
Mining Energy-Aware Commits
Irineu Moura, Gustavo Pinto, Felipe Ebert and Fernando Castor

Federal University of Pernambuco
Informatics Center

{imlm2, ghlp, fe, castor}@cin.ufpe.br

Abstract—Over the last years, energy consumption has become
a first-class citizen in software development practice. While
energy-efficient solutions on lower-level layers of the software
stack are well-established, there is convincing evidence that even
better results can be achieved by encouraging practitioners to
participate in the process. For instance, previous work has shown
that using a newer version of a concurrent data structure can
yield a 2.19x energy savings when compared to the old associative
implementation [75]. Nonetheless, little is known about how much
software engineers are employing energy-efficient solutions in
their applications and what solutions they employ for improving
energy-efficiency. In this paper we present a qualitative study
of “energy-aware commits”. Using Github as our primary data
source, we perform a thorough analysis on an initial sample of
2,189 commits and carefully curate a set of 371 energy-aware
commits spread over 317 real-world non-trivial applications.
Our study reveals that software developers heavily rely on low-
level energy management approaches, such as frequency scaling
and multiple levels of idleness. Also, our findings suggest that
ill-chosen energy saving techniques can impact the correctness
of an application. Yet, we found what we call “energy-aware
interfaces”, which are means for clients (e.g., developers or end-
users) to save energy in their applications just by using a function,
abstracting away the low-level implementation details.

I. INTRODUCTION

Thanks to the diversification of modern computing plat-
forms, battery-driven devices such as smartphones, tablets and
unwired devices in general are now commonplace in our lives.
However, such devices are energy-constrained, as they rely
on limited battery power supply. Energy consumption directly
affects the perception of users about their quality. For example,
in a survey conducted with more than 3,500 respondents from
4 different countries [49], long-lasting battery life has been
cited as the most desired feature in a new phone by 71% of the
respondents. Likewise, recent research pointed out that battery
usage is a key factor for evaluating and adopting mobile
applications [86]. As a result, not only researchers [57], [88],
[90] but also giants of the software industry [56], [84] have
recently started to promote energy-efficient systems.

Traditionally, energy optimization research has focused at
the hardware-level (e.g., [52], [59]) and at the system-level
(e.g., [54], [78]). Arguably, the strategy of leaving the energy
optimization issue to lower-level systems and architecture lay-
ers has been successful. The main advantage of this approach
is that user applications can be seen as black-boxes, i.e., no
prior knowledge of the application source code or its behavior
needs to be used to achieve better energy savings.

However, applications also impact energy consumption,
although software itself does not consume energy. When one

energy-inefficient piece of code is introduced in a system
comprising hardware and software components, compilers and
runtime systems cannot help much, since they are not aware
of the semantics of the program. Unlike performance, where
more efficient is always better, sometimes an application will
purposefully consume more energy to provide its intended
functionality, e.g., by activating an energy-intensive device.

In contrast, energy consumption bottlenecks often stem
from inappropriate design choices, as is often the case with
performance bugs [61]. Finding and fixing these problems
requires human insight. It is not always clear for programmers,
however, what they can do from a software engineering
perspective to save energy. There seem to be misconceptions
and lack of appropriate tools [76].

Recent work [64], [63], [75], [77] has shown that
there is ample opportunity to improve energy consump-
tion at the application level. As an example, upgrading the
ConcurrentHashMap class available in Java 7 to its im-
proved successor, available in Java 8, can yield energy savings
of 2.19x [75]. Nevertheless, developing an energy-efficient
system is a non-trivial task. Even though researchers have
made great strides in empirical studies aiming to understand
the impact of different program characteristics in energy
consumption (e.g., [64], [77], [80], [89]), these studies do
not cover a complete range of language constructs and im-
plementation choices. Therefore, developers still do not fully
understand how their source code modifications will impact
energy consumption [76].

In spite of this grim scenario, many systems that are energy-
efficient are being developed in practice. Starting from this
premise, in this paper we focus on a timely but overlooked
question:

• What solutions do software developers employ to save
energy in practice?

To answer this question, we obtained data from GITHUB,
the most popular source code hosting website in the software
development world. At the time when this paper was written,
it contained over 21.1 million software repositories1 and more
than 3.5 million contributors2. In addition, GITHUB is being
used in recent software engineering studies [46], [51], [85].

In order to understand what are the energy-efficient solu-
tions that software developers are employing, we started by
searching at the commit messages, since programmers usually

1https://github.com/features
2https://github.com/blog/1470-five-years

https://github.com/features
https://github.com/blog/1470-five-years


express their intention through these messages [50]. Commit
messages are also essential to program comprehension and
software evolution, since they help developers understand and
validate changes. Unfortunately, GITHUB does not provide a
powerful infrastructure to search for commit messages, which
led us to use a third-party mirror, GITHUBARCHIVE.

