

Supporting Distributed and Decentralized Projects:
Drawing Lessons from the Open Source Community

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{jerenkra,taylor}@ics.uci.edu

Justin R. Erenkrantz, Richard N. Taylor

ABSTRACT

Open source projects are typically organized in a distributed and
decentralized manner. These factors strongly determine the pro-
cesses followed and constrain the types of tools that can be utilized.
This paper explores how distribution and decentralization have
affected processes and tools in existing open source projects with
the goals of summarizing the lessons learned and identifying oppor-
tunities for improving both. Issues considered include decision-
making, accountability, communication, awareness, rationale, man-
aging source code, testing, and release management.

Categories and Subject Descriptors

K.6.3 [

Management of Computing and Information Systems

]:
Software Management -

software development

General Terms

Management, Design

Keywords

Decentralization, Distribution, Open Source

1. INTRODUCTION

Organizational distribution and decentralization alter critical factors
in the software development process. Historically, centralized orga-
nizational structures have prevailed. A single organization, or part
of an organization, has been fully responsible for a project, bearing
the ultimate responsibility for shaping the deliverables and select-
ing the tools and processes used in development. Communication
and consensus building within the organization has been facilitated
by physical proximity.

For numerous business reasons, over the past decade and more,
many organizations have moved to

distributed

 development — a
single administrative authority operating over physically distributed
subgroups. This change has been supported by improvements in

communication and networking technologies. Nonetheless, with
participants no longer physically collocated, the processes and tools
of development have had to change to attempt to cope with the dif-
ficulties so incurred.

Development of applications by

decentralized

 organizations adds
an additional wrinkle into the problem. By decentralized develop-
ment we mean that no single organization controls the project;
rather that all decisions related to the goals and objectives for the
project must be made multilaterally. The motivation for decentral-
ized development is akin to the motivation for participation in stan-
dards bodies: the common weal can be advanced while
independence is retained. Each organization holds ultimate author-
ity for its internal processes and tools. To the extent that interaction
between participating organizations occurs, selection of the
involved tools and processes must also be done multilaterally.

The premise of this paper is that we can gain some insight into how
to effectively meet the challenges that face decentralized and dis-
tributed development organizations by examining the practices of
the open source community, as these projects are most often both
distributed and decentralized. The intended beneficiaries of this
work is, largely, new open source projects, through several of the
observations have applicability outside the open source domain.

Some work along this line has already taken place. Progressive
open source[6], for instance, has been introduced in some commer-
cial entities. This model is primarily geared towards applying open
source practices within the community of internal employees or
specific strategic partners rather than the public. This model is not
fully decentralized, however. Implicit in the notion of progressive
open source is a controlling authority that can dictate development.

There has also been a large body of work related to distributed soft-
ware development. One particular area that has been carefully stud-
ied by Herbsleb,

et.al.

 is the communication between participants in
a distributed software project[15]. In this case study, participants
were spread across several countries and developed a project col-
laboratively. One of the significant results was that there was a clear
bias towards communicating with people in proximity, rather than
communicating with remote peers, even when supported by good
communication technology. This study does not fully explore the
effects of decentralization on development, however, as all of the
participants essentially worked for the same organization and were
clustered in relatively large groups at a small number of sites. In a
highly decentralized and distributed software project, few develop-

ers may be in proximity and belong to the same organization.

Another body of work has focused on enhancing technologies spe-
cifically for supporting distributed development. CSCW technolo-
gies fit into this category, as well as enhancements to the web. In
[7], for instance, enhancements were discussed that could make the
current web tools better facilitate collaboration. However, it lim-
ited itself to web-based artifacts and does not lay out a guideline
for the processes best suited to these tools.

It almost goes without saying that not all projects require heavy-
weight processes and tools due to their limited scope or participa-
tion. Introducing unnecessary processes and tools may stifle a
small project. It is also possible that participants do not desire
expansion beyond a specific threshold. These classes of projects do
not truly fit the distributed and decentralized criteria. In the follow-
ing discussion, therefore, we will only concern ourselves with
projects that are sizeable or complex enough to warrant tool and
process support and which are developed in a collaborative, dis-
tributed, and decentralized fashion.

We begin the remainder of the paper with discussion of a survey of
open source projects, showing similarities that have arisen in tool
usage. Discussion then turns to characterizing the ways distribu-
tion and decentralization can constrain processes and tools. We
then begin to summarize lessons from the open source experience,
starting with identifying the management and coordination needs.
We continue with an examination of techniques for satisfying these
various needs. We conclude with a discussion of potential future
work.

2. BASIS PROJECTS

Since most open source projects display significant degrees of dis-
tribution and decentralization in their organization, they provide a
good foundation for study. Some prior examinations have been
conducted into the tool usage of open source projects[12]. While
most open source projects are not directly related to each other in
terms of the subject of their production, a commonality of support-
ing tools has emerged in many cases.

In [12], eleven open source projects were surveyed to determine
what tools are used to support the development model of the
project. The survey was conducted to determine the quality aspects
of open source projects and determine how to improve the project
deliverables. The surveyed projects are spread across several dif-
ferent domains - including compilers, web servers, programming
languages, and desktop environments.

