term, which is not always stipulated, is that of

reciprocity. The reciprocity term states that any derivative work of a piece of code

licensed under this term must, when distributed, use the same legal terms as the original

piece of code. An example of this would be if an OSS developer wrote a piece of code

that would draw circles, licensed it under an open source license that included the

reciprocity term, and then put it on the Internet. If then another developer came along,

found this code and integrated it into a graphics program she was working on, she would

then be obligated by law to license her program under the same terms as the code that

drew the circles – thereby self-perpetuating the licensing terms (Gomulkiewicz, 1999).

 It is in fact this idea of reciprocity that splits the currently available set of open

source licenses into two categories – those that have the reciprocity term and those that

do not. The two main licenses from each side of this divide include the GNU Public

License (GPL), which forms the model for the reciprocity-based open source licenses and

the Berkeley Software Distribution License (BSD), which does the same for the non-

7 For a more detailed discussion regarding the various key principles of open source licenses, please refer to
section 5 of this paper.

 - 5 -

reciprocity or “liberal” license type. Both of these license types will be examined in

much greater detail in the subsequent sections of this paper (Fink, 2003).

Paper Roadmap

This paper is divided into four main sections. The first of these sections will discuss the

history of OSS to gain an understanding of its origins and also set some of the

foundations for the rest of the paper. The second section will explore some of the

economic effects generated by OSS by looking at such areas as the motivations driving

OSS developers, the formation of open source software development communities

(OSDCs), and the changes in the market share of commercial software driven by OSS.

The third section will take the economic analysis of the previous section one step further

by examining the effects that OSS may have on the level of innovation in the software

market. The fourth and last section of this paper will conclude by discussing the legal

institutions supporting OSS and also by outlining some possible policy suggestions to

help encourage the creation of OSS.

 - 6 -

Section II
A Brief History of Open Source Software

Introduction

In this section we will trace the origins of the current open source development model to

the late 1960’s at such scientific research institutions as Bell Labs and MIT. This section

will also show how many of the current institutions that now support the creation of open

source software (OSS), such as the Berkeley Software Distribution License (BSD) and

the GNU Public License (GPL) came into existence and usage.

A Brief History of Open Source Software

The open source software development model, or the activity of openly sharing source

code in a collaborative environment, is not new. Its origins can be traced back to the

pivotal year of 1969, which marked both the creation of the Unix operating system and

the ARPAnet (Advanced Research Projects Agency Network, the predecessor to today’s

modern Internet). However, it is important to note that prior to Unix there was a

preceding operating system named Multics or Multiplexed Information and Computing

Service. Multics was a highly ambitious project being jointly sponsored between MIT,

Bell Labs (The research and development branch of AT&T) and General Electric

(Weber, 2004).

 On account of Multics’ overreaching goals and a lack of consensus on the

project’s direction between its sponsors, the project was eventually canceled in 1969 after

five years of work. The efforts on Multics, however, were not a complete loss. Two

 - 7 -

programmers from Bell Labs, Ken Thompson and Dennis Ritchie, who had worked on

Multics, walked away with some important lessons learned; lessons such as “build small

neat things instead of grandiose ones”, which would eventually prove useful in the

creation of a new, simpler operating system (Weber, 2004).

 With a lack of direction at Bell Labs after the collapse of Multics, Ken Thompson

took it upon himself, in an astonishing four week period, to write that new, simpler

operating system, which he playfully named UNICS or Uniplexed Information and

Computing Service. It would eventually be changed to the name that we know it by

today, Unix (Weber, 2004).

 The usage of Unix grew slowly. By early 1973 there were only about sixteen

installations and all within the confines of Bell Labs. However, this changed

dramatically after Ken Thompson and Dennis Ritchie jointly presented a paper on Unix

at the Association for Computing Machinery Symposium in October of 1973. Shortly

afterwards, Bell Labs was inundated with a multitude of requests for copies of Unix

(Weber, 2004).

 This would have typically been a fantastic business opportunity for AT&T (the

parent corporation of Bell Labs). However AT&T was legally bound as a government

mandated monopoly to only sell products relating to common carrier activities and Unix,

as AT&T’s attorneys reasoned, was not within this product sphere. As a result, AT&T

decided to license out Unix at marginal cost and under minimal licensing terms. On

account of the resulting low price and strong demand for Unix, it spread quickly across

the globe to both universities and research institutions and later to commercial

organizations (Weber, 2004).

 - 8 -

 This situation demonstrated two highly important points. First, Unix was

distributed in readable source code form rather than unreadable binary machine code and

further, the source code was written in Dennis Ritchie’s new, easier to understand

language, appropriately named “C”, as it was the successor to Bell Labs’ “B”. This

meant that it was possible to understand the inner workings of Unix with relative ease

(Raymond, 1999). Second, part of Unix’s minimal licensing terms was that it was

licensed “as is” and was not accompanied by any type of warranty, service or support.8

These two factors coupled with the collaborative and open sprit of scientific research that

was prevalent at the research oriented organizations which licensed Unix, gave way to a

system of collaborative code sharing in which the students, professors and researchers

using Unix around the globe began to slowly work together in making (and most

importantly, sharing) enhancements, modifications and bug fixes (Weber, 2004). This

collaborative movement was then propelled further in 1976 when the UUCP or Unix-to-

Unix Copy Program was written. This program enabled Unix users to harness the power

of the ARPAnet9 to share code and communicate across this nascent, global, digital

network (Raymond, 1999).

 By the late 1970’s Unix was becoming very popular and with this growth in

popularity, the mindset of AT&T’s management was beginning to shift. When AT&T

released Unix version 7 in 1979, management realized its true commercial potential and

8 It is important to point out that both of these licensing terms, distribution at marginal cost and no
warranties, are in fact at the core of today’s open source software licenses. For a more detailed discussion
on this topic, please refer to section 5 of this paper.

9 The ARPAnet or Advanced Research Projects Agency Network was a project initiated by the United
States’ Department of Defense in early 1960’s to create a global computer network to help link research
centers from across the United States at such universities as UCLA and Stanford via a new method of data
transfer known as packet switching. What is so important about the ARPAnet is that it set the
infrastructural and conceptual framework for what today is the modern Internet.

 - 9 -

for the first time decided not to release Unix’s source code. The plan to fully

commercialize Unix was followed through in 1983. As a result of AT&T’s deregulation,

AT&T was no longer legally bound to give Unix away at cost and could now sell licenses

for a market price (which ran as high as $250,000) under a new division of AT&T named

Unix Systems Laboratory. AT&T’s shift to a closed, cathedral-like10 development model

effectively halted its role in the collaborative development process that it had helped to

establish (Weber, 2004).