Using a set of energy consumption-related keywords
defined elsewhere [76], we found more than 2,000 en-
ergy consumption-related commits. Through an automatic
and double-checked manual analysis of these commits, and
the associated source code, we identified a curated set
of 371 “energy-aware commits”. From this set, we found
290 “energy-saving commits”, which had the explicit intention
of saving energy. The group of energy-aware commits were
performed by 265 open-source developers in 317 real world
non-trivial open-source applications. We employ a thematic
analysis [55] approach to examine the data and identify
recurring topics in the commits. We highlight some of the
findings of this study:

• The vast majority of the energy-saving commits (49.66%
of them) target lower levels of the software stack (e.g.,
Kernels and Drivers). Most of these commits describe
solutions based on traditional approaches such as fre-
quency scaling and exploring multiple levels of idleness.
In contrast, we found only 47 commits (16.21% of
them) that aim to improve energy consumption employing
solutions such as using more efficient data structures or
libraries. This suggests that there are opportunities to
improve energy efficiency even further.

• We found that ill-chosen energy saving techniques can
impact on the correctness of the application. 7 energy-
aware commits warn about this.

• We identified 12 main themes regarding energy-saving
commits, and we discuss 6 of them, namely: Frequency
and voltage scaling, Use power efficient library/device,
Disabling features or devices, Energy bug fix, and Low
power idling. Interestingly, most of the commits (42.55%
of them) in the Use power efficient library/device were
employing the same library — the power efficient work
queue.

• Developers are not always certain that their source code
modifications will in fact save energy. 18 commit mes-
sages included “hesitating” words suggesting that the
GITHUB contributors were not entirely sure about their
effects, in terms of energy savings. We also identified
18 reverted commits.

• Even for systems where energy efficiency is critical,
developers sometimes knowingly apply modifications that
will have a negative impact on energy efficiency in order
to balance trade-offs. We identified 42 commits docu-
menting these situations. In contrast with the hesitating
issue, this result suggests that some developers have a
strong grasp over energy consumption-related solutions.

• Energy bugs are common. Nearly 11.03% of the 290 ones
describe fixes to energy bugs, (e.g., keeping the system

in the wrong c-state or continuously updating a UI
component when the screen is turned off). This motivates
research on the identification and correction of these
bugs [44], [73].

• We found two energy consumption experts. These experts
performed 21 commits — 5.66% of the energy-aware
commits.

II. METHODOLOGY

In this section we state the research questions of this
study (Section II-A), the data collection procedure (Sec-
tion II-B), and the qualitative research approach we employ
(Section II-C).

A. Research Questions

As a first step towards our research goal, we designed the
following research questions:

RQ1. What are the solutions that developers use to save energy
in practice?

RQ2. What software quality attributes may be given precedence
over energy consumption?

RQ3. How are energy-saving solutions distributed over the
software stack?

RQ4. To what extent are software developers certain that their
commits will save energy?

To answer RQ1 we used a qualitative research methodology
to analyze and group in themes each one of the energy-aware
commits. For RQ2 we investigated whether developers trade
energy efficiency off by other quality attributes and, if so,
what are these attributes. To answer RQ3, we analyzed the
documentation of the projects to identify in which layer of the
software stack (device driver, operating system, application,
etc.) the project is located. To answer RQ4 we first defined a
set of “hesitating words” and then counted how many energy-
aware commit messages are employing them. We then turned
our attention to reverted commits and how they are used.

B. Data Collection Procedure

In order to select our dataset, we followed a two-phase
approach. Since programmers usually express the intention
of a code modification through commit messages, we start
by examining them. However, using the default GITHUB
web-interface or its REST API, we can only obtain commit
messages for a particular project. Given the limitation of the
number of requests that a host can send to GITHUB within
a 60 minute interval and the absence of a queryable global
index, we would not be able to conduct a large-scale study.
Instead, we chose to use GITHUBARCHIVE3. According to
the website, it is “a project to record the public GITHUB
timeline, archive it, and make it easily accessible for further
analysis”. The archive is updated every hour and its dataset is
available since February, 2011. This project exposes its data
through a web tool that enables querying and exporting query
results. Using its interface, we were able to query the commit

3http://www.githubarchive.org

http://www.githubarchive.org


messages of any open-source project available on GITHUB. At
the time when this paper was written, the archive contained
96,387,889 commits.

We performed a query to select commits that are most likely
to be related to energy consumption. Thus, our query searched
for commits messages that contains at least one of the follow-
ing terms: *energy consum*, *energy efficien*, *energy sav*,
*save energy*, *power consum*, *power efficien*, *power
sav* and *save power*. The character “*” in each term works
as a wildcard: the query will select commits with messages that
match at least one of these terms, regardless of the beginning
or the end of the message content. These terms were already
used in a previous study [76]. Using only “energy” or “power”
terms resulted in 112,900 commits, which would prevent us
from conducting a mostly manual study.