The surveyed projects are among the most successful open source
projects available. The Apache HTTP Server is currently in use by
about sixty percent of all websites[20]. Servers shipping with the
Linux kernel amounted for fourteen percent of all servers shipped
in the first quarter of 2003[11]. Tomcat is the official reference
implementation for the Java Servlet and JavaServer Pages technol-
ogies[2]. Therefore, these projects provide a reasonable basis for
examining how successful distributed and decentralized open
source projects should be conducted.

As Figure 1 depicts, these projects also represent a wide range of

source code size. One project had as little as 55 thousand lines of
code (Tomcat), while another surveyed project supports 2.5 million
lines of code (Linux).

Each project has independently chosen the tools and processes that
best fit it. Most of the surveyed projects do not have any common
developers, so there is no direct relationship. However, in some
areas, a consensus appears to have been reached concerning the
proper tools to use.

In the survey, all of the projects shared the same source control
system, CVS. However, since the publication of the survey, Linux
has adopted BitKeeper as its source control system[4]. While there
does currently appear to be a consensus regarding CVS, a number
of other replacements to CVS are actively being developed. These
include such tools as Arch[1] and Subversion[5]. Therefore, this
consensus may not be stable over the long-term as newer products
attempt to replace CVS.

In other areas, there is no single tool that predominates; rather, a
small number of tools are commonly used. One such area is in
mailing list software; two tools currently dominate - ezmlm[3] and
Mailman[10]. While two of the surveyed projects used other tools,
the rest used one of these two tools.

In yet other areas, such as web portals, there is extreme variations
in the tools used. No two projects shared the same tool for updat-
ing their website. At this point, most projects are creating custom-
ized tools for their website that fit their individual needs rather than
relying upon a pre-built solution for content management.

The variations of tool similarity across problem domains presents
an interesting statement. In some areas, open source projects have
found a particular tool that seemingly fits their development model
well. This is evidenced by consensus concerning a particular tool.
This consensus may be due to an inherent property of the way the
project is organized whereby this tool is the only obvious choice.
Or, perhaps the adoption of a particular tool is a matter of historical
accident. If the adoption is related to historical accident rather than

Figure 1. Lines of Code in Basis Open Source Projects (1000s)

0 500 1000 1500 2000 2500 3000

XFree86

Python

Perl
NetBeans

Mozilla

Linux Kernel

KDE
Tomcat

GCC

GNOME
Apache HTTP Server

a solid fit, the introduction of tools that are better suited to a dis-
tributed and decentralized development model may be able to
replace the current consensus. However, in order to encourage bet-
ter tools and processes, we must understand the constraints placed
upon an open source project by decentralization and distribution.

3. CONSTRAINTS

The presence of decentralization and distribution in a software
project places a number of new constraints on what processes and
tools can be effectively utilized. In order to obtain a clearer picture
of what may work in these environments, we need to be able to
identify these constraints.

3.1 Decentralization

The decentralization aspect of development requires processes to
consider multiple interested parties. The involved developers may
act towards their own goals, rather than the goals of the entire
project. Therefore, not all developers will necessarily be aligned on
all items and tasks. Yet, the processes and tools used should try to
promote working towards a common beneficial goal while meeting
the individual goals.

Due to decentralization, developers may not all work for the same
physical organization. However, one organization may fund a por-
tion of the developers on a project. If this organization removes its
funding, their associated developers may leave the project. There-
fore, the project needs to be able to withstand such losses or risk
having the project abandoned. This risk promotes processes and
tools which maintain continuity and shared communal knowledge.

When the individual goals of organizations collide, care should be
taken in resolving these concerns. If these concerns are not met to
everyone’s satisfaction, dissatisfied organizations may leave the
project. Depending upon the influence of the departing subset, it
may place the project in jeopardy. Therefore, processes promoting
compromises should be strongly emphasized to minimize such
departures.

3.2 Distribution

Distributed software development places a strain on the project’s
communication mechanisms. When developers are not collocated,
it is no longer possible to have frequent face-to-face meetings.
Therefore, other communication mechanisms and tools must be
deployed to fill this void.

As noted earlier, prior studies into the nature of distributed soft-
ware development have indicated that it is hard to facilitate com-
munication to the right person at the right time across site
boundaries[15]. In order to address this problem, processes and
tools need to be in place to allow timely identification of key con-
tacts. Herbsleb,

et.al.

, for instance, identifies needs in the areas of
awareness, rich interpersonal interaction, and support for finding
experts.

Since developers are not physically collocated, it may cause prob-
lems with synchronous communication as developers may be scat-
tered across timezones. If synchronous methods are used, some

participants may not be able to contribute to a discussion. There-
fore, asynchronous communication mechanisms are usually pre-
ferred.

4. MANAGEMENT AND COORDINATION
NEEDS

This section identifies management and coordination needs that
decentralized and distributed project organization imposes. If these
needs are not properly addressed at the outset, then repercussions
may arise as the project matures.

4.1 Goals

Before embarking on a project, there is usually a need for a clear
statement of goals that the project needs to accomplish in order to
be successful. Upfront identification of goals allows for examina-
tion by prospective participants. It may be that the initial goals may
not suit all interested parties. Therefore, the goals may need to be
altered to support other interests. If the interests are made to corre-
spond, the groups can begin to proceed to coordinate development
tasks. If their interests are irreconcilable, the parties may proceed
separately. A confrontation may occur later if an implicit differ-
ences in goals is later revealed.

