
Author Entropy: A Metric for Characterization
of Software Authorship Patterns

Quinn C. Taylor, James E. Stevenson, Daniel P. Delorey, and Charles D. Knutson
SEQuOIA Lab, Brigham Young University

2236 TMCB
Provo, Utah 84602

{qtaylor, jstevenson}@byu.net, {pierce, knutson}@cs.byu.edu

ABSTRACT
We propose the concept of author entropy and describe how
file-level entropy measures may be used to understand and
characterize authorship patterns within individual files, as
well as across an entire project. As a proof of concept, we
compute author entropy for 28,955 files from 33 open-source
projects. We explore patterns of author entropy, identify
techniques for visualizing author entropy, and propose av-
enues for further study.

1. INTRODUCTION
Software development is a process fraught with complex-

ity and unpredictability because software is designed and
written by people. Human interactions add complexity to
development processes, although some software engineering
authorities disagree about the implications [6, 7, 8].

Contributor interactions critically affect software develop-
ment, and it follows that characterizing contributor interac-
tion is an important task. Studies of developer interactions
have generally focused on bug tracking, mailing list analysis,
or studies of developer productivity; few consider developer
interaction within source code.

In this paper, we introduce author entropy, a metric that
quantifies the mixture of author contributions to a file. Just
as code-level metrics—including file length, number of func-
tion points, complexity, cohesion, and coupling—quantify
properties of source code, author entropy characterizes prop-
erties of author interactions within source files using a simple
summary statistic.

This paper describes the author entropy metric, presents
a proof of concept empirical study, and proposes topics for
future research relating to author entropy and authorship
patterns.

2. AUTHOR ENTROPY
In this section, we discuss entropy, define how entropy is

calculated, and describe how entropy applies to authorship.

2.1 Definitions of Entropy
Entropy is a measure of chaos or disorder in a system.

Thermodynamics defines entropy as a measure of random-
ness of molecules in a system; an increase in entropy leads

WoPDaSD 2008 — Milan, Italy

to greater spontaneity. Entropy is often understood as the
“useless energy” in a system: energy which is not available
to perform work. The second law of thermodynamics states
that the entropy of an isolated system will tend to increase
over time, approaching a maximum value at equilibrium.

Information theory borrows the idea of entropy, defines it
in terms of probability theory, and uses it to analyze com-
munication, compression, information content, and uncer-
tainty [16]. In machine learning, entropy “characterizes the
(im)purity of an arbitrary collection of examples”, or the
degree to which members of a collection can be split into
groups based on a given attribute [14].

Entropy may also be applied to software engineering as a
measure of collaboration. Specifically, we consider entropy
of source code, which can be broken into smaller segments
(e.g., lines, functions, statements, identifiers, etc.) and clas-
sified by author. This definition of entropy allows us to
quantify the mixture of author contributions to a file. We
discuss why this matters to software in Section 2.3.

2.2 Calculating Entropy
Entropy is a summary statistic1 calculated from the rela-

tive sizes of the groups or classifications present in a system.
Entropy formulae are nearly identical across domains, vary-
ing only in constant multipliers and symbolic representation.

2.2.1 The Special Case: Binary Classification
We first consider entropy in the special case of a Bernoulli

distribution with proportion p of positive outcomes and pro-
portion q of negative outcomes, where 0 ≤ p ≤ 1. The
entropy of system S (shown in Figure 1) is defined as:

E(S) ≡ −p · log2 p − q · log2 q (1)

Note that entropy is maximized when p and q are equal,
and minimized when either proportion reaches 1.

2.2.2 The General Case: Any Number of Groups
Entropy also generalizes to an arbitrary number of groups.

If elements of a system S belong to c different classes, and
pi is the proportion of elements in S belonging to class i,
then the entropy of S is:

E(S) ≡ −
cX

i=1

(pi · log2 pi) (2)

1Summary statistics are lossy summaries of observations,
such as mean, median, variance, skewness, and kurtosis.

0 0.5 1

p

0

0.5

1

E
n

tr
o

p
y

(S
)

Figure 1: Entropy of a Bernoulli distribution.