This query resulted in a total of 2,189 commits. However,
we observed that some of these commits existed only in the
GITHUBARCHIVE database, but not in GITHUB itself. At least
three reasons might explain this fact: (1) the project could
have been renamed or removed, (2) the project owner may
have left GITHUB, or (3) the branch where the commit was
placed was removed. We also directly asked the GITHUB staff
if there is another reason for “unreachable commits”, and they
answered that “We don’t periodically gc repositories, however
we do run gc on repositories on request from an owner of
the repository, which would be the reason for unreachable
commits”. We automatically removed 599 commits that were
not found on GITHUB. We also found several commits that
shared the same SHA key and/or the same commit message.
Similarly, we automatically removed 600 duplicated commits.
This left us with 1589 commits.

Next, we manually analyzed each of the 1589 remaining
commits. GITHUB helped us with a web interface that greatly
increases the readability of a patch. Using this interface,
programmers can easily map a commit to its source code
modifications, observing which lines of code were added or
removed. We used this interface to investigate the source
code of a given commit in order to understand if it, in fact,
was performed with the intent of saving energy. During this
analysis, we observed what we call “soft-duplicated” commits,
that is, commits that do not share the same SHA code, but
the commit message and the source code modification are
rather similar to the original one. We believe that this might
happen because GIT enables easy copying of changes between
branches. Using the rebase or the cherry-pick utilities, it is
possible to bring changes from one branch to another. In such
cases, new commits are created with new SHA hashes, but
the contents of these commits, i.e., message and changes, are
identical or nearly identical to the original ones, depending
on the state of the target branch and how the operation was
performed. We removed 42 occurrences of commits with these
characteristics.

This manual code review process was divided among
the first three authors of the paper. Each commit was, at
least, double-checked. Each author analyzed two thirds of
the commit population. For instance, taking in consideration

a population of 100 commits, the first author analyzed the
commits between 1 and 66, while the second author analyzed
the commits between 34-100, and finally the third author
analyzed the commits in the ranges 1-33 and 67-100. In order
to gather even more information about the projects, we also
reviewed their description on the root dir or on the own
webpage, if available. Since some code changes require an
in-depth knowledge of the application domain, when we did
not understand what a certain modification or feature is for,
we also searched in mailing lists and in Q&A websites. This
manual analysis took about 3 and a half months.

Next we grouped the commits using high-level codes. Codes
aim to help us to discriminate commits in terms of the ones
that are, and are not, of interest. These codes are not connected
to the thematic analysis we have conducted (Section II-C).
We coded a commit as “OK” when the commit message and
the source code modification are clearly focused on reducing
energy consumption. “OK-UNABLE-TO-CATEGORIZE” was
the class of commits where the intention in the message
is clear, but we were unable to match this intention with
the source code modifications. A “TRADEOFF” code indi-
cates that a developer is trading energy consumption off for
another quality attribute. Code “TRADEOFF-UNABLE-TO-
CATEGORIZE” refers to commits that modified the system
in ways that increase energy consumption, but did not explain
what was gained by doing so. The “RELATED” code refers
to commits that add an energy saving option, so that program-
mers or end-users can use it to save energy. “REVERT” com-
mits are commits that undo energy saving intending commits,
most probably using the revert GIT utility. “DUPLICATE”
is a duplicate commit, “FALSE-POSITIVE” is a commit that is
not related to saving energy, for instance, when a programmer
is working on a feature that calculates the energy consumption,
and “BINARIES” is for binary code. A final code, “NOT-
FOUND”, is regarding when a project gives a 404 error.
This was the only one set automatically. Two authors coded
the same groups of commits. When these two authors did
not agree with a code, a third author provided an additional
perspective. After this manual extraction phase, a total of
371 energy-aware commits were selected. These commits fit
in the “OK”, “RELATED”, and “TRADE-OFF” codes. These
commits were performed between 03/12/2012 and 05/15/2014.
Table I summarizes the codes and their occurrences.

C. Qualitative Research Approach

Once the data is collected, we extract reliable information
using a qualitative approach named Thematic Analysis [55].
Thematic analysis is a common qualitative analysis method
that emphasizes examining and recording themes within data.
The application of this approach has six stages: familiariza-
tion with data, generating initial codes, searching for themes
among codes, reviewing themes, defining and naming themes,
and producing the final report. We explain briefly how we
conducted each one in the remainder of this section. A
more detailed explanation of the general approach is available
elsewhere [55].



TABLE I
COMMITS PER CODE.