Furthermore, if only a few parties wish to participate, the potential
cost of decentralization may not add sufficient value to the project.
It may be that the project does not have enough outside attraction
to reach a critical mass to support a viable community. Unneces-
sarily adding the overhead of decentralization may end up harming
the viability of the project.

4.2 Coordination of Initial Development

Once a goal has been determined, the interested parties need to
identify how to reach these objectives. This roadmap can be valu-
able in planning development activities. A project may have an ini-
tial donation of code to build upon, or the new project needs to
start the development process.

4.2.1 Inherited Code

A project may inherit code based upon a prior effort that has
decided not to further development, or, one of the interested parties
may be willing to donate code to begin the development effort. In
either case, interested parties should be aware of the implications
of the decision.

When using inherited code, the primary task becomes enhance-
ment and evolution. At first, the project may be able to bypass the
design stage of the software life-cycle. The majority of tools and
processes will be geared towards maintenance. Depending upon
completeness of the donation, design artifacts may need to be
reproduced to promote understanding of the inherited code.

As the project matures, limitations may be found in the initial
design that require substantial refactoring. The initial developers
may desire a reasonable expectation that the inherited code allows
for ample extensibility. Otherwise, efforts to evolve the code may
encounter an early roadblock that forces reconsidering the usage of
this code.

4.2.2 Initial Code

When a project begins afresh, the initial processes and tools will
primarily be design-oriented rather than maintenance-oriented. In
order to work in a distributed environment, the processes and tools
must be able to support collaborative design. As the project
evolves, the processes may alter to primarily supporting imple-
mentation and maintenance tasks.

A common occurrence in open source projects is that a publicly
documented standard is implemented. These documents are typi-
cally written by a separate standards organization. These docu-
ments serve as the initial requirements and often specify
interoperability characteristics of the deliverable. Once agreeing
upon a standard to implement, developers can then devise a plan to
carry out the architectural design and implementation.

By minimizing the requirements stage of the software life cycle by
leveraging pre-existing standards, more effort can be directed
towards the design and implementation. However, many projects
implementing public standards also provide feedback to the stan-
dards committee based on real-world implementation experience.

4.2.3 Effect on Design and Requirements

Since some of the most prominent open source projects inherited
code which implements a public or well-known standard, it may
stand to reason that the processes involved with design and
requirements gathering are not as well developed as maintenance
and extensibility of code in open source projects.

However, in these particular cases, the requirements and initial
design have already been determined in a very rigorous manner. In
the case of projects which implement Internet RFCs, these require-
ments have been created in a very decentralized fashion. However,
once these requirements have been established, various parties will
form groups to implement the standard.

Therefore, while it may seem that some open source projects lack
an emphasis on requirements and design, we may be able to ratio-
nalize that on the strict division of requirements and implementa-
tion in the traditional standard-making bodies of the Internet.

4.3 Common procedures

In decentralized communities, the interested parties may establish
a common set of rules for running the project. These rules will take
the place of a controlling authority which dictates such rules. Fur-
thermore, this will allow all parties to operate within stated organi-
zational parameters.

The parties should have already agreed on the goals and may have
agreed on the initial design, but they must now also agree how to
reach the desired result in a formal manner. If a conflict between
members of the project arises, there needs to be a predetermined
mechanism for resolving these conflicts.

If these steps are ignored and such a process does not exist, it may
introduce tension between parties. By creating and following these
guidelines, the belief is that most conflicts will be resolved peace-
fully. These procedures should also attempt to not introduce
unnecessary overhead in the development process.

If these mechanisms fail and an impasse develops, then the com-
munity may be

forked

. One of the most prominent examples of the
forks of open source projects are among the BSD-derivatives[17].
Despite having a common ancestry, the vision of each BSD-deriva-
tive is slightly different. In essence, each BSD-based platform has
the goal of creating a Unix-like operating system. However, each
of these derivatives has a different technical or procedural vision of
how this goal should be accomplished.

Therefore, we suggest that decentralized projects are self-correct-
ing though at a cost of wasted resources. When a difference of
vision occurs between developers and organizations, projects can
be forked to maintain the integrity of the private goals. In the end,
each constituency retains their private goals, and may be willing to
separate from other participants if an impasse is reached. Only
when their private goals are being met will participation continue.

4.4 Tool requirements

When multiple parties participate in decentralized development,
special attention should be made to the requirements of the tools
that support the processes. The selection of tools should recognize
that not all developers have equal resources to acquire specialized
tools. Open source projects may not be directly funded, but when
all participants are funded, these requirements may not be as strin-
gent.

Since open source projects are traditionally open to all developers
regardless of organizational affiliation, the tools used are com-
monly open source as well. By relying on free tools, this alleviates
financial barriers to participation as not all developers may receive
direct compensation for their work on a project. It may be unrea-
sonable to expect developers to purchase tools in order to work on
a project.

Due to the variety of developer preferences, most required tools
need cross-platform support. In the open source community, a
good tool will not require developers to switch their operating sys-
tem to use a special tool. This allows developers to work on plat-
forms with which they are most comfortable.

Since a project may attract developers of different skillsets, it may
be unreasonable to expect developers to have special training in a
tool or a technique. To offset this, projects may need to provide
clear documentation on techniques that will help unfamiliar devel-
opers. Furthermore, since the participants are self-selecting, not all
participants may have formal computer-science backgrounds, so
some more advanced techniques may not be accessible to all par-
ticipants.