E(S) is maximized when the proportions of classes in S
are equal (∀ i, pi = 1

c). Equation 2 is a non-normalized
summation, so the limit of E(S) is a function of c. As shown
in Figure 2, if the elements of a system S belong to c possible
classes, the entropy can be as large as:

Emax(S) ≡ log2 c (3)

0 4 8 12 16 20 24 28 32

Number of classes

0

1

2

3

4

5

M
ax

im
u
m

 E
n
tr

o
p
y
(S

)

Figure 2: Maximum possible entropy for a system S
as a discrete function of the total number of groups.

Because the maximum possible entropy for a system is a
function of c, intuitive understanding of an entropy value can
be difficult. For example, an entropy of 1 is the maximum
entropy for a system with 2 classes, but comparatively low
entropy for a system with 10 classes. Dividing E(S) by log2 c
produces a value in the range [0,1]; this normalized entropy
value represents the percentage of maximum entropy, which
may be more intuitive than non-normalized entropy. (See
section Section 5.3 for normalization strategies.)

By definition, a system with only one class has zero en-
tropy, so we define log 0 to be 0. We also note that the loga-
rithmic base is unrelated to the number of classifications; we
use log2 for historical reasons rooted in information theory.

2.2.3 Entropy Applied to Text Authorship
If system S is a file and c is the number of authors, then

each pi is the proportion of the text written by author i,
and E(S) is the entropy of the file. The values of pi are
the proportions of text segments attributed to each author.
(Text segments may be of any size, although entropy may be
more meaningful when the segments are roughly equivalent
in size or information content.) Entropy increases as all
authors’ contributions (pi) approach equality.

2.3 Interpretation of Entropy in Software
Entropy in source code is not inherently good or bad; it

merely indicates that multiple people are contributing in a
fairly balanced way. Although low entropy could be an in-
dicator of modular team structure and well-architected soft-
ware, it could also reflect poorly structured code that few
contributors are willing to work on. Similarly, high entropy
could be the result of poor communication or code that is in
dire need of refactoring, or it may indicate excellent organi-
zation that makes it easy for many authors to contribute to
the same code. As with any metric, context is essential.

Correlating entropy with other metrics and observations
can provide valuable new insights. For example, a file with
high entropy written by several experts may be of higher
quality than a file written by one novice author; combining
entropy with a metric of quality can help distinguish between
“good entropy” and “bad entropy”. Several ways to leverage
the author entropy metric are discussed more in Section 5.1.

Author entropy cannot directly indicate attributes of the
subject text. For example, file length is obscured since files
of different size but equal proportions of contribution have
the same entropy. Entropy also does not consider quality or
the relative importance of contributions, such as new func-
tionality, bug fixes, comments, whitespace, or formatting.

3. PROOF OF CONCEPT STUDY
In order to give the reader a better understanding of how

author entropy can be useful, we have conducted a small
empirical study as a proof of concept that demonstrates pos-
sible applications of the metric. We begin by describing the
methods and tools used to gather data and calculate author
entropy. As part of that discussion we present the criteria
we used to select projects for the study and the threats to
the validity of our results. We also present some results of
our preliminary study, including observations and analysis
of authorship patterns manifest in the data.

3.1 Extraction and Calculation
Author entropy calculations require data that attributes

text fragments to authors. Software authorship information
can be gleaned from revision control systems that record
snapshots of development history [4]. Our exploratory study
considers only projects stored in Subversion.

We created a Python script to collect author data. We
use Subversion’s log command to identify the files modified
in each revision, and record the revision number and path
for each file. We then use Subversion’s blame command
to determine authorship for each line in each changed file.
Author counts are divided by the total number of lines in
the file to obtain pi values, and author entropy for each file
is calculated as shown in Equation 2. Entropy for each file
is also normalized to the range [0,1] as in Equation 3.

3.2 Project Selection
Due to the amount of data which must be analyzed, we

identified a subset of SourceForge projects with favorable
characteristics. (We selected SourceForge.net because it hosts
thousands of projects with multiple years of development
history and various development platforms.) Howison [12]
has identified potential weaknesses in this approach.