Code # Commits
OK 290
OK-UNABLE-TO-CATEGORIZE 72
TRADEOFF 23
TRADEOFF-UNABLE-TO-CATEGORIZE 19
RELATED 58
REVERTED 18
DUPLICATE 600
SOFT-DUPLICATE 42
FALSE-POSITIVE 454
BINARIES 14
NOT-FOUND 599
TOTAL 2,189

1) Familiarization with data: Here the first three authors
analyzed the commit message and the source code modi-
fication for each commit. For commits that used specific
language constructs or libraries, we have searched on
internet forums and mailing lists in order to become
familiar with them.

2) Generating initial codes: Each author gave a code for
each analyzed commit. The code is an attempt to express
the core of the modification. For instance, a commit that
adds a new DVFS [59], a technique for dynamic scaling
CPU frequency, algorithm can be coded as “DVFS”.
In this step, we also refined codes by combining and
splitting potential codes.

3) Searching for themes: In this step, we already had a
list of initial themes. Here, only the first author tried to
combine coded data on appropriated themes. When in
doubt, the other authors provided support to find broader
patterns within data.

4) Reviewing themes: At this stage, we have a potential set
of themes. We then searched for data that supports or
refutes our theme. For instance, we updated the theme
of a commit that was initially themed as “DVFS” to
“Frequency and voltage scaling”. In this commit, the
programmer decreased the voltage of the display. This
solution is related to voltage scaling but not to DVFS.

5) Defining and naming themes: Here we refined existing
themes. At this time, most of the themes already had
a name. However, we have renamed some of them to
cover codes with small numbers of commits, otherwise
we would have to discard them. We established 5 as a
threshold for the minimum number of repetitions of a
code required for it to be considered a theme.

6) Producing the final report: This process led to the
elicitation of 12 main themes. Due to space constrains,
we kept our focus to the 6 themes with the greatest
number of occurrences.

III. STUDY RESULTS

We found a total of 371 energy-aware commits. This
number represents 16.95% of the total number of commits we
found in our initial query. These commits were performed in

317 different projects by 265 different GITHUB contributors.
As regarding the GITHUB contributors, we found two energy
consumption experts; these two GITHUB contributors have
performed 21 energy-aware commits (10 commits each one)
— that is, 5.66% of our population of energy-aware commits.
Analyzing the commits of one these top GITHUB contrib-
utors, we observed that, even though they were performed
by the same GITHUB contributor, they greatly differ between
each other in terms of the intention used to save energy.
For instance, they vary from (1) changes to tweak governor
parameters [39], to (2) disabling a feature when the display
is turned on [36] and to (3) directly reducing an LCD display
voltage [29].

The project that received the most commits is an-
droid kernel motorola omap4-common, with 9 energy-
aware commits. This is a Kernel project based on Motorola
3.0.8 Android Kernel. The energy-saving intention here also
varied greatly. For instance, some commits were performed
with the intention to (1) select different energy-efficient gov-
ernors [1], to (2) improve an existing governor implementa-
tion [10], and to (3) enable a power saving feature [6]. This
shows that the same software application can benefit from
different energy-aware optimizations. Other than this project,
5 other projects have between 5 to 3 energy-aware commits
each. 19 projects have 2 energy-aware commits each, and
the other ones have one energy-aware commit each. Table II
shows the diversity of our target applications.

TABLE II
THE DIVERSITY OF OUR TARGET APPLICATIONS.

Metric Mean Median Standard Dev. Histogram

LoC 4,069,000 68,930 5,239,099

LOC

loc

F
re

q

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0
5
0

1
0
0

1
5
0

2
0
0

Contributors 202.3 6.5 335.31

Commiters

commiters

F
re

q

0 200 400 600 800 1000 1400

0
5
0

1
0
0

2
0
0

Commits 68,250 475.5 126,104

Commits

commits

F
re

q

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
5
0

1
5
0

2
5
0

Age 4.50 3 3.72

Age

age

F
re

q

0 5 10 15 20

0
4
0

8
0

1
2
0

As we can see in the table, on average, our target applica-
tions have 4,069,193 lines of code (3rd quartile: 10,200,000,
min: 15, max: 14,180,000), 5 different GITHUB contributors
(3rd quartile: 267.8, min: 1, max: 1,320), 68,250 commits (3rd
quartile: 36,440, min: 1, max: 495,800), and are 4.5 years
old (3rd quartile: 4.5, min: 1, max: 22). Age is measured
in years, considering the time when the first commit was
placed until 02/10/2015. 13.72% of them were performed in
applications with up to 1,000 lines of code, 19.86% of them
in applications sizing from 1,001 to 10,000 lines of code,
and the vast majority 66.43% of them were performed in
applications with over 10,000 lines of code. C is the most
used programming language (158 projects use it as the main
language), followed by Java (25 projects), Bourne Shell (17
projects), Arduino Sketch (15 projects), and C++ (12 projects).



In the following subsections (Sections III-A to III-D), we
answer the four research questions.