5. PROCESS AND MANAGEMENT TOOLS
AND TECHNIQUES

This section describes process and management techniques that
may be used in distributed and decentralized projects. These tech-
niques attempt to satisfy the needs discussed previously. We will
examine how open source projects are solving these constraints
and identify potential areas of improvements for each concern.
Table 1, at the end of the paper, will summarize these techniques.

5.1 Delegation and Decision-Making

A concern for distributed and decentralized projects is delegation
of assignments and leadership. Since the participants do not neces-
sarily share the same reporting structure, traditional management
techniques may not apply.

Similarly to other management models, there may either be a flat
or hierarchical structure within this decentralized organization.
Ultimate authority may rest with a specific individual, or decision-
making responsibility may be shared by the interested participants.
In the case of a single authority, this individual may set policies
unilaterally. However, these policies must still promote participa-
tion by others. This requires the creation of a benevolent dictator-
ship where participants are willing to yield authority to a central
authority — explicitly backing away from decentralization.

A prominent example of this central authority organizational
model is seen in the Linux kernel. Linus Torvalds was the initial
designer and developer of the Linux kernel. The rest of the partici-
pants have allowed him to maintain control over the project. Linus
has the ultimate say on what changes make it into the kernel.

Designating a single individual with ultimate authority may create
an organizational bottleneck. Therefore, a hierarchical organiza-
tional structure usually accompanies these structures. In Linux,
most substantial components of the kernel have an associated
maintainer. Rather than submitting a change directly to Linus,
changes should be submitted to the responsible maintainer. If the
maintainer agrees with the patches, the patches can then be submit-
ted to Linus.

Linus places a certain degree of trust in his maintainers that they
will follow his process for submitting patches to him and deal with
most of the overhead for that component Yet, due to the supreme
nature of Linus’s role, he can overrule the maintainer of a compo-
nent. It is possible to circumvent a maintainer and send a patch
directly to Linus. If he decides to apply the changes without
receiving prior input from the maintainer, he retains that right.

Another model commonly used by open source projects, one more
in tune with decentralization, is the meritocracy model. This is
exemplified by the Apache HTTP Server Project[9]. All members
share equal power, so there is no direct leader of the project. Under
this flat organizational model, people gain power by sustained con-
tributions over time. The power of the developer is enabled by
grants of write access to the shared repository and the ability to
veto changes.

Until a developer gains commit access, they are considered a con-
tributor. While they may participate freely on the mailing lists, an
intermediary with appropriate access must review and commit
their suggested changes. They may also cast non-binding votes on
issues before the community. Since these votes are non-binding,
developers with binding votes may choose to disregard such votes.

As the voting developers are exposed to a new participant, they are
examining the quality of the contributions and how the participant
works within the community. Then, one voting developer will
nominate the contributor for voting privileges to the rest of the vot-

ing developers on a private discussion list. If the group considers
the contributions beneficial and the participant trustworthy, voting
privileges will be offered.

While no single person can control the project, each voting devel-
oper has

veto

 authority to stop undesired changes from being
merged into the shared repository. While these vetoes can be cast
on any patch, there must be a valid technical reason for stopping
this change. There is also no way to override a veto - this organiza-
tional model enforces consensus-building.

5.2 Accountability

Accountability may become an issue in a decentralized organiza-
tion. If there is a problem with the software, users may desire a
contact to resolve this problem. Open source projects have typi-
cally addressed this concern in two fashions: creating for-profit
corporations that provide commercial support or creating non-
profit foundations that provide a perpetual point of contact. These
solve the issue by a direct step away from decentralization.

Some organizations that participate in open source projects pro-
vide for-fee support as a source of revenue. For example, this is
common in the relational database domain. Two open source data-
bases, PostgreSQL and MySQL, both have strongly related corpo-
rations that sell support to end-users.

These commercial entities will often provide support plans that
assist users in setting up the product. These companies may also
respond to direct support questions concerning the product. By
having a revenue stream, these companies are able to fund devel-
opment of the associated open source project by directly financing
developers. These developers may add enhancements that the orga-
nization’s client base has requested, or fix problems that have been
identified by support personnel.

As an alternative to providing a commercial support, some open
source projects have established non-profit foundations. These
foundations are the owner of the code and do not have any explicit
commercial interests. Therefore, it is expected that these founda-
tions will be able to oversee and maintain accountability for the
code. Two prominent examples of this are the Free Software Foun-
dation and FreeBSD Foundation.

In these cases, a non-profit foundation is usually responsible for
providing the infrastructure of the project. They will typically pro-
vide the services that allow development to occur. These founda-
tions do not usually provide end-user support or directly fund
developers. However, the foundation is expected to be eternal,
while a for-profit corporation may be forced to dissolve due to
financial considerations.

5.3 Communication

Due to the introduction of distribution, there may be varying
degrees of developer collocation. Since the projects are also typi-
cally decentralized, developers may not work for the same physical
organization. Therefore, the development process must allow for
communication between people not at the same location and not
belonging to the same physical organization. Therefore, the major-

ity of communication should be at the virtual organization level,
rather than the physical organization. By relying upon asynchro-
nous forms of communication rather than synchronous communi-
cations, a higher proportion of global developers can be supported.
Yet, relying upon asynchronous communication introduces a delay
factor[8,15].