Many projects were not suitable for our analysis because
they 1) were immature, abandoned, or not very active, 2)

didn’t use Subversion exclusively, 3) had very few devel-
opers, or 4) contained many non-source text files. We ad-
dressed these issues by limiting our sample to projects that
meet the following criteria:

1. Projects categorized as “Production/Stable”.

2. Projects registered since 2006 (higher SVN usage).

3. Projects with 5 or more committing developers.2

4. Projects in Java with easily identifiable source files.

We queried FLOSSmole [1] data with these four criteria
and identified 33 candidate projects, with the following dis-
tributions of revisions and authors:

Min Q1 Median Q3 Max
Revisions 41 373 723 994 11576
Authors 5 6 8 13 23

Table 1: Distributions of revisions and authors for
33 projects selected from SourceForge.

3.3 Threats to Validity
One significant concern is the limited number of projects

and the criteria used to select them. Although many open-
source projects share similar development patterns, by no
means should our results be construed as representative of
all open-source projects, or even of all projects hosted on
SourceForge. Many projects that did not fit our criteria
would undoubtedly exhibit interesting authorship patterns.

Hidden factors which we have not addressed include irreg-
ularities in the historical data. For example, some projects
contained anonymous commits, and many had a majority of
commits from a single author. Without more in-depth study
of specific projects, we cannot ascertain whether one devel-
oper in fact wrote all the code, or whether other contributors
submitted patches that a single developer then committed.
We also did not examine any specific changes to see whether
changes in entropy were caused by source code reformatting,
which artificially attributes lines to the committing author.

Our study is limited to line-level granularity provided by
Subversion, and does not examine how much of a line changes.

With these threats to validity, however, it is important to
reiterate that the focus of this paper is the author entropy
metric itself. Our study is intended as a proof of concept,
and should not be interpreted as exhaustive or complete. We
describe potential avenues for future research in Section 5.

3.4 Results
In this section, we identify and offer possible explanations

for patterns we observed in our study. These observations
place author entropy in a real-world context; we demonstrate
how changes to individual files affect entropy, characterize
relationships between number of authors and entropy distri-
bution, and identify project-wide entropy patterns.

2We scraped Subversion logs to determine the actual number
of committing authors, instead of relying on the number of
registered developers.

3.4.1 Degree of Collaboration Within Files
For the projects in our sample, the maximum number of

authors contributing to a project was 23, but there were no
individual files with more than 9 authors. Figure 3 shows
the counts of file revisions and unique files we observed with
each number of authors, plotted on a logarithmic scale.

Authors File Revisions Unique Files

1

2

3

4

5

6

7

8

9

57760 18464

35121 13245

17155 4429

6788 1417

2355 344

571 81

109 24

46 6

20 1

Authors Minimum Average Maximum Possible

2

3

4

5

6

7

8

9

0.002327 0.493262381 1 1

0.008543 0.840764428 1.584963 1.5849625

0.038925 1.120455897 1.968349 2

0.205966 1.266067233 2.157154 2.3219281

0.267985 1.313162701 2.246707 2.5849625

0.821019 1.448633009 2.216427 2.8073549

0.967478 1.772688435 2.353587 3

1.73587 2.2145751 2.384427 3.169925

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6 7 8 9

Observed Entropy

Minimum Average Maximum Possible

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

18464
13245

4429

1417

344

81

24

6

1

57760
35121

17155

6788

2355

571

109
46

20

C
o

u
n

t

Number of Authors

File Revisions Unique Files

0

0.25

0.50

0.75

1.00

Normalized Entropy

Figure 3: Counts of file revisions and unique files
plotted against number of authors.

We found it noteworthy that the counts of file revisions
and unique files with n authors are inversely proportional
to n and exhibit near-perfect exponential decay. We hy-
pothesize that communication and coordination become pro-
hibitively expensive as the number of authors increases, and
that these costs naturally discourage many authors from
contributing on a file.

3.4.2 Entropy Patterns Within Files
We also focused on fine-grained analysis of individual files

to identify potentially interesting entropy patterns. We chose
files that had high standard deviation of normalized entropy
over multiple revisions (an indicator of significant changes)
and compared author contributions (both the number and
percent of total lines) to entropy and normalized entropy.
The results for one such file are shown in Figure 4.