A. RQ1. What are the solutions that developers use to save
energy in practice?

We now analyze the source code modifications of each one
of the 290 energy-saving commits. We identified 12 categories
of source code modification aiming at saving energy. Table III
summarizes each one.

TABLE III
THE CATEGORIZATION OF THE APPROACHES DEVELOPERS USE TO SAVE

ENERGY.

Theme # Commits %
Frequency and voltage scaling 47 16.21
Use power efficient library/device 47 16.21
Disabling features or devices 44 15.17
Energy bug fix 32 11.03
Low power idling 21 7.24
Timing out 15 5.17
Avoid polling 15 5.17
Pin management 10 3.45
Display and UI tuning 9 3.10
Avoid unnecessary work 5 1.72
Miscellaneous 36 12.41
Outlier 9 3.10

As Table III shows, the approaches that developers use
in practice to save energy are quite diverse. Due to space
limitations we choose to describe and provide discussions on
just the top 6 most often used approaches.

Frequency and voltage scaling (47 occurrences) Most com-
mits we analyzed fit within the frequency and voltage scaling
theme. The key insight is that a lower frequency yields
lower power consumption. Saving energy, however, is not the
same of saving power, because a reduction in frequency may
increase the execution time. The challenge here is to figure
out when the reduction in frequency is significant enough to
cause performance degradation, thus negatively impacting on
energy saving. In our qualitative analysis, we observed that
such manipulations can be static or dynamic.

• Static: The programmer hard-coded a new frequency/volt-
age value directly in the source code.

• Dynamic: The programmer is using a dynamic frequen-
cy/voltage technique, usually DVFS [74].

Although frequency and voltage scaling became a popular
technique to make CPU processors more energy-efficient, we
have identified several GITHUB contributors who focused on
peripherals. For instance, a GITHUB contributor said that
“Reduce Wifi voltage for power savings. Should be beneficial
for a wifi only device” [30]. In such commit, the GITHUB
contributor changed a single line of code, updating a vari-
able from .microvolts = 2000000 to .microvolts
= 1800000. This commit used a static approach, that is, the
GITHUB contributor hard-coded a new voltage value.

Solutions using the dynamic approach are greatly diverse.
For instance, DVFS offers the chance to change the CPU

frequency on the fly. DVFS algorithms, or cpufreq governors,
dynamically decide what frequency should be used at a given
time. We found several commits focused on using such DVFS
features. They vary from (1) tuning existing governors [39]
or (2) setting a different governor as default [1]. However,
this approach hides important perils. As discussed in recent
literature [68], [62], well-established Linux governors do not
provide effective energy savings. In the worse case, governors
can even increase energy consumption, instead of reducing it.

Use power efficient library/device (47 occurrences) The com-
mits in this theme perform changes to use more efficient ver-
sions of certain libraries or services, as well as more energy-
efficient devices. We also include in this theme commits that
make use of power saving mode, usually a black-box technique
that does not require knowledge about how the energy saving
is achieved. Examples in this category are: (1) use power
efficient work queue [38], (2) use a motion accelerometer
instead of a general accelerometer [34], and (3) enable the
Thermal framework to achieve energy savings [6]. Most of
these power savings modes are offered by newer kernels (e.g.,
the power efficient workqueue and the Thermal Framework),
which greatly reduce the barrier for employing a power saving
technique in low-level applications, since the programmer does
not need to worry about low-level implementation details,
which are abstracted away in those libraries.

Disabling features or devices (44 occurrences) This theme
encompasses source code modifications aimed at (1) disabling
application features or devices or (2) putting devices in
low power mode/state. Some examples include: (1) disabling
logging [43], (2) “explicitly turn off SD card power after
each data cycle” [14], and (3) enabling audio codecs power
saving [22]. In particular, the last example shows that the
energy-saving modification is not always related to source
code, since it can also come in configuration files. We discuss
configuration files in more details in Section IV.

Energy bug fix (32 occurrences) This theme contains commits
that fix “Energy Bugs”. An energy bug is: “an error in
the system, either application, OS, hardware, firmware or
external, that causes an unexpected amount of high energy
consumption by the system as a whole” [70]. We consider
a commit as an Energy Bug Fix if the programmer clearly
states at the commit message that it will fix an energy bug.
Examples of energy bug fixes include (1) “Hiding a UI dialog
when the screen is off. Otherwise it causes continuous buffer
updates to SurfaceTexture even when SCREEN is turned off
(while In-Call) causing a spike in power consumption” and
(2) fixing a numerical overflow that causes wrong C-state
to be selected [16]. Interestingly, however, we observed that
energy bug fixes greatly differ in size. We have observed a
commit that fixes a power consumption issue by inserting
a single line of code [27]. This commit inserts a flag that
enables the application to go to sleep mode. Otherwise, using
the KEEP SCREEN ON flag, it would prevent the application
from going to sleep. Unfortunately, most of the commits do



not refer to an issue tracker. This prevented us from conducting
an in-depth investigation of the energy bug life-cycle.