In order to facilitate communication to the right person at the right
time, mailing lists are commonly used. This reduces the number of
contacts that are required. Almost every open source projects uses
public mailing lists to promote subscription by non-developers and
to encourage contributions by new developers.

Multiple mailing lists may also be used to further segment the mail
traffic. These mailing lists may be dedicated to a particular sub-
topic. By reducing the scope of a mailing list, it allows for separate
communities to form within the same project. This may be benefi-
cial for encouraging growth in large projects. It also moves discus-
sion away from a more generic mailing list where there may not be
as many interested people in the discussion.

It has been stated that email is predominately used because it is the
least common denominator[8]. One problem with email is that it
requires a common language to be used. Mechanical translation
services have not yet proved to be sufficient to address technical
translations. This may promote developers who are only fluent in
the main language of the developers.

A possible avenue to research would be to investigate projects
where developers do not share a common language. In these cases,
it would be useful to analyze how developers communicate when
they do not share a language. This may promote islands of devel-
opers that do not often communicate.

In addition to relying upon asynchronous communication, some
projects use a variety of synchronous communication (such as real-
time chats or instant messaging). Yet, this is only effective when
developers are located in similar time zones. If not all developers
can participate in synchronous communications, it is essential that
some archival of the communications be made. Otherwise, key
participants may be left out of a critical discussion.

5.4 Awareness

Awareness is an understanding and coordination of what partici-
pants are doing. Since the personnel of a decentralized and distrib-
uted community may be rapidly changing, it may be hard to even
identify who is currently active. This aspect of development pro-
cesses has been remarkably underdeveloped. Most coordination
efforts remain ad-hoc and short-term.

However, mailing lists provide a rudimentary tool for coordination.
A developer can post on the mailing list indicating that they are
planning to perform some activity. But, there is no enforcement of
this plan. This leads to a problem when a participant says they are
going to accomplish some task, but does not complete it.

Some projects may also use shared information repositories for
awareness information. For example, the Apache HTTP Server
Project relies on a STATUS text file that lists outstanding issues;

this file is emailed weekly to the main developers mailing list. Par-
ticipants may make a notation as to which issues they are address-
ing. However, it may require frequent refreshing of this file to
ensure that the information is not stale.

Many open source projects also require that large changes be dis-
cussed before implementation starts. This allows other developers
to provide feedback on proposed implementation strategy. Lever-
aging the feedback of developers may allow potential design prob-
lems to be detected earlier than if review occurs after
implementation.

5.5 Historical Rationale

Since turnover may be high in decentralized projects, a collective
history should be maintained and documented. By examining past
communications and activities, new developers can begin to under-
stand decisions made at a certain point in the past. It also allows
developers to learn from prior decisions.

It is essential to use communication mechanisms that allow for
long-term archival. Most asynchronous forms of communication
lend themselves well to archiving - such as public mailing list
archives. Therefore, the delay factor introduced by asynchronous
communication has an advantage of allowing capture of historical
rationale.

However, spontaneous synchronous communications are often not
archived. This may often be seen in projects where a number of
developers are physically co-located. In these environments, face-
to-face communications may have an unusually strong bias[15]. In
addition to not allowing full participation of the group, these sorts
of communication may be detrimental to distributed projects
because artifacts of these conversations are rarely recorded.

A common problem in open source projects is that new developers
often repeat or bring up old discussions. This demonstrates a lack
of tools that encourage review of past discussions. If tools for
reviewing prior discussions were readily available, developer time
spent rehashing prior topics could be minimized.

To help with this, Perl has created Perl Design Documents (PDDs)
which lay out the rationale for certain decisions made in the devel-
opment of Perl 6 and Parrot[28], This allows new developers to
annotate and reexamine prior decisions in a central location. It may
happen that a new developer has added insight that was not noted
in the prior conversation. If post-mortem annotation of discussions
is allowed, it may achieve a balance between stifling and encourag-
ing reexaminations.

5.6 Design Rationale

In addition to allowing for discovery of important historical con-
versations, it may be critical to understand the design rationale of
certain components. In a distributed and decentralized environ-
ment, it may not be possible to contact the original author of a sec-
tion of code. Therefore, mechanisms need to be in place to
communicate rationale to future participants.

One way to communicate rationale is by creating developer docu-

mentation. Some open source projects, such as AbiWord[25], keep
interface definitions and notes in-line with the source code. Docu-
mentation can then be published with tools such as doxygen[14].
By synchronizing the location, when major changes are made to
the source code, the belief is that the documentation will be
updated. This makes it easier to produce developer documentation
which reflects the current code.

Depending upon whether the project did the initial design, other
artifacts such as design documents and diagrams may be available.
In projects that provide an extensible interface, it is also common
to produce well-explained and concise examples as a way to illus-
trate the interface in action. This helps new developers of an inter-
face understand the code by looking at examples.

There has been research into encouraging software reuse, but these
tools have not yet been integrated into the mainstream. There are
tools available that provide relevant interface information in a per-
sonalized manner[30]. There has also been work towards harvest-
ing the structural and semantic information of code[19].
Encouraging adoption of already existing tools may make captur-
ing design rationale easier.

5.7 Participation

In projects where the personnel on a project may change fre-
quently, it is important to have a published set of developer guide-
lines. These guidelines allow familiarization with the processes
and tools used in a project. New participants can review them and
contribute to the project in an intelligent manner.