In Figure 4(c), the upper line is raw entropy and the lower
line is normalized by log2 5, since 5 is the maximum number
of authors that ever contributed to the file. Normalized en-
tropy plateaus at approximately 0.8 before decreasing slowly.
Note that, despite a significant reduction in number of total
lines at revision 262, author entropy does not drop rapidly.
However, the addition of new authors at revisions 86, 101,
and 141 does cause a significant increase in entropy.

Because entropy calculations include logarithmic factors,
entropy is very sensitive to small segments of text added
by additional authors, but less sensitive to changes once an
author is “established.” Consider the two author case in Fig-
ure 1: 50% of maximum entropy is reached when one author
contributes approximately 10% of the text. This bias makes
entropy highly sensitive to initial changes by new authors.

3.4.3 Entropy Distributions Within Projects
Entropy is difficult to visualize for projects with many file

revisions, so we created a histogram-based plot to display
entropy distributions over a project’s life. We found that
using color rather than a 3D height map improved scale
determination and trend exploration for large projects.

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0

50

100

150

200

250

300

350

400

450

500

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Total Lines

(a) Number of total lines by author.

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0

50

100

150

200

250

300

350

400

450

500

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Total Lines

(b) Percentage of total lines by author.

Revision 61 62 65 86 93 101 141 146 163 189 262 372 594 642 935

adameq

adamg

ewelina_kruk

s_kruk

tomwor

Total Lines

adameq

adamg

ewelina_kruk

s_kruk

tomwor

Authors

Entropy

Normalized

101 91 49 39 39 39 42 67 74 74 78 162

140 153 152 152 18 18 18 16 16

131 89 89 89 88 48 48 46 41 37

296 300 301 271 281 231 168 167 166 166 111 111 111 111 108

4 4 1 1 1 1 1

296 300 301 372 372 411 436 448 450 452 245 252 250 247 324

0.0% 0.0% 0.0% 27.2% 24.5% 11.9% 8.9% 8.7% 8.7% 9.3% 27.3% 29.4% 29.6% 31.6% 50.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 32.1% 34.2% 33.8% 33.6% 7.3% 7.1% 7.2% 6.5% 4.9%

0.0% 0.0% 0.0% 0.0% 0.0% 31.9% 20.4% 19.9% 19.8% 19.5% 19.6% 19.0% 18.4% 16.6% 11.4%

100.0% 100.0% 100.0% 72.8% 75.5% 56.2% 38.5% 37.3% 36.9% 36.7% 45.3% 44.0% 44.4% 44.9% 33.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.9% 0.4% 0.4% 0.4% 0.4% 0.3%

1 1 1 2 2 3 4 4 5 5 5 5 5 5 5

0.0000 0.0000 0.0000 0.8436 0.8026 1.3588 1.8359 1.8298 1.8884 1.8979 1.7989 1.7994 1.7945 1.7617 1.6259

0.0000 0.0000 0.0000 0.3633 0.3457 0.5852 0.7907 0.7881 0.8133 0.8174 0.7747 0.7750 0.7728 0.7587 0.7002

/trunk/sscf/WEB-INF/src/org/corrib/s3b/sscf/manage/BookmarksHelper.java

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Entropy Over Time

(c) Entropy and normalized entropy.

Figure 4: Data for 15 revisions of /trunk/sscf/WEB-INF/src/org/corrib/s3b/sscf/manage/BookmarksHelper.java in
S3B. The x axis shows consecutive revisions; actual time periods between revisions is not represented here.

(a) StoryTestIQ trends towards high entropy. (b) Xendra trends towards low entropy.

(c) NakedObjects increases in entropy. (d) SweetDEV RIA “flip-flops” between high and low entropy.

Figure 5: Excerpts of entropy distributions for several projects, excluding zero-entropy values. The darkness
of each (x, y) point represents the percentage of files at revision x that map to normalized entropy y. These
plots have 20 bins over the range of entropy values and have been contrast-adjusted for better readability.

Although non-zero entropy often approximated a uniform
distribution as projects progressed, several projects had pat-
terns of generally high or low entropy, dramatic changes in
entropy, and even “flip-flops” between high and low entropy.