Low power idling (21 occurrences) General rule of thumb
here is that the program, or a particular thread, will go to sus-
pend/sleep/power saving/low power. It also covers increasing
low power idle times. The rationale behind this theme comes
from the idea that sending the device to an idle state might
save energy. For instance, one of the solutions [42] is described
in Figure 1. After performing its work on every iteration of
the loop the device will be put in sleep mode until an external
event wakes it up.

for (;;) {
if (!Usb::start_of_frame())
continue;

Matrix::Scan();
Tick();
Usb::Tick();
Usb::SendReport();

}

⇓
for (;;) {
if (Usb::start_of_frame()) {
Matrix::Scan();
Tick();
Usb::SendReport();

}
sleep_mode();

}

Fig. 1. An example of low power idling

According to a recent study, idle states can be seen as
complementary to other energy savings techniques, and can
save up to 25% of energy consumption [62]. However, there
are at least two important concerns that the programmer should
consider when using this approach. First, putting threads in
an idle state may require polling to wake them up. Depending
on the polling frequency, it might be a double-edged sword,
increasing energy consumption behind the scenes. Second, the
frequency with which a thread is sent to an idle state, and then
waken up, is also important. If this frequency is too high, it
might increase the energy consumption due to several changes
of states.

Timing out (15 occurrences) This theme covers commits that
add, decrease or improve timeouts to stop a computation as an
attempt to decrease the number of times that the computation
is performed. Usually, the computation is wrapped in a loop,
which is continuously running until a threshold or a halt event
is reached. For instance, Figure 2 shows an example of such an
approach [13]. The author of such commit removed the condi-
tion if (scanTimes%100 == 0) which guarantees that
the application must run at least 100 times before getting the
opportunity to stop after the 3 minutes timeout. The removal
of the condition makes it possible for the computation to be

stopped earlier, saving energy by not performing unnecessary
work.

public void run() {
int scanTimes = 0;
while (isScanning){
scanTimes++;
if (scanTimes%100 == 0){
//stop after 3 min
if (currentTime-startTime>1000*3*60){
isScanning=false;
break;

}
doWork();

}}}

⇓
public void run() {
while (isScanning){
//stop after 3 min
if (currentTime-startTime>1000*3*60){
isScanning=false;
break;

}
doWork();

}}

Fig. 2. An example of timing out.

B. RQ2. What software quality attributes may be given prece-
dence over energy consumption?

We have observed cases where GITHUB contributors are
trading software energy consumption for other software at-
tribute. We found 42 commits in this regard. However, for
19 of them, we did not recognize what software quality
attribute was being considered. This happens mainly because
the commit message was poorly elaborated and we did not
infer any clear intention from it. Examples of such hard to
understand commit messages are (1) “no power saving in
X” [24], (2) “Remove Wifi power save off patch ” [31], and
(3) “turns off screen power saving” [41]. More importantly,
however, we observed that for all aforementioned cases, the
GITHUB contributor is disabling/removing the power saving
mode provided by a third-party device. Since these third-
party features are usually shipped as black-box functions,
the programmer is not able to understand the underlying
techniques being used behind the scenes and, with no other
choice, she trades this black-box power saving mode for
another software attribute. This suggests that such third-party
power saving libraries cannot be seen as silver bullets.

For the 23 remaining ones, we observed that the most
traded software attributes are the following: “Correctness”,
“Responsiveness”, “No actual energy saving”, “Performance”,
and “Miscellaneous”. We describe each one of them below.

Correctness (7 occurrences) One of the most interesting
observations from this group of commits is that ill-chosen
energy saving techniques can impact on the correctness of
a software, as stated by different GITHUB contributors, for



instance (1) “the power saving delay has the ability to corrupt
serial transmissions. Changing these to regular delays fixes
this” [33], (2) “USB autosuspend might be causing some trou-
ble with various smartboards and WLAN accesspoints” [32]
where “autosuspend” is a power saving mode, and (3) “Disable
Auto Power Saving when resetting the modem. This can cause
several bugs with serial communication” [8]. Likewise the
aforementioned unable to categorize ones, the root cause
for all correctness problems were due to the use of power
saving mode provided by third-party devices. In particular, two
GITHUB contributors have acknowledged the same correctness
problem: power saving mode can corrupt serial transmission.