Sites such as the KDE Developer’s Corner provide a wealth of
information that allow new participants interested in KDE to learn
how to contribute[18]. The site contains introductory tutorials for
developers new to the internals of KDE. Information about the
development tools required to compile KDE and how to obtain the
latest KDE snapshots are also available.

It has been mentioned that having an established set of guidelines
shared by projects can reduce the redeployment costs of develop-
ers[6]. If all projects shared the essential guidelines, it would make
it easier to contribute to new projects. If each project had its own
set of unique guidelines, it would be difficult to transition to new
projects. Therefore, it would be beneficial to encourage standard-
ization of participation guidelines across projects.

5.8 Controlling Participation

A corollary to encouraging participation in decentralized and dis-
tributed software is that participation by new people must be man-
aged by the current participants. Depending upon the access
policies of the project, new participants may only have limited
access to making changes to the project. Therefore, processes and
tools need to be in place to support facilitating such contributions.

Tools such as the SourceForge’s patch manager used by the Python
project can be extremely useful[21]. These tools allows partici-
pants to submit patches to be applied, then developers with the
appropriate commit access can integrate the changes. This particu-
lar tool also allows for annotations to be stored.

However, these current tools suffer from a lack of integration with
the rest of the development process. Some projects enforce a pol-
icy where a certain number of positive reviews must be received
before a change can be integrated[26]. Contributions may also
grow stale as the project code base evolves. Furthermore, if none
of the active developers deem an issue important, it may be a chal-
lenge to motivate integration. The tools used to control participa-
tion should ease the burden of merging the changes.

5.9 Managing Source

Since the developers are distributed, it is often a requirement to
have a unified view of the source code. If a unified view is not
available, it may be possible for developers to not be aware of the
current state of affairs. Therefore, most projects will adopt some
sort of collaborative software configuration management system
(SCM). The processes and tools need to balance that each devel-
oper should be able to work independently while allowing them to
remain consistent with the rest of the team.

As discussed previously in [12], the predominate SCM in use by
open source projects is currently CVS. There has been a recent
trend in seeking tools that can replace CVS[1, 4, 5]. CVS is based
on a centralized repository model with one repository holding all
of the content. Some of the newer SCM tools that have been intro-
duced are keeping the centralized model of CVS[5], while others
are attempting to decentralize the repository structure[1, 4].

However, depending upon the accountability structure of the
project, it may make sense to keep a centralized repository even in
a decentralized project. If a project has a non-profit organization
which holds the copyright, then this organization should adminis-
ter the master repository. However, if the project has a loose
accountability structure, a decentralized repository structure may
be more efficient.

Most SCM tools currently in use also promote an optimistic con-
flict resolution model rather than a pessimistic conflict resolution
mode[16]. An optimistic locking strategy allows source conflicts to
be resolved at commit-time, while a pessimistic locking strategy
uses locking to prevent others from making changes while a
change is being developed. A pessimistic locking strategy may
interfere with parallel development as it prevents two developers
from working on the same file at the same time. Only using pessi-
mistic locking may have an impact upon the effectiveness of distri-
bution.

5.10 Issue Tracking

One of the stated advantages of open source projects is that it is
easier to fix problems since the source code is freely available[22].
However, it may still be difficult for non-developers to fix prob-
lems as they may not have the appropriate background required to
resolve a defect. Therefore, processes and tools are required to
report problems to the people who can help resolve defects.

Due to the presence of decentralization, it may be difficult to
solicit participants who can resolve reported defects in a timely
manner. Some participants may be wary of working with end-
users, or are too busy to deal with acquiring the relevant informa-

tion from the reporter. Therefore, the tools need to be able to sup-
port novice users and expert developers efficiently.

Standardizing on issue tracking tools, such as Mozilla’s Bugz-
illa[27], may increase the familiarity of both users and developers
with these tools. However, as these tools are adopted by more
projects and enhancements requested, feature creep must be
resisted. If the issue tracking tool becomes too complicated to use
effectively, its usefulness is diminished.

5.11 Documentation

Since not all users of a project are developers that can understand
code, a project must also be able to deliver quality user documenta-
tion. Otherwise, users may find the product too complicated to use
properly. A significant challenge for distributed and decentralized
projects is to have documentation at an equivalent quality to the
code.

At best, documentation can be viewed as a form of source code.
Therefore, many of the processes that apply to source code can
also apply to documentation. Documentation may be written in a
collaborative environment using similar tools and processes as the
ones used to write code.

A problem in any software project is how to keep the end-user doc-
umentation synchronized with the current version of the source
code. Oftentimes, developers are hesitant or reluctant to write user
documentation. Therefore, when they make a change that is visible
to a user, the developer may not update the relevant documenta-
tion. This leads to the documentation becoming out of sync with
the code.

Some open source projects have addressed this by having separate
documentation teams. One example of this separation is in PHP’s
documentation[29]. By isolating the documentation process from
the development process, it enforces another perspective on the

usability aspects of the code. This may result in an increase of
quality of both the code and end-user documentation.

Another characteristic of the PHP documentation process is that it
allows users to annotate the documentation on the website. As
users spot errors in the documentation, they may append a correc-
tion comment to the website. Then, PHP documentation partici-
pants can harvest the changes into the main documentation.