Because the plots in Figure 5 are histograms, many files
need to change before the histogram changes significantly.
Dramatic shifts in entropy can occur when: 1) entropy shifts
in a significant number of files or 2) a large number of files are
added or removed. Development activities that may cause
these shifts include: new authors contributing to existing
files, refactoring, code formatting, or bug fixes.

3.4.4 Entropy Distributions Across Projects
We examined the distribution of entropy as the number of

authors for a file increases, shown in Figure 6. For n = 2...9
authors, we calculated univariate Gaussian kernel density
estimators (a form of histogram smoothing) for normalized
and non-normalized entropy values. We then combined each
density function into a single 3D plot.

The entropy distribution for files with two authors was
bimodal. Files were most likely to have either: 1) very low
entropy, indicating that one author contributed only a very
small portion of the file, or 2) very high entropy, indicat-
ing that both authors contributed almost equally. However,
the entropy distributions for more than two authors were
unimodal with a mean that increased with the number of
authors.

Normalized entropy for three or more authors displayed an
interesting trend. As the number of authors increased, the
distribution of normalized entropy remained fairly constant
with a peak around 0.6. Although entropy increases as more
authors are added, it remains proportional to maximum pos-
sible entropy. This may indicate hidden communication or
social factors that naturally keep entropy around 60% of its
maximum when more than two people contribute to a file.

3.5 Summary
In this preliminary empirical study, we have identified sev-

eral fine- and coarse-grained authorship patterns present in
the projects we selected. We have observed a bimodal distri-
bution of entropy for files with only two authors, but noted
that the entropy distribution for files with three or more au-
thors is unimodal. We have also noticed significant shifts in
project-wide entropy for some projects.

While explanation of the causes of these observations is
beyond the scope of this paper, these patterns (and the ques-
tions they raise) suggest that author entropy is a potentially
valuable metric for software engineering researchers.

4. RELATED WORK
Several existing tools include functionality for visual or

numerical analysis of authorship patterns.
CVSscan [17] is a visualization tool for observing source

code structure and evolution during software maintenance.

Entropy Count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2854

2836

2132

1662

1579

1365

1265

1116

1077

966

1075

1062

991

1329

1268

1363

1403

1633

2081

4382

136

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0
.4
0

0
.4
5

0
.5
0

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

(a) Entropy distribution, 2 authors. (b) Entropy distributions, 2–7 authors. (c) Normalized entropy, 3–6 authors.

Figure 6: Plots of entropy distributions for 28,955 files from 33 open-source projects.

It extracts data from CVS repositories and represents source
code lines of one file at a time as a sequence of stacked lines
that are colored according to author, age, or code construct.

StatSVN [2] retrieves information from Subversion repos-
itories and generates charts, tables and statistics which de-
scribe project development. A few of the statistics address
authorship patterns (e.g. number of source lines contributed
per author, commit activity) at the directory level.

CodeSaw [10] is a tool for visualizing author activity in
distributed software development. It combines code activ-
ity and developer communication to reveal group dynamics.
Data for up to eight authors may be visualized together on
a timeline. Hovering over the timeline displays detailed in-
formation for the selected developer and time period.

Author entropy can be coupled with the functionality in
these and other tools to provide additional context for un-
derstanding established software metrics and patterns. We
explore several possible options and benefits in Section 5.1.

5. FUTURE WORK
Our initial research generated many questions about the

implications of author entropy in software engineering and
other domains. Although we cannot fully address these top-
ics in this paper, we list several avenues for future research.

5.1 Empirical Evaluation of Applicability
We hypothesize that high author entropy may be corre-

lated with existing software metrics, such as lines of code,
high complexity, high coupling, low cohesion, high bug count,
etc. However, no work has yet been done to empirically
test such theories. Studies of author entropy in the context
of Lotka’s Law [13] and exponential decay (similar to work
done by Newby et al. [15], but in the context of files rather
than across projects) may also provide significant new in-
sights and allow characterization of developer productivity,
both in terms of quantity and significance of work.

Author entropy may also lead to new insights if combined
with similar metrics in other fields, such as Gini’s inequality
coefficient [11]. For example, balanced project contribution
can mitigate“bus factor”risks, but could also be detrimental
to a team’s efficiency and agility if taken to extremes.