 At about the same time a programmer named Richard Stallman who worked in

the Artificial Intelligence Laboratory at MIT, was starting to become increasingly

distraught by AT&T as well as other software firms as they shifted away from releasing

their code freely and moved to a more “closed-source” and commercial business model.

This movement frustrated Stallman to the point that, in backlash, he founded The Free

Software Foundation (FSF) to promote what he coined “free” software or software that

has openly viewable and modifiable source code (von Hippel and Krogh, 2003).11 One of

the most important results of the FSF was its creation of the GNU Public License, a

software license used by many open source applications today (Fink, 2003).12

 In spite of AT&T’s movement to commercialization, there were still examples of

collaborative development efforts to be found. Prior to AT&T’s deregulation, the

10 Eric Raymond, one of the most pivotal thinkers in the open source movement, coined the term
“cathedral” style of software development to describe the way in which commercial software firms
construct applications. He uses the metaphor of a cathedral to illustrate how commercial software is
carefully planned, centrally controlled and constructed by few. He contrasts this idea with what he calls the
“bazaar” style of development, where you have less central planning, but more peer-review and a greater
amount of contributors to the project.

11 It is important to point out that by “free”, Stallman is referring to freedom, as in the freedom to modify
software. Nevertheless, most “free” software is also free in terms of price.

12 The GNU Public License and open source licenses in general will be discussed further in both Section 4
and Section 5 of this paper.

 - 10 -

University of California Berkeley had fully embraced the development and enhancement

of the Unix operating system. This put Berkeley in a strong position to continue Unix’s

development via a collaborative development approach (Weber, 1999).

 Berkeley had received a copy of Unix version 6 from Ken Thompson while he

was there on a teaching sabbatical. In 1976 two Berkeley graduate students, Chuck

Haley and Bill Joy, added some key enhancements to this version of Unix, calling this

new version Berkeley Software Distribution or BSD. These enhancements, which

became quite popular in the Unix community, included an improved Pascal interpreter (a

structured programming language similar to “C”) and a useful text editor named “ex”

(which we now know this today as “vi”) as well as some important performance

improvements. Staying in the sprit of the collaborative culture established by Bell Labs,

Haley and Joy freely gave their source code to all those who had interest (Weber, 2004).

 This was the beginning of a series of events that would help establish Berkeley as

a dominant force in the Unix community. By 1983 there was a clear divergence in the

development of Unix. AT&T went the commercial, proprietary route while, Berkeley in

contrast, stayed on course in the established collaborative development path. This

resulted in an interesting situation in which Berkeley’s 3BSD (BSD Unix version 3) was

chosen by the Department of Defense to be the common operating system to run on all of

the ARPAnet’s main computers in order to implement a new and enhanced

communications standard known as TCP/IP. The Department of Defense chose 3BSD

over AT&T’s Unix and Digital Equipment’s VMS (the other major competing operating

system to Unix at the time) on account of the one key feature that made BSD unique, its

source code was freely available (Weber, 2004).

 - 11 -

 With the implementation of the TCP/IP networking standard integrated into the

newest version of BSD (4.2BSD), BSD jumped to forefront of the Unix sphere. There

was, however, one major caveat to all this, a large majority of the code that made up BSD

was created by AT&T and thus subject to its distribution license. With AT&T charging

substantial prices for its product, users of BSD were now subject to this new pricing

scheme. In order to get around this legal complication, Berkeley undertook the ambitious

task, via the collaborative, voluntary development model, of rewriting all of the original

AT&T code, thereby creating a completely “clean” version of BSD. By doing this, BSD

was no longer infringing AT&T’s copyright on Unix and thus not restrained by AT&T’s

commercial software license (Weber, 2004).

 This version of BSD, although never fully completed (it was missing six files),

was released under the name Networking Release 2 in 1991 under Berkeley’s own,

custom software distribution license. The hope was that someone else would at some

point complete the missing files (Weber, 2004). The creation of the Berkeley license,

later to be known as a BSD-style license, marked an important development in the greater

open source software movement, such that this license still is one of the two most

common and represents one of two schools of thought on the movement’s direction and

philosophy (Fink, 2003).13

 In 1991, a programmer by the name of Bill Jolitz acquired a copy of Berkeley’s

Networking Release 2 and was able to fulfill Berkeley’s hope by completing the missing

files while simultaneously porting BSD to the Intel 386 platform. Jolitz then released his

13 The other school of thought is represented by Richard Stallman’s GNU Pubic License (GPL). The GPL
contains what is known as a reciprocity clause that effectively self-perpetuates the terms of the software
license. In contrast to this, the BSD does not contain this clause and is seen as a more “relaxed” license
type. This dichotomy will be discussed in greater detail in both Section 4 and Section 5 of this paper.

 - 12 -

finished product, named 386BSD, onto the Internet where it was well received

(Raymond, 1999). In fact, the center of the Internet-based, collaborative development

movement had shifted yet one more time, moving from Berkeley’s BSD to Bill Jolitz’s

386BSD. An Internet-based community quickly formed where a high degree of bug fixes

and enhancements were being exchanged voluntarily (Weber, 2004).

 This ideal open source situation did not last long however, eventually 386BSD

forked into a variety of projects, and its influence diminished (Raymond, 1999).

However, at the same time 386BSD was being developed, a young Finnish university

student named Linus Torvalds began writing his own Unix variant based upon a Dutch

university’s Unix teaching tool called Minux.14 Torvalds’ project, that later became

known as Linux, very quickly gained popularity and developed around it a large,

decentralized, voluntary development community that would later form the template of

future open source software projects. By 1994 when Linux version 1.0 was released, the

Linux development community had firmly established itself as the new center in the

modern open source development movement (Torvalds and Diamond, 2001).

Conclusion

In summary, the development style that open source software employs originated in the

scientific and academic research organizations of the 1960’s and 1970’s. The first

instance of this development system was seen in the construction and evolution of the

Unix operating system. Over the years and through the usage of this decentralized,

voluntary development model, Unix transformed and split into many variations. Along

14 It is interesting to point out that both Jolitz and Torvalds were unknowingly working in parallel on the
same goal of writing a variation of Unix to run on the Intel 386 platform. In Torvalds autobiography, he
admitted that had Internet technology been better than it was in the early 1990’s, he may have learned of
the 386BSD project and not embarked upon the creation of Linux. In the end however, Linux prevailed as
the 386-based Unix variant of choice and helped drive the diminishing influence of Jolitz’s 386BSD.

 - 13 -

the way, we saw the creation of various software licenses that would later underpin the

open source movement. One of these subsequent Unix variants would eventually inspire

a young Finnish graduate student to create his own Unix variation that would ultimately

prove to be the quintessential open source application and spark the open source

revolution.