Responsiveness (6 occurrences) Responsiveness is an im-
portant software attribute in general, and for smartphones in
particular. In this regard, 2 out of the 6 occurrences are related
to touch events, for instance: “For better Ux responsiveness
ondemand sampling rate needs to be 20ms. But, a 20ms
sampling rate increases power consumption. So, boost the
sampling rate to 20ms on every touch event for 2.5 ms and
later reset to default rate” [5]. Other two occurrences are
related to wifi usage, for instance: “Wi-Fi should be in active
state during the entire DHCP process, and shouldn’t go to
IEEE 802.11 power save mode. If the framework requests
scan during the DHCP process, the Wi-Fi chip has to start
scanning on channels different from the current one, and going
to power save mode is a prerequisite for scan. The result
directly impacts user experience: DHCP process takes longer,
and even can fail” [28].

Performance (3 occurrences) Performance is an energy con-
sumption close relative. As expected, programmers trade en-
ergy consumption for better performance, for instance: “The
lowest power level does not correspond to significant power
savings as the whole system doesn’t drop to SVS voltage.
Performace is improved without this level for serialized test
cases” [23].

No actual energy saving (3 occurrences) Some GITHUB con-
tributors did not observe any effective energy saving with the
employed solution. In these commits, the GITHUB contributor
is removing the supposed energy-efficient code. For instance,
“Enable LPA playback for music streams only. There are no
significant power savings for using LPA with other modes
like ringtone”[17], or “It is unlikely this gives any power
savings and only add some ugly code”[25]. Since we did not
find any mention to energy consumption profiling tools in the
commit messages, we believe that this perception of lack of
energy saving is based on developers own wisdom. However,
reasoning about the energy behavior of an application is not
a straight-forward task [76].

Miscellaneous (3 occurrences) In this category we grouped
all remaining commits. They vary from improve memory
usage [3], power saving not needed [9], and accuracy [26].

C. RQ3. How are energy-saving solutions distributed over the
software stack?

We have observed that the energy-saving commits are
spread over the entire software stack. We used the same
software layer definition provided by Stallings [83], which
encompasses Operating System, Libraries/Utilities and Appli-
cations. Operating System includes Kernels, Embedded Ker-
nels, Drivers and Firmwares. Libraries/Utilities include scripts
(general purpose scripts, building scripts and compile scripts)
and embedded libraries. Application includes embedded ap-
plications, desktop application, and mobile applications. To
determine the conforming software layer for each commit we
used as references: (1) the project description on GITHUB,
(2) the files names, extensions and directory structure and
(3) the changed source code itself and related documentation.
The project description generally provides an important hint
on the conforming layer as it describes the purpose of the
software. Files names, extensions and folder structure may also
give information about the stack level, e.g., a driver related
commit [15] may change files inside a folder named “driver”
or a commit to an Arduino application may change files ending
with an “.ino” extension [20]. In the same manner, the code
itself provides contextual information about the stack level, for
example, changes to code conforming to the same level may
follow a given pattern or have certain similarities [11], [40],
[12]. Table IV shows the number of energy-saving commits
per software level.

TABLE IV
COMMITS PER APPLICATION LEVEL.

Level # Commits
Application 93
Libraries/Utilities 53
Operating System 144

As we can see, most of the energy-saving commits are
targeting the Operating System level. In particular, Kernels
received the greatest number of commits (70 commits), fol-
lowed by drivers (53 commits). Application software received
93 commits. However, 48 of these commits are related to
embedded software — e.g.,21 commits are targeting Arduino
applications. The remaining ones, 45 of them, are targeting
traditional desktop and mobile applications. This low number
of commits is unfortunate because there is convincing evidence
that even better energy savings can be achieved by encouraging
application developers to produce energy-aware software so-
lutions [75], [77], [63]. Application developers ought to seize
more energy saving opportunities.

D. RQ4. To what extent are software developers certain that
their commits will save energy?

The lack of tools for developing energy-aware applications
is well-known (e.g, [68], [76]). However, our data suggest
that developers are actively performing energy-aware commits.
In this research question we analyze how certain software
developers are that a modification will in fact save energy. To



do so, we investigate if a set of “hesitating” words are used in
the commit messages. This set encompass “seem”, “might”,
“doubt”, “could”, “hope”, “attempt”, “supposed”, “guess”, and
“likely”. We then queried our commit database looking for
these hesitating words, and we found a total 18 energy-aware
commits. Some examples of such energy-aware hesitating
commits are the followings: (1)“Slowed down SensorProbe
sampling frequency in hopes of reducing power consump-
tion” [37], and (2) “Including some power savings modes. I
doubt they amount to much, but I’m not using any of them, so
why not” [19]. This finding suggests that software developers
may not be always confident when writing energy-efficient
applications. One might argue that the hesitation happens only
when a GITHUB contributor is performing a non-trivial task
with several code changes. However, we found cases where
a GITHUB contributor is performing a single variable change,
but she is not sure if the change will reduce positively energy
consumption, for instance: “This patch disables [a feature]
and advertises only SWSUP mode which seems to improve
performance and reduce power consumed in AV record use-
case” [21].