5.12 Testing

There is often a strong desire to ensure that a project meets both
the functional and reliability goals previously established. There-
fore, testing processes and tools should be developed and encour-
aged throughout the life cycle of the project. There are two classes
of methods that are typically used in open source projects: code
review and testing.

Since it is difficult to conduct regular meetings in a distributed
workplace, it is not possible to conduct periodic code review ses-
sions. Therefore, code reviews must occur as the changes are con-
ducted. Developers are usually asked to make small verifiable
changes rather than large changes. By asking all developers on a
project to review the changes as they happen and asking for the
most concise changes possible, it may make it easier to identify
problems sooner.

Besides relying upon manual inspection, some projects have a
suite of automated tests for the project. These automated tools
allow all participants to run the same set of tests at their discretion
on their specific platform. One such project that utilizes automated
tests is Subversion[5]. The test suite in Subversion is extensive and
tests almost all functionality of the system. Furthermore, no
releases can be made without first passing the automated tests. It
may be possible to integrate some recent research into optimizing
which regression tests are executed to improve the performance of
the test suites[13].

Table 1. Summary and Avenues for Enhancements

Issue Techniques Project Exemplar Avenues for Enhancements

Decision-Making Project leader, meritocracy Linux, Apache Understanding consequences

Accountability
For-profit support,
non-profit ownership

PostgreSQL,
FreeBSD

Introducing clarity

Communication Discussion lists, asynchronous All Balancing granularity

Awareness
Frequent status updates,
Discussion before implementation

Apache Creating better tools

Historical Rationale
Archival of communications,
design documents

Perl Creating better tools

Design Rationale Developer-centric docs, examples AbiWord Enforcing synchronization
Participation Clear tutorials, guidelines KDE Creating standards
Controlling Part. Feedback, annotating contributions Python Integrating into other processes

Source Code
Public source repository,
optimistic conflict resolution

All Investigating decentralization

Issue Tracking Soliciting developer assistance Mozilla Creating easy-to-use tools
Documentation Distinct personnel, annotations PHP Separation of code and docs
Testing Code reviews, automated tests Subversion Optimizing test executions
Release Management Mirroring, versioning Debian Managing distributions

5.13 Release Management

Since users ostensibly wish to use the deliverables of a project,
quality releases must be produced. Therefore, a viable release
strategy must be determined. If the project does not have a coher-
ent process, it may have problems attracting users or achieving a
reputation for stability.

In order to achieve widespread distribution, an infrastructure must
be in place to allow public consumption. Some projects rely upon
mirrored servers to handle the load of delivering releases to end-
users. A critical concern is how to select these mirrors - should
they be self-selected or should they be limited only to trusted indi-
viduals.

One such project that relies upon mirrors to deliver releases is
Debian[23]. Debian balances the load across many geographically
dispersed self-selected servers. However, Debian has several push-
primary mirrors that are chosen because of their reliability. Self-
selected mirrors can then pull releases from one of the pushed mir-
rors rather than accessing the master site directly.

Projects may also place meanings on the versions that deliverables
are labeled with. This allows a shared understanding of the
expected reliability. At times, it is helpful for a project to have a
development branch that is not intended for widespread usage.
These releases can also be used to perform dry-runs of the release
process. This can be especially helpful when a project is trying a
new release process. By explicitly labeling a version as unstable or
development, it can help match the expectations of users with the
expectation of the developers.

For example, Debian always has at least three versions that are
actively maintained: stable, testing, and unstable[24]. The stable
distribution is the one that is recommended for widespread usage.
Then, the testing distribution consists of packages that are waiting
to be included in the next stable release. Then, the unstable distri-
bution is meant for developers and not meant for production qual-
ity.

6. SUMMARY AND FUTURE WORK

Adopting a decentralized and distributed organization for develop-
ing software requires rethinking fundamental process and tools.
We have attempted to examine the consequences of supporting
decentralization and distribution by seeing how open source
projects have addressed these concerns. Table 1 provides a sum-
mary of the issues, techniques, and projects discussed in this paper.
It also lists avenues for enhancement that have been identified
where the current processes and tools could be improved to better
support distributed and decentralized software projects.

If projects can create a clear line of accountability that is separate
from all of the participants, it may foster a sense in the users that
responsibility will be maintained. A decentralized project should
be able to withstand the departure of organizations gracefully. If
this is not present, then users may become wary of the project fall-
ing out of active maintainership.

By limiting the scope of discussion lists, it makes it easier for par-

ticipants to understand what is currently going on in areas of the
project. This level of granularity must be balanced with having too
many mailing lists that makes it difficult to find the appropriate
forum for discussion. However, when the right balance is achieved,
this allows participants to easily partition discussion based upon
agreed topical lines.

One concern for distributed software development is that a set of
standards is required in order to ease participants shifting from one
project to another. This may manifest itself as a common vocabu-
lary shared between projects. If participants do not share a com-
mon language, it becomes hard to communicate effectively. The
creation of standards and accepted best practices can help ease
migration between projects.

A common problem in a distributed software project is understand-
ing what other participants are currently working on. The creation
of tools to promote awareness between developers can address this
need. Furthermore, tools that promote capturing of historical ratio-
nale may make it easier for new participants to enter a project.