 - 14 -

Section III
Important Economic Issues of Open Source Software

Introduction

In the previous section we explored the origins of the modern institutions that underpin

the current open source movement. The goal of this section is to look at these institutions

in their modern form and to try to identify and understand some of the important

economic issues and effects that are generated by these institutions. Further, in this

modern context, the challenge open source software poses to proprietary software firms

has become a strong point of contention between many, including such individuals as

information technology managers, computer programming enthusiasts (hackers)15 and

recently, even politicians (Torvalds and Diamond, 2001).

These issues and effects will be explored in three steps. First, I will explain the

motivations and incentives driving hackers, who constitute the open source development

communities. I will then propose some reasons for the formation of these groups, using

such examples as Linux and Apache as guides. And lastly, I will explore some of the

economic relationships between proprietary software firms and open source development

communities by looking at relevant market research and data.

15 The term “hacker” in modern parlance has unfortunately attained a rather negative connotation. Today
this word is typically associated with anti-social individuals who spend their free time writing destructive
code for “fun”. Technically the correct word for these individuals is “cracker”. So for the sake of
clarification, for the rest of this paper when I use the term “hacker”, I am simply referring to individuals
who greatly enjoy writing code – not angry programmers with a destructive disposition.

 - 15 -

Hacker Motivations

The common, oft-asked and enigmatic question posed in such earlier works as Josh

Lerner’s and Jean Tirole’s paper entitled The Simple Economics of Open Source16, of

why do thousands of highly skilled computer programmers engage in the seemingly

altruistic practice of writing valuable source code only to give it up freely, is a highly

complex one. This question is one that embodies a broad mix of philosophical,

sociological and economic components. Nevertheless, through my research, three

motivational drives seem apparent. These include artistry, belief and most importantly,

business need.

For many, writing code is far more than a means to an end or a tool to achieve a

task; rather, it is artistry. As Steven Weber puts it in his book The Success of Open

Source, and as I can attest from my experience having operated in this realm,

programmers never refer to code in terms of efficiency or other such sterile descriptors,

rather, adjectives such as “ugly”, “clean” or “beautiful” are the common parlance.

Programming is a form of expression, a form of self-identity and along with that comes

great pride in one’s craft. Linus Torvalds further expresses this thought in his

autobiography Just for Fun:

It’s Art with a capital A. It’s the Mona Lisa, but it’s also the end result of a
long night of programming, and it’s an end result that you as a programmer
are damned proud of. It’s something so precious that selling it isn’t even
possible: It’s indelibly a part of who you are. (Torvalds and Diamond,
2001)

In this same line of thought, programmers also derive joy from programming; it is an

artistic task that is also intellectually stimulating and fun. This was confirmed by the

16 In this paper, among other things, Learner and Tirole apply theories from the field of labor economics to
unravel the motivations of open source software developers.

 - 16 -

Boston Consulting Group’s 2001 survey of open source developer motivations, where

when volunteers had a choice between eleven main motivational factors, “Intellectual

Stimulation” was one of the two most popular at 43.2%17. What this survey shows is that

there is a high degree of satisfaction to be gained simply from the creation of code, and

that satisfaction alone acts as a powerful motivator in the engagement of open source

development communities.

Another key motivational factor, which dates back to the origins of the

collaborative development movement during the 1960’s at such institutions as MIT and

Berkeley, is one of personal ideology. This ideology is the belief that all code should be

freely shared. Torvalds again augments this point in his autobiography:

What started out in my messy Helsinki bedroom has grown to become the
largest collaborative development project in the history of the world. It
began as an ideology shared by software developers who believed that
computer code should be shared freely (Torvalds and Diamond, 2001)

The Boston Consulting Groups Survey also confirms this point, in which out of the same

eleven options of motivational factors, the response “Code should be open” was ranked

third at 34.2%.

In Eric Raymond’s essay The Magic Cauldron, he attempts to use “a hard-nosed

economic explanation” of what drives hackers to freely write software enhancements and

then contribute them back to the open source community. In short, he effectively argues

that many hackers do this on the clear basis of business need. In the case of open source

software, the classic economic model of producers and consumers is becoming quite

blurred in that now single individuals embody both of these roles18. The users of open

17 It turns out that the choice of “Intellectual Stimulation” was in fact tied exactly with “Improves Skill” at
43.2% as the number one and number two most popular choices in the Boston Consulting Group’s survey.
18 To further augment this point – perhaps what we are seeing here within the realm of open source
software development is in fact a breakdown of the Fisher Separation Theorem. The Fisher Separation

 - 17 -

source software are also the ones producing it. On account of this, we see a rather

interesting dynamic of reciprocity taking place.

Raymond argues that in terms of what drives hackers to write enhancements and

simply not employ a free-rider approach of just waiting for wanted code to magically

spring forth from the community is that hackers, as users of the software for often

mission critical tasks at their places of employment, do not just need solutions but they

need them in a short order (Raymond, 1999). As Raymond explains in his essay:

It’s seldom possible to predict when someone else will finish a given piece
of needed work. If the payoff from fixing a bug or adding a feature is
sufficient to any potential contributor, that person will dive in and do it (at
which point the fact that everyone else is a free rider becomes irrelevant)
(Raymond, 1999).

The fact that it is risky to wait for a needed feature of bug fix, explains why hackers make

such modifications. But the question of why don’t hackers keep their enhancement to

themselves is still outstanding. To answer this, Raymond employs a game-theory

analysis which suggests that the payoff is higher to submit the patch back to the

community, because if the individual were to decide not to, they would be forced to

“incur a future cost – the effort involved in re-merging the patch into the source base in

each new release” (Raymond, 1999). Thus, by submitting the patch to the community

pool, costs are reduced to the individual and interestingly, to the community as well.

Some have argued that the open source software is an ideological movement to

“beat proprietary software”. However, according to the Boston Consulting Group’s

Survey, this is not a significant factor in the usage of and contribution to open source

software. Of the eleven options offered to the survey participants, this choice was ranked

last at 11.3%. This helps to dispel the myth that the open source software movement is

Theorem states that specialization in markets will lead to the separate and distinct roles of both producers
and consumers.

 - 18 -

nothing but an ideological backlash against the “tyranny” of commercial, closed source

software.

In the end, what is important to understand from the three identified motivational

drives of artistry, belief and business need is that the common link between them is self-

interest – not altruism. If either to maximize utility through the creation of beautiful

code, the exercising of beliefs, or simply taking part in this movement because it is a tool

of business cost minimization, these are all activities that are in the best self-interest of

the individual. Perhaps Adam Smith would agree that among the butcher, the baker and

brewer in his most quoted piece of economic prose, we could also add the hacker

(Schmidt and Schnitzler, 2002).19

Open Source Community Formation

What drives these open source communities to form in the first place is yet another

complex question, where each instance of community formation seems to embody its

own unique set of characteristics. However, in looking at the origins of the two strongest

open source communities, Linux and Apache, a theme does seem to emerge, one that

encapsulates all of the aforementioned motivational drives.