A topic of special interest to us is analysis and visualiza-
tion of relationships between author entropy and program
structure. Mapping entropy values to a representation of a
program’s structure may reveal valuable information about
its evolution, similar to the findings of Gall and Lanza [9].
Author entropy could also be an effective indicator of design
and behaviors which substantiate Conway’s Law [7].

5.2 Aggregating Entropy for Groups of Files
In this paper we have calculated author entropy only for

individual files. Entropy can also be calculated and analyzed
for groups of files—such as packages, directories, modules,
and projects—at any level of depth in a project hierarchy.

However, care must be taken as to how aggregated entropy
is calculated. Two possible techniques we have identified are
to 1) create an average or linear combination of file entropies,
or 2) calculate entropy from a sum of author counts. Both
techniques can pre-compute data to be used in calculations
for later revisions, but the results can differ significantly
between the two. Specifically, author entropy for a group of
files with multiple authors should be non-zero, but the first
approach does not always yield non-zero values.

For example, consider n files, each of which is written
exclusively by a different author. The entropy for each indi-
vidual file is zero, so any combination or average will always
be zero. (In fact, when any of the files in a group have zero
entropy, results from the first approach will be inaccurate.)
The second approach represents overall author contributions
more accurately, but does require that author counts for the
most recent revision of each file in the group be stored.

Software developers are often unaware of exactly how much
their programming efforts overlap with others. The ability
to aggregate entropy can help more effectively evaluate and
react to collaboration patterns at any level of granularity.

5.3 Normalizing Author Entropy
Comparison of files or revisions with different numbers

of authors (and thus different maximum entropies) can be
difficult or unintuitive. Normalization facilitates compari-
son between files by dividing observed entropy by maximum
possible entropy, scaling entropy to the range [0,1]. How-
ever, maximum possible entropy can vary according to con-
text, and normalization factors must be chosen carefully.
For example, consider the following possible options for nor-
malizing author entropy for a set of three files with authors
{A,B}, {B,C,D}, and {E,F,G}:

1. Normalize each file’s entropy by log2 of the number of
authors in that file; scales all values to the range [0,1].

2. Normalize all entropies by log23, since the maximum
number of authors in any file is 3.

3. Normalize all entropies by log27, since there are a total
of 7 unique authors between all the files.

4. Do not normalize at all; define normalized entropy as
ambiguous for sets with unknown maximum entropy.

Each of these strategies has advantages and drawbacks
which depend on context and the question being asked. For
example, the third approach produces deceptively low en-
tropy values when there are many unique authors and few
authors per file, while the first two approaches can distort
the fact that files with more authors arguably have more
complex collaboration. In the first three normalization tech-
niques, adding more files with common or unique authors
can change the normalization factor.

For example, we found files with a near-even split between
two authors and near-maximum entropy. The addition of a
few lines from a third author raised entropy slightly, but
dividing by log23 reduced normalized entropy significantly.
When the new lines were changed by one of the original
authors, entropy rebounded. In such cases, examining the
percent of possible entropy may detract from accurate un-
derstanding of entropy trends.

5.4 Parallels with Social Network Studies
Social network analysis is an important corollary to author

entropy. It is quite likely that underling social structure
influences code collaboration.

Crowston and Howison [8] have studied communication
patterns in FLOSS (Free/Libre and Open Source Software)
projects by examining developer interaction in bug tracking
systems. They define and examine “centrality”—the degree
to which communication pathways flow through a single de-
veloper. Centrality could augment author entropy data by
providing social explanations for high or low entropy.

Bird et al. [5] examine hidden social structures in open-
source projects. They extract latent structure from email
data, show that sub-communities form within projects, and
demonstrate that sub-communities are correlated with col-
laboration behavior. Additionally, they discuss parallels
with Conway’s Law [7] and Brooks’ assertion that commu-
nication channels increase as the square of group size [6].
Identification of sub-communities, organizational structure,
and communication channels may strengthen our hypothesis
that author entropy is influenced by social structure.