Another area for tool improvement is introducing a way to capture
the rationale for a decision in the documentation. Currently, it is
hard to identify why a particular change is made. The artifacts for
determining this may not be centralized. Creating a tool that indi-
cates relationships between artifacts to encourage rationale under-
standing may be critical.

The current tools for controlling participation are ad hoc and not
well integrated. This makes it difficult to lower the burden upon the
participants in a project in dealing with the contributions by casual
participants. If the tools for handling contributions were better
integrated into the standard processes, it would make this task sig-
nificantly easier.

7. ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0205724.

8. REFERENCES

[1]

Arch - Revision Control System

. <http://arch.fifthvision.net/>,
HTML, 2003.

[2] Apache Software Foundation.

The Jakarta Site - Apache Tom-
cat

. <http://jakarta.apache.org/tomcat/>, HTML, 2003.
[3] Bernstein, D.J.

ezmlm

. <http://cr.yp.to/ezmlm.html>, HTML,
2000.

[4] Bitmover.

BitKeeper

. <http://www.bitkeeper.com/>, HTML,
2003.

[5] CollabNet.

Subversion

. <http://subversion.tigris.org/>,
HTML, 2003.

[6] Dinkelacker, J., Garg, P.K., Miller, R., and Nelson, D. Pro-
gressive Open Source. In

Proceedings of the

International
Conference on Software Engineering (ICSE).

 p. 177-184,
2002.

[7] Fielding, R., Whitehead, E.J., Anderson, K., Oreizy, P., Bol-
cer, G.A., and Taylor, R.N. Web-based Development of Com-
plex Information Products

. Communications of the ACM.

41(8), p. 84-92, 1998.
[8] Fielding, R.T. and Kaiser, G. The Apache HTTP Server

Project

. IEEE Internet Computing.

 1(4), p. 88-90, 1997.

[9] Fielding, R.T. Shared Leadership in the Apache Project

. Com-
munications of the ACM.

 42(4), p. 42-43, 1999.
[10] Free Software Foundation.

Mailman

. <http://www.list.org/>,
HTML, 2003.

[11] Fried, I. Sales Increase for U.S. Linux Servers.

CNet
News.com

. February 10, 2003. <http://news.com.com/2100-
1001-984010.html>.

[12] Halloran, T.J. and Scherlis, W.L. High Quality and Open
Source Software Practices. In

Proceedings of the

Meeting
Challenges and Surviving Success: 2nd Workshop on Open
Source Software Engineering.

 May, 2002.
[13] Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A., Pen-

nings, M., Sinha, S., Spoon, S.A., and Gujarathi, A. Regres-
sion Test Selection for Java Software. In

Proceedings of the
ACM Conference on OO Programming, Systems, Languages,
and Applications (OOPSLA 2001).

 p. 312-326, Tampa, Flor-
ida, October, 2001.

[14] Heesch, D.v.

Doxygen

. <http://www.doxygen.org/>, HTML,
2003.

[15] Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E.
An Empirical Study of Global Software Development: Dis-
tance and Speed. In

Proceedings of the

International Confer-
ence on Software Engineering (ICSE).

 p. 81-90, 2001.
[16] Hoek, A.v.d. Configuration Management and Open Source

Projects. In

Proceedings of the

3rd International Workshop on
Software Engineering over the Internet.

 Limerick, Ireland,
June 6, 2000.

[17] Howard, J. The BSD Family Tree

. Daemon News.

 April,
2001. <http://www.daemonnews.org/200104/
bsd_family.html>.

[18] KDE e.V.

Developer's Corner

. <http://developer.kde.org/>,
HTML, 2003.

[19] Maletic, J.I. and Marcus, A. Supporting Program Comprehen-
sion Using Semantic and Structural Information. In

Proceed-
ings of the

23rd International Conference on Software
Engineering.

 p. 103-112, Toronto, Ontario, Canada, May,
2001.

[20] Netcraft.

Netcraft Web Server Survey

. <http://www.net-
craft.com/survey/>, HTML, 2003.

[21] Python Software Foundation.

Patch Manager

. <http://source-
forge.net/tracker/?group_id=5470>, HTML, 2003.

[22] Raymond, E.S.

The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary

.
O'Reilly, 2001.

[23] Software in the Public Interest.

Debian Mirrors

. <http://
www.debian.org/mirror/>, HTML, 2003.

[24] Software in the Public Interest.

Debian Releases

. <http://
www.debian.org/releases/>, HTML, 2003.

[25] SourceGear Corporation.

AbiWord Documentation

. <http://
www.abisource.com/doxygen/>, HTML, 2003.

[26] The Apache HTTP Server Project. Apache HTTP Server
Project Guidelines and Voting Rules. <http://
httpd.apache.org/dev/guidelines.html>, HTML, 2003.

[27] The Mozilla Organization.

Bugzilla Project Homepage

.
<http://www.bugzilla.org/>, HTML, 2003.

[28] The Perl Foundation.

Parrot and Perl6 PDDs

. <http://
dev.perl.org/perl6/pdd/>, HTML, 2003.

[29] The PHP Group.

PHP: Documentation

. <http://www.php.net/
docs.php>, HTML, 2003.

[30] Ye, Y. and Fischer, G. Supporting Reuse by Delivering Task-
Relevant and Personalized Information. In

Proceedings of the
24th International Conference on Software Engineering.

 p.
513-523, Orlando, Florida, May, 2002.