Linus Torvalds, the originator of Linux, was a computer science student at the

University of Helsinki and simply wanted to be able to work from home on his school

work and avoid the long lines for computer access at his university campus (Weber,

2000). This, however, was quite problematic in that his school used Unix based

machines and at the time there were very few Unix operating system variants offered for

19 In reference to the following quote from Adam Smith’s The Wealth of Nations: "It is not from the
benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to
their own interest. We address ourselves, not to their humanity but to their self-love, and never talk to them
of our own necessities but of their advantages."

 - 19 -

personal computer hardware. The ones that were available were all quite lacking in

features. On account of this, Torvalds took it upon himself, in an act of inspired

industriousness, to write his own Unix based operating system for personal computer

hardware. After getting a good start on the project and posting his code on the Internet, a

flood of interest poured in. This led the formation of what is now the largest open source

development community in existence (Torvalds and Diamond, 2001).

The development of Apache had a similar genesis; Brian Behlendorf was a

programmer working on Wired magazine’s parent company’s web site known as

HotWired. He, like many other web programmers at the time used the standard web

server application known as NCSA HTTPd which was developed at the National Center

for Supercomputer Applications at the University of Illinois. However, over time, the

NCSA reduced support for their product, making it difficult for Behlendorf, as well as

others using the product to have their evolving needs met. So, in yet another act of

inspired industriousness, Behlendorf took it upon himself, along with a few cohorts using

the web server, to simply build their own server application, which then they would be

able to freely to enhance as needed. This then led to the creation of the Apache

development community (Lerner and Tirole, 2000).

The important lesson from these two distinct situations is that both Torvalds and

Behlendorf, as consumers of computer software, needed a product that did not exist on

the market. In creating it themselves, other consumers with similar demand

characteristics used their products and joined their respective development communities,

demonstrating that there was indeed a market for these goods. One possible economic

explanation for this situation of independent development is that the cost posed to profit-

 - 20 -

maximizing firms of meeting these unique demand characteristics with an enhanced or

new product was greater than the collectable value of that product in the market. As a

consequence, profit-maximizing firms did not go forth with development in spite of a

market demand. This then, it seems, led to the formation of the aforementioned open

source development communities. Similar situations and incentives may in fact explain

the emergence of many other such open source development communities.

Economic Effects

In Martin Fink’s book The Business and Economics of Linux and Open Source, he makes

a key point that given time, the value of proprietary software eventually decreases

through a process of “devaluation [which] comes from competitive forces and a

somewhat natural commodity effect”. In the technologically dynamic market of software

we see a natural process of Joseph Schumpeter’s “Creative Destruction”, where through

innovation, one product eventually gives way to another (Fink, 2003; Schumpeter, 1942).

This process however, given such barriers to entry as substantial upfront sunk costs, high

switching costs and network externalities, is at times a rather slow and unpredictable

process.20 However, as Fink again points out, the introduction of open source

development communities may in fact speed up this devaluation process due to the

20 In looking at each of these barriers, the cost of hiring the highly skilled labor to produce software coupled
with the substantial time it takes to actually complete and properly test a software project before it can be
released onto the market leads to its high upfront costs. These costs are sunk because it is often quite
difficult to repurpose code in other projects once it has been written, this is in spite of attempts in modern
programming design to minimize this through the employment of such techniques as modularization and
object oriented programming. We see high switching costs both from a user perspective in that it takes
time and effort to learn how to use a new “system” and from an infrastructural standpoint in that once an
interdependent system of software has been installed, it is often costly and difficult to switch out one of its
components. Lastly we see network externalities, most notably in the desktop market, on account of the
fact that as more users choose one platform, that platform becomes more valuable to all users, thus
sometimes pushing out entry from competition.

 - 21 -

inherit economic and organizational advantages to proprietary software firms. This

concept is illustrated below in figure 3-1.

Source: The Business and Economics of Linux and Open Source by Martin Fink

Figure 3-1: An illustration of the accelerated devaluation process generated by the introduction of an
open source alternative to a piece of proprietary software

This graph demonstrates the impact that the introduction of an open source alternative would have on the future
revenue stream of the competing proprietary software firm. Point (A) on the graph is the new revenue curve of the
proprietary firm after the introduction of the open source alternative. Point (B) is the original revenue curve. Point
(C) is the point in time in which the proprietary product becomes available on the market. Point (D) is the point in
time in which the product experiences obsolescence, and thus, revenue decreases. Point (E) is the marginal cost of
producing each unit (includes production, marketing, support, et cetera). Point (F) is the upfront fixed sunk cost.

Time

F

E

D C

B

A

Te
st

in
g

D
ev

el
op

m
en

t

Pl
an

ni
ng

C
os

ts

R
ev

en
u

e

The first of these advantages is that fact that open source development

communities do not face the same upfront sunk fixed costs as proprietary firms. This is

possible because these developers, as we learned earlier, have non-monetary motivations.

For this same reason, their second advantage is that they distribute their product at

 - 22 -

marginal cost, which in the case of software, is zero.21 Lastly, through the large numbers

of developers working collaboratively across open source communities, the time it takes

to actually write the software is reduced. Effectively, through this accelerated

devaluation process, the market share of the proprietary software is being challenged as

well as its revenue stream on account of the open source contender, and in fact, there is

evidence which demonstrates this dynamic.

Regarding the shifts in market share, in 1996 International Data Corporation

(IDC) estimated the market share of Linux in the server operating system market at 6%.

In 2003 IDC forecasted that by 2006 Linux’s market share would jump to 25%. This is

demonstrated by the two graphs in figure 3-2 below:

 Source: International Data Corporation

Panel B: 2006 (Forecast) Panel A: 1996

Figure 3-2: Transformation of market structure in the server operating system market

In this graph we see how between 1996 and 2006 there was a rather large restructuring of market share in the server operating
system market. The most notable change is the growth of Linux’s influence, growing from a mere 6% in 1996 to a forecasted
25% in 2006.

21 It is of course completely feasible for profit-maximizing software firms to distribute their software at
marginal cost, however, if they were to do this, they would never be able to recoup the sunk fixed cost of
developing the software thus halting development of subsequent applications.

 - 23 -

Another notable issue shown in the figure above is the concurrent growth of Windows’

influence along with Linux’s. In spite of Linux eroding the market share of proprietary

fringe server operating systems, Microsoft’s Windows has continued to grow. However,

this growth is tempered by two pieces of data. The first is the fact that in 2005 IDC

estimated Window’s market share at 58%, therefore, IDC’s 2006 forecast reflects their

estimate that Windows will lose 1% of market share over this time period. Second, a

study by the Gartner Group in 2003 predicted that between 2003 and 2008 the growth

rate of Linux would be 20.7% – four times that of Windows. From these two pieces of

data, it becomes clear that Linux is at least posing a strong challenge to Windows’

position.