Alonso et al. [3] study distinctions between open-source
developers and contributors, and characterize roles of project
participants based on rights to contribute. They mine CVS
data for code authors and use email data to correlate cod-
ing productivity and mailing list activity, then construct in-
teractions between contributors and committing developers.
Their results could extend the author entropy metric; in-
stead of counting only committing developers, indirect email
contributors could be included in the entropy calculation.

6. SUMMARY
Author entropy is a summary statistic that characterizes

contribution patterns in source code. Entropy is easy to
calculate, and can be calculated for different levels of gran-
ularity (e.g., lines, methods, files, modules). While author
entropy does not directly imply a level of code quality, it
can be used in conjunction with other software metrics to
identify potential areas of concern within the source code of
a project.

In a proof of concept study, we calculated author entropy
and analyzed authorship patterns for a selection of open
source data. Our exploratory research revealed interesting
patterns in entropy distributions which may be indicators of
significant development activities.

A potentially promising area of future research is to ex-
amine author entropy in the context of social network fac-
tors such as sub-communities and communication patterns.
Crowston and Howison [8] assert, “it is wrong to assume
that FLOSS projects are distinguished by a particular social
structure merely because they are FLOSS.” The analysis of
author contribution patterns in source code can help identify
latent interactions and implicit social structures.

Because author entropy is a new metric, there are many
unanswered questions about its utility and applicability. The
vast amount of publicly available software data makes open
source software research an especially suitable avenue for dis-
covering the answers to these questions and expanding our
current understanding of software development patterns.

7. REFERENCES
[1] FLOSSmole, 2004. http://ossmole.sourceforge.net/
[2] StatSVN, 2006. http://statsvn.org/
[3] O. Alonso, P. T. Devanbu, and M. Gertz. Extraction of

Contributor Information from Software Repositories. 2006.
Online: http://wwwcsif.cs.ucdavis.edu/~alonsoom/.

[4] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If Your
Version Control System Could Talk. . . . In Workshop on
Process Modelling and Empirical Studies of Software
Engineering (Co-located with ICSE ’97), May 1997.

[5] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and
P. Devanbu. Chapels in the Bazaar? Latent Social
Structure in OSS. In FSE 2008: 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, Nov 2008.

[6] F. P. Brooks, Jr. The Mythical Man-Month: Essays on
Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, Jan 1975.

[7] M. E. Conway. How Do Committees Invent? Datamation,
14(4):28–31, Apr 1968.

[8] K. Crowston and J. Howison. The social structure of Free
and Open Source software development. First Monday,
10(2), Feb 2005.
http://firstmonday.org/issues/issue10_2/crowston/.

[9] H. C. Gall and M. Lanza. Software Evolution: Analysis and
Visualization. In ICSE ’06: 28th International Conference
on Software Engineering, pp. 1055–1056, May 2006.

[10] E. Gilbert and K. Karahalios. CodeSaw: A Social
Visualization of Distributed Software Development. In
INTERACT 2007: 11th IFIP TC.13 International
Conference on Human-Computer Interaction, pp. 303–316,
Sep 2007.

[11] C. Gini. Variabilità e mutabilità. In Studi Economico
Giuridici della Reale Università di Cagliari, 1912.

[12] J. Howison and K. Crowston. The Perils and Pitfalls of
Mining Sourceforge. In MSR ’04: Workshop on Mining
Software Repositories, May 2004.

[13] A. J. Lotka. The frequency distribution of scientific
productivity. Journal of the Washington Academy of
Sciences, 16(12):317–324, Jun 1926.

[14] T. M. Mitchell. Machine Learning, pp. 55–57.
McGraw-Hill, 1997.

[15] G. B. Newby, J. Greenberg, and P. Jones. Open Source
Software Development and Lotka’s Law: Bibliometric
Patterns in Programming. Journal of the American Society
for Information Science and Technology, 54(2):169–178,
Jan 2003.

[16] C. E. Shannon. A Mathematical Theory of
Communication. The Bell System Technical Journal,
27:379–423, 623–656, Jul & Oct 1948.

[17] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan:
Visualization of Code Evolution. In SoftVis ’05: ACM
Symp. on Software Visualization, pp. 47–56, May 2005.