Turning our attention to evidence of revenue reduction, in November of 1998, a

series of internal Microsoft memos regarding their view on the growth of Linux were

leaked by a former employee. These memos, later to be known as the Halloween memos,

illustrated that Linux, in the eyes of Microsoft, in fact posed a rather large threat to the

dominance of Windows, especially in the server market. One of the most interesting

quotes taken from these memos was one from an engineer named Vinod Valloppillil who

stated that Linux poses a “significant near-term revenue threat to Windows NT Server”.

In their official response, Microsoft of course denied this; however, it is nevertheless a

rather compelling statement (Shankland, 1998; Weber, 2004).

Another piece of evidence indicating the possibility of a future revenue reduction

comes from a 2003 report by Forrester Research, in which 81% of the IT managers and

executives surveyed believed that open source software will to some degree affect

 - 24 -

Microsoft, and of those 81%, the most popular answer of four options on how this would

take place was that Microsoft would in fact result to reducing prices.

Conclusion

In summary, from this analysis, a few of key points have emerged. First, contributors to

open source software are typically motivated not by destructive forces or monetary gain,

but rather by a combination of utility maximization and cost minimization, both driven by

self-interest. Second, there are a number of highly sophisticated users, whose demand

characteristics are too costly for profit-maximizing firms to meet. This leads these

developers to collaborate together and collectively create the products they need. Third,

on account of open source software communities’ inherit economic advantages, they are

able to enter the software market with greater ease and thereby accelerate the devaluation

process of proprietary software. This devaluation process should then result in an erosion

of both market share and future expected revenue of proprietary software firms.

 - 25 -

Section IV
Open Source Software & Innovation

Introduction

In the pervious section we saw the likely impact that open source development

communities (OSDCs) have on both market structure and future expected revenue of

commercial software firms. In this section, we will take this analysis one step further by

exploring how the exogenous changes generated by open source affect the software

market as well as other unique open source issues affect innovation and incentives to

innovate.

Open Source & Innovation: Market Structure

As we saw in the previous section, open source development communities are

restructuring the software market in such a way that market shares are becoming more

equalized. In the case of Linux, commercial software firms, once dominant in the server

market, are now increasingly becoming on equal footing with Linux as Linux’s market

share continues to gain ground against them. Further, due to Linux’s growth, it is acting

as a bolster against the growing influence of Microsoft. In the case of Apache, since its

introduction in 1994, it has held a roughly dominant position but has still shared the

market with other proprietary web servers, most notably, Microsoft’s IIS. Thus in

essence, we have one OSDC that is eroding market share from commercial firms and

another that is maintaining its position in market share against fringe firms. The next step

is to ask how these changes in market structure are affecting innovation.

 - 26 -

 Over the years, there has been a good deal of literature written linking market

structure and innovation. One of the earliest and most important of these is Joseph

Schumpeter’s Capitalism, Socialism and Democracy. In this book, Schumpeter asserts

that in a market with a large degree of technological change, highly concentrated markets

are best suited to innovate. He contends that large firms who employ monopoly power

and charge a price high above marginal cost are able then to allocate these rents to

research and development purposes. This inflow to R&D should then lead to market

innovations not seen in highly competitive industries (Schumpeter, 1942).

 In the case of software, this analysis is highly relevant. On account of the dual

factors that software requires significant upfront, sunk R&D costs and that software’s

marginal cost is zero, it would be unlikely to see high levels of innovation arising from

this industry unless software firms have the ability to charge a price above marginal cost.

This is because without the ability to collect post-development quasi-rents, there would

be no way for software firms to recoup their sunk fixed costs, thus stunting innovation.

This is on account of the fact that, as the literature on the economics of innovation states,

firms will not engage in an innovation unless the expected future collectable value is at

least equal to its costs (Scotchmer, 2004).

 From this we can infer that a market with a structure of perfect competition

should not produce nearly as many innovations as a market with a degree of

concentration (Scherer, 1980). The question is simply how much concentration is ideal.

If there were such a correlation that the higher the level of concentration, the greater the

innovation level, then OSDCs would actually pose a threat to market innovation on

account of their market concentration deluding behavior. However if instead, a balance

 - 27 -

of market share between fringe and dominate firms led to optimal innovation, then

OSDCs would indeed be making a positive contribution to innovation. And it is just this

type of market structure that F. M. Scherer in his book Industrial Market Structure and

Economic Performance argues is indeed optimal to produce market innovations. As

Scherer puts it in his conclusion to chapter 15:

What is needed for rapid technical progress is a subtle blend of competition
and monopoly, with more emphasis in general on the former than the latter,
and with the role of monopolistic elements diminishing when rich
technological opportunities exist (Scherer, 1980).

This relationship is further demonstrated below in figure 4-1:

Figure 4-1: Correlation between market structure (concentration of the market) and total level of
market innovation

In F. M. Scherer’s book, Industrial Marke Structure and Economic Performance, a relationship between innovation
and market concentration is described such that innovation is hi

t
ghest when a market contains monopolistic e

but is not completely concentrated. Further, it is discussed that the level of market innovation deteriorates as the
concentration of the market deludes, ceteris paribus. This relationship is illustrated in the figure above.

lements,

101 2 3

Level of Total
Market Innovation

of Firms in
Market

To turn to an empirical analysis on this matter, in a paper by Zoltan Acs and

David Audretsch entitled Innovation, Market Structure, and Firm Size, Acs and

 - 28 -

Audretsch conducted an empirical study trying to find the relationship between firm size

and innovation level. Through their data regressions and analysis, Acs and Audretsch

reached two main conclusions in their paper. The first was that the Schumpeterian

hypothesis that large firms are best suited for innovating needs to be augmented to

include the type of industry being studied, for depending on different industry

characteristics, this hypothesis does not always hold. In taking this idea to the next level,

Acs and Audretsch’s second conclusion was that large firms have the “innovative

advantage” in industries that are highly capital intensive and unionized while small firms

are best at innovation in industries where skilled labor is highly employed and large firms

dominate the market share landscape. It is important to point out that in fact the software

industry matches that latter of these two industry types rather well. In closing, Acs and

Audretsch make the very interesting observation that:

At least for these industries [referring to the latter of the two described
above], the conclusion of Scherer (1980) that markets composed of a
diversity of firm sizes are perhaps the most conducive to innovation activity
is reinforced (Acs and Audretsch, 1987).

Therefore, from both a theoretical and empirical standpoint, it appears that the market

structure transformation created by the entry of OSDCs appears to be positive in terms of

creating an environment conducive to market innovation (Schmidt and Schnitzler, 2002).

Open Source & Innovation: Open Source as an Open Standard

One of the most interesting and more recent developments in the open source movement

has been the surge of commercial firms embracing open source and using it as a part of

their respective business models. Examples of this include IBM, who now uses Linux

and Apache at the core of its enterprise business solutions, Covalent, who builds

 - 29 -

proprietary enhancements to Apache for enterprise business needs, and Lineo, who

develops embedded Linux devices (Fink, 2003).22

 What is important about business models such as these is that they are using open

source applications as development platforms to create more advanced applications and

application enhancements.23 It is of course technologically and legally feasible to use

proprietary software as a platform for development. However, there are two important

constraints. First, using proprietary software as a development platform means locking

yourself into a proprietary standard, becoming completely beholden to the owner of the

technology. Second, proprietary technology comes with licensing fees, controlled by the

owner, for the usage of the owner’s intellectual property. For these two reasons, open

source becomes a rather enticing alternative as an open development platform.

 Interestingly, it appears that the literature on the economics of innovation concurs

with this analysis. In Suzanne Scotchmer’s book Innovation and Incentives, she

describes three types of cumulative innovation. The first is a “basic” innovation that has

the possibility of leading to multiple subsequent innovations. The second is a “multiple

input” innovation that requires more than one prior innovation to come into existence.

The last is one that sits on what Scotchmer describes as a “quality ladder” and competes

with successive innovations. It is the first of these that maps to our discussion on open

source software, in that applications such as Linux and Apache set the foundation for

22 Embedded software devices are physical “machines” such as a microwaves or even automobiles that
contain software applications permanently installed within its hardware. This type of software is often
called “firmware”.

23 The term “platform” often refers to a type of operating system software combined with a supporting set
of hardware, however, in this context I am using this term in a more metaphorical sense such that it is
synonymous with simply a “springboard” for subsequent development.

 - 30 -

multiple subsequent innovations such as those created by firms like Covalent and Lineo

(Scotchmer, 2004).

 Scotchmer goes on to explain that the key factor regarding incentives to innovate

in subsequent innovations is that firms “will not invest unless the difference between the

value of the innovation and the cost [of the license of the prior innovation] are relatively

high”. In the case of open source, this difference should often be high (so long as the

collectable value of the innovation is high) due to the fact that the cost of the ex ante

license should always be zero. Thus, open source as an open development platform

standard may lead to a high level of cumulative innovations (Scotchmer, 2004).

Open Source & Innovation: GNU Public License

So far we have looked at ways in which the emergence of OSDCs are creating an

environment conducive to market innovations, however, we will now switch gears and

look at some ways in which the growth of open source development may detract from

creating market conditions compatible to innovation incentives.

 There are many types of open source distribution licenses, however most fall into

either one of two groups. The first is known as the Berkeley Software Distribution

License (BSD) or “liberal” license type. This license type is for the most part quite

innocuous in that any derivative work based on a piece of BSD code has no further legal

obligations. In older versions of the BSD, derivative works had to place a note giving

credit to UC Berkeley in the subsequent licenses, however, now this stipulation has been

removed. The key unique feature of this license type is that any derivative work based on

BSD code has the freedom to show or hide its source when distributed, thus giving the

option for the secondary work to be used commercially (Weber, 2004).

 - 31 -

 The second is known as the GNU Public License (GPL) or “viral” license type. It

is this license that is the most important to discuss. This license was created in 1983 by

the MIT programmer Richard Stallman out of the belief that source code should always

be freely viewable and modifiable in order to help foster the creation of collaborative

software communities. In his own words:

The idea that the proprietary software social system – the system that says
you are not allowed to share or change software – is unsocial, that it is
unethical, that it is simply wrong may come as a surprise to some people.
But what else can we say about a system based on dividing the public and
keeping users helpless (Stallman, 1999)?

The main feature of the GPL is that it stipulates that all subsequent developments on a

piece of code distributed under the GPL must make viewable its source code in all of its

distributions and license them under the same terms – hence the term “viral”. Because

the bulk of the value of any software distribution is in the source code, and because it is

stipulated that developers of the derivative work must release their source code freely,

they are effectively being forced to forego a majority of their rents. They then are only

able to collect value on complementary goods such as media or support material (Fink,

2003).

 However, it is important to point out that by “derivative work” I am referring only

to a subsequent program whose code intermingles with the GPL’ed code. Thus it is quite

possible to write software that interacts with GPL’ed code but lives side-by-side with the

licensed code. However, in the case that a programmer would want to enhance the

functionality of a piece of GPL’ed code, a modification of the licensed code may be

necessary, in which case the situation would become rather precarious. Nevertheless,

there are ways to work around this. As Martin Fink explains in his book The Business

and Economics of Linux and Open Source, it is quite possible to separate out the portion

 - 32 -

of the derivative code that intermingles with the GPL’ed code from the rest of the new

program. The programmer can then license each portion separately such that the

intermingled portion would need to be licensed under the GPL while other section would

have the freedom to be distributed under a commercial license (Fink, 2003).

 Going back to the question of innovation, from my research there appears to be

one major issue in which the GPL may indeed pose a threat to innovation in the software

market – this is the issue of legal risk. As we learned, it is indeed possible to build

proprietary enhancements to GPL’ed code – it just requires a bit of finagling. The main

questions then become: are we dealing with a situation of asymmetric information and

are these legal restrictions of the GPL a disincentive to cumulative innovation? This in

fact may be so, as Fink makes the related point in his book that “[t]here are many

individuals who believe that you cannot sell or run commercial software on [GPL’ed

software]”. If there are many individuals who believe this, then it is easy to imagine how

many do not understand that it is possible to augment GPL’ed software via the separation

of the enhancement into two licensing schemes. Thus, the cost of learning this

information either through time or the advice of legal counsel coupled with the legal risk

of possibly not separating the code properly may in fact act as a powerful disincentive to

cumulative innovation by raising its cost. This then counters the earlier point that open

source as an open standard may lead to further cumulative innovation on account of the

lack of interest in embracing that standard due to its increased cost.

 It is important to point out that the risk of infringing the GPL indeed has real

consequences. In April of 2004, a German court ruled in favor of the GPL, giving it its

first ever legal precedent. The plaintiff involved in the case was a German programmer

 - 33 -

named Harald Welte who was a main author of a piece of GPL’ed code called “netfilter”.

Welte sued the Dutch company Sitecom, alleging they were using his code in one of their

applications while not adhering to the restrictions of the GPL by not releasing their

source code freely. In its ruling, the court granted Welte’s request for a preliminary

injunction stopping Sitecom from distributing its product without its source code.

Sitecom now complies with the GPL and distributes its source code freely.24 Although

this was in Germany and not the United States, and hence not the death knell to American

GPL infringers, the case does demonstrates the risks of breaking the GPL and that such

risks need to be considered before engaging in augmenting a piece of GPL’ed code

(Shankland, 2004).

Conclusion

In answering the question how innovation and incentives to innovate are affected by open

source, there are no perfectly clear conclusions. We have learned that the affect OSDCs

have on market structure creates an environment conducive to innovation, and further

that open source applications such as Apache can be viewed as an open standard

compatible to the development of cumulative innovations. However, we have also seen

how open source licenses such as the GPL pose risks to innovators that may increase

their development costs compared to more liberal license styles, and thus stunt

innovation.

24 Although, Welte contends that Sitecom is not freely releasing their complete source code, only selective
sections (Shankland, 2004).

 - 34 -

Section V
Open Source Software Legal Institutions & Policy

Introduction

In the pervious section we learned how open source software (OSS) development and

open source software development communities (OSDCs) may help to create an

environment compatible to innovation in the software market.25 In this section we will

explore what legal institutions sustain and propel open source development so that we

will have the foundation to explore what possible policies may help allow for the

encouragement of open source development.

Open Source Legal Institutions

The key legal institutions that allow for the sustainability of open source software

development are copyright and contract law (Gomulkiewicz, 1999). Together, these

institutions allow for the main vehicle of OSS development, mass-market software

licenses (Gomulkiewicz, 1999). In the previous section we introduced the GPL and BSD,

which are both examples of mass-market software licenses and are both central to OSS

development.

 Similar to commercial software firms, OSS developers choose to use licensing

schemes rather than placing their code into the public domain because it allows the

developer to state the terms in which the recipient of the open source code can use that

code. For example, because many OSS developers would not like to see their code end

25 As discussed in the previous section, this is assuming that the idiosyncrasies of employing the GPL
become widely understood.

 - 35 -

up in a proprietary product, they can use a open source mass-market license design that

states that any future derivative work of the code covered by the license must expose its

source in a readable format, therefore greatly discouraging a proprietary software firm

from using that code (Fink, 2003). And as we learned earlier, one of the most popular

mass-market licenses, the GPL, accomplishes just that.

 Open source mass-market licenses derive their power from the terms stated within

them (Gomulkiewicz, 1999). These terms dictate precisely what a recipient of the

licensed code can and cannot do (Gomulkiewicz, 1999). In the case of proprietary

software licenses, some of the typical terms include that a recipient cannot modify the

program or redistribute it (Fink, 2003). On the other hand, open source mass-market

software licenses state very different terms and in fact, an organization known as the

Open Source Initiative (OSI) has created a framework known as the Open Source

Definition (OSD) of about ten key licensing terms that if employed in a license, will

designate the licensed code as “open source” (Fink, 2003). Four key principles embodied

in these terms include:

 Free Redistribution: The recipient of the program can give it away to anybody

(Fink, 2003).

 Open Source Code: The program must expose its source code in a readable and
modifiable format (Fink, 2003).

 Allowed Derived Works: The recipient must have the ability to make and distribute
a derivate program from the licensed code and be able to use the same licensing terms
(Fink, 2003).

 No Liability: The licensor cannot be liable for any damages the licensed code may

cause a recipient and thus, no warranties accompany the code. This is an important
point that we will come back to (Gomulkiewicz, 1999).

 - 36 -

It is important to note that the self-perpetuating clause, which gives the GPL its

strength, is not among these terms. It turns out there is yet another open source licensing

standards group, the Free Software Foundation (FSF), not surprisingly headed by the

GPL’s creator, Richard Stallman. The FSF’s competing framework to the OSI’s is in fact

quite similar, except for the key difference that it requires the self-perpetuating clause to

be present in the license (Fink, 2003). Once this happens, the license can be called

“copylefted” (Fink, 2003). The impetus of this extra requirement goes back to the

philosophical beliefs of Stallman discussed in the previous section (Weber, 2004).

Policy Suggestions

Now that we have seen the legal institutions underpinning open source development, we

are prepared to shift our focus to what policy levers these institutions expose and how

they could be manipulated to encourage open source development.26

In Robert Gomulkiewicz’s paper How Copyleft Uses License Rights to Succeed in

the Open Source Revolution, he makes the key point that the open source licensing

principle of “No Liability” is paramount to the success of OSS development. The fact

that a developer of open source code has the ability to distribute her work accompanied

by no warranties effectively shifts the risk from the licensor of the code to the recipient of

the code (Gomulkiewicz, 1999). This is a highly important point as Gomulkiewicz

explains in his paper:

Valid reasons underlie this risk-shifting strategy…individual hackers are
unwilling to assume the risk of a multi-million dollar class action law suit as
the consequences of pursuing their passion for hacking code. “Low Risk”
also means low barriers to entry; anyone can contribute code to the process,
not just those that can afford insurance or lawyers… (Gomulkiewicz, 1999)

26 It is important to point out that in spite of outlining these policy suggestions to encourage open source
development, I am not advocating that these policies should be implemented. This section is solely to
provide an illustration on the inner workings of open source legal institutions.

 - 37 -

Thus we can infer that if OSS developers were not able to disclaim liability27 on their

code, it would substantially increase open source code’s perceived development costs on

account of such high legal risks – greatly discouraging OSS development. This is exactly

why it is imperative from a policy stand point to not allow any piece of legislation that

would make it illegal to disclaim liability in a mass-market software license. The ability

to disclaim liability is a key driver to OSS development and therefore it must be protected

(Gomulkiewicz, 1999).

In another paper by Robert Gomulkiewicz titled De-Bugging Open Source

Software Licensing, Gomulkiewicz makes the observation that many of the open source

licenses currently in usage are in fact quite flawed and outdated. An example of this

includes the GPL which does not state explicitly that the recipient of GPL’ed code can in

fact run that code – it does however unambiguously state that she may modify and

redistribute it (Gomulkiewicz, 2002). Furthermore, there are in fact over fifty different

open source licenses, many of which overlap on the periphery – and no clear guide as

which to choose for what purpose (Gomulkiewicz, 2002; Fink, 2003). Thus, with the

current confusing offering of flawed licensing schemes and no organization updating or

maintaining them, open source developers are being held at a disadvantage.

 Gomulkiewicz goes on to propose a solution to this dilemma by the creation of a

central open source licensing organization. This organization would be a forum for open

source developers and lawyers to work together in updating and maintaining open source

licenses to best serve the OSS development community (Gomulkiewicz, 2002). If this

27 An example of the liability being disclaimed is the liability of having a downstream user of the OSS code
being able to put fault on the originator of the OSS code or an upstream developer for any potential
problem that may result on account of the code and give cause for legal recourse.

 - 38 -

organization were to be created, the costs of open source development facing the

individual developer would be decreased by the removal of this logistical barrier. On

account of this, the formation of this organization would be an excellent policy to

encourage the creation of open source software.

A third and final policy that needs to be considered is one regarding software

patents. In 1995 the United States Patent and Trademark Office (PTO) developed for the

first time software patent guidelines to reflect all of the previous cases regarding patents

on software, thereby cementing that indeed software applications in the United States

meet the statutory requirement to become patentable (Tysver, 2000). Furthermore,

currently in the European Union, a similar development is taking place. The EU council

is deciding whether or not to allow patents on such ethereal items as software and

business processes (Perens, 2005).

 The main issue surrounding software patents is that they are costly to file and

even more expensive to defend in court (Perens, 2005). This high cost puts individual

open source developers at a disadvantage to large proprietary software firms because

profitable commercial software firms should theoretically be able to accumulate

proportionally more software patents than individual open source developers. On

account of this, strong enforcement of software patents may in fact stunt OSS

development. Despite that fact that this is a highly complex issue and a complete

discussion on this topic is out of the scope of this paper, we might infer from this high-

level analysis that software patents are in fact not compatible to OSS development, and

thus from a policy position, should be enforced more selectively or even not at all.

 - 39 -

Conclusion

In summary, the key legal institution supporting open source software development is the

mass-market software license, which is based upon both copyright and contract law.

More specifically, it is the exact terms stated within these licenses, such as free

redistribution and openly viewable source code that propel the open source movement.

 Furthermore, there are three possible policies that can be employed to help

encourage open source software development. The first is the protection of the ability for

an open source developer to disclaim liability from possible damages of their code. The

second is the creation of a central open source licensing organization to help manage,

maintain and update the currently flawed and enigmatic plethora of open source licenses.

The third and last is limiting of the enforcement of software patents, whose presence and

usage may discourage open source software development.

 - 40 -

Section VI
Conclusion

Final Conclusions

In this paper, we have covered a wide breadth of material – everything from the history

of open source software to intellectual property policy suggestions on how to encourage

and sustain its development. Despite open source software’s sometimes seemingly

ethereal qualities, we have attempted to use some economic theories to better understand

what open source software is and to answer the pivotal question of whether open source

positively contributes to innovation in the software market.

In attempting to answer this question, it appears there are no perfectly clear

conclusions to be drawn. Rather, this paper has identified four economic effects

generated by open source development activity whose aggregate effect remains unclear.

Two of these effects appear to contribute positively to the level of innovation while the

other two appear to do the opposite. These effects include:

Positive Effects

 Market Structure Transformation: As we saw in sections 3 and 4, the market share
data reflected a fundamental transformation between the years of 1996 and 2006 in
which the latter market structure, according to the economic literature, should create
an environment more conducive to innovation.

 Open Source as Development Platform: On account of open source software’s

unique licensing terms of free redistribution and openly available source code, it
seems that open source software lowers the cost of ex ante licenses for cumulative
software innovations thus adding positively to the level of innovation in the software
market.

 - 41 -

Negative Effects

 Accelerated Software Devaluation Process: In section 2 we saw how on account of
open source development communities unique characteristics, they are able to enter
the software market with greater ease, thus helping to accelerate the devaluation
process of proprietary software. The threat of this devaluation process may then act
as a disincentive to the engagement of new, proprietary innovative projects, which
may have been engaged upon otherwise.

 GPL Risks & Limitations: As discussed in section 4, the GNU Public License, the

open source software license used in many open source applications, appears to have
the ability to expose proprietary software developers to substantial risk if used
improperly. This potential risk may act as a disincentive to using GPL’ed open
source software in cumulative proprietary innovations, thus stunting innovation in
general in the software market.

In closing, the net outcome of these effects on innovation in the software market is at

best ambiguous. Nevertheless, as demonstrated in the market share data in section 3,

open source software is a serious force that is shifting the traditional economic paradigm

of the software market and is concurrently going to have to become a consideration for

proprietary software firms in the formation of their economic strategies.

.

 - 42 -

Bibliography

 Acs, Zoltan and Audretsch, David. 1987. Innovation, Market Structure, and Firm

Size. The Review of Economics and Statistics, 69.

 Bonaccorsi, Andrea and Rossi, Cristina. 2003. Why Open Source software can

succeed. Research Policy, 32.

 Fink, Martin. 2003. The Business and Economics of Linux and Open Source. Prentice

Hall PTR, Upper Saddle River, NJ.

 Gomulkiewicz, Robert. 2002. De-bugging Open Source Software Licensing, 46 U.

Pittsburg Law Review 75

 Gomulkiewicz, Robert. 1999. How Copyleft Uses License Rights to Succeed in the

Open Source Software Revolution and the Implications for Article 2B, 36 Houston
Law Review 179

 von Hippel, Eric and von Krogh, Georg. 2003. Open Source Software and the

“Private-Collective” Innovation Model: Issues for Organization Science.
Organizational Science, 14.

 Lerner, J., Tirole, J. 2002. Some Simple Economics of Open Source. Journal of

Industrial Economics, 52.

 Mustonen, Mikko. 2003. Copyleft – the economics of Linux and other open source

software. Information Economics and Policy, 15.

 Perens, Bruce. “The open-source patent conundrum.” News.com. 31 Jan. 2005.

 Raymond, Eric. 1999. The Cathedral and the Bazaar. O’Reilly & Associates,

Sebastpol, CA.

 Scotchmer, Suzanne. 1991. Standing on the Shoulders of Giants: Cumulative

Research and the Patent Law. Journal of Economic Perspectives, 5.

 Scotchmer, Suzanne. 2004. Innovation and Incentives. MIT Press, Cambridge, MA.

 Scherer, F.M., 1980. Industrial market structure and economic performance. Rand

McNally College Publishing Company, Chicago.

 Schumpeter, Joseph, 1942, Capitalism, Socialism and Democracy, New York:

Harper.

 - 43 -

 Schmidt, Klaus M. and Schnitzer, Monika, "Public Subsidies for Open Source? Some
Economic Policy Issues of the Software Market" (July 12, 2002).
http://ssrn.com/abstract=319081

 Shankland, Stephen. “GPL gains clout in German legal case.” News.com. 22 Apr.

2004.

 Shankland, Stephen. “Microsoft spins ‘Halloween’ memos.” News.com. 6 Nov. 1998.

 Torvalds, Linus and Diamond, David., 1999. Just for Fun. HarperCollins, New

York, NY.

 Tysver, Daniel. “The History of Software Patents.” BitLaw. 2000. 28 Feb. 2005

<http://www.bitlaw.com/software-patent/history.html>

 Weber, Steven. 2003. The Success of Open Source. Harvard University Press,

Cambridge, MA.

 West, J. 2003. How open is open enough? Melding proprietary and open source

platform strategies. Research Policy, 32.

 - 44 -