Second, we observed that 18 commits were reverted. Revert
is a GIT feature that undoes a given commit so that the branch
points again to the prior commit and discards the last one, even
though the reverted commit was already pushed to the main
repository. Interestingly, most of the reverted commits, 8 of
them, were using the power efficient work queue. According
to the documentation, “Workqueues can be performance or
power oriented. For performance we may want to keep them
running on a single cpu, so that it remains cache hot. For
power we can give scheduler the liberty to choose target cpu
for running work handler”4. Although we cannot be sure why
such commits were reverted, this result at least suggests that
the decision of when to use a power-efficient library should be
made with care; the trade-off between performance and energy
consumption is not always clear [77], [66], [57].

IV. FURTHER ANALYSIS

In this section, we provide additional discussion on the data
presented in the previous sections.

Mobile Applications. Thanks to the rapid proliferation
of mobile phones, tablets, and unwired devices in general,
energy-efficiency is becoming a key software design con-
sideration where the energy consumption is closely related
to battery lifetime. We found 47 commits that are targeting
mobile software. Although most of these commits are related
to Android Kernels, we found several commits that focus on
the application-level.

Energy Efficient Software Product Lines. It is well-known
that the Linux Kernel is developed as a software product
line [82]. One important challenge with software product lines
is to create the simplest working product, with no unnecessary
features. This is important because redundant code can intro-
duce inefficiencies that, when accumulated, can slow down the

4http://lwn.net/Articles/548281/

performance of an application [87]. This is also an important
concern with the Linux Kernel. We have found 13 commits
where the author is changing the Linux configuration files in
order to create a more energy-efficient kernel.

Check-Then-Act Oriented Programming. We found a total
of 27 commits that follow a check-then-act idiom. In such
commits, the programmer first verifies a given system property
is available and, if so, acts. For instance, the programmer
checks if the GPU is active, prior to collecting a sample. Such
programming style is useful to avoid unnecessary work. We
have found this programming style in different contexts, such
as: (1) “Disable accelerometer sensor while in-call and screen
UI is off ” [7], and (2) “charger: suspend when not animating”.
Yet, such check-then-act style can be useful to bulk different
energy saving techniques, for instance, “turns mobile data and
autosync on and off automatically [...] while the phone is
inactive, turns Wifi and Bluetooth off when disconnected for
a period of time, and reduces screen brightness and timeout
when battery levels get low” [18].

Energy-Aware Interfaces. We identified 58 commits that
were performed with the intention to create what we call
“energy-aware interfaces”. An energy-aware interface provides
means for clients (e.g., developers or end-users) to save energy
in their applications just by using a function, abstracting away
the low-level implementation details. These interfaces are of
particular importance to end-users because, without them, end-
users would not be able to access such low-level implementa-
tion details, e.g., because they work on the kernel mode. Take
as an example project android packages apps Settings,
which is an Android application. In its energy-aware com-
mit [35] it adds a feature on the application’s menu that
allows end-users to save energy by putting the WiFi in a
power saving mode — an end-user centric approach. On the
other hand, project i9105Sammy adds a new DVFS governor
designed for latency-sensitive workloads. According to the
commit message [2], this governor “attempts to reduce the
latency of clock increases so that the system is more responsive
to interactive workloads in loweset steady-state but to reduce
power consumption in middle operation level up will be done
in step by step to prohibit system from going to max operation
level”, a programmer-centric approach.

Energy-Aware Source Code Review. On GITHUB, when
a commit is pushed to a remote repository, other GITHUB
contributors can provide comments to the commit, so that
the original author can improve the existing commit based
on the comments provided in order to match with the team
expectations. In fact, we found 5 energy-aware discussions
in our dataset. These discussions are mostly related to the
behavior of the application on a particular scenario, for in-
stance, “what does happen if the screen turns on due to an
incoming call?” [4]. This low number of discussions found
does not suggest, however, that developers do not have interest
in discussing energy consumption issues. According to a recent
study, only few developers contribute to a broader range of
design discussions in a project [47].

http://lwn.net/Articles/548281/


V. IMPLICATIONS

Developers. The results of our study provide some assis-
tance to software developers. First, by showing that software
energy-efficiency is important and they cannot ignore it (Sec-
tion III). Second, our results encourage software developers to
make more energy-aware commits. In particular, we observed
that, even though application programmers can yield better
energy savings [75], [63], application software received about
half of the kernel/operating system commits (RQ3). Third,
with this study, developers can learn from mistakes made by
their peers (RQ2).

Researchers. Researchers can also benefit from our results.
We have observed that voltage and frequency scaling are
among the most often employed approaches to save energy
(RQ1). However, such techniques require an in-depth knowl-
edge of low-level implementations details, besides being error-
prone and omission-prone. Since developers believe in the
effectiveness of these techniques, researchers can propose
novel, high-level and ease to use techniques in order to reduce
the burden of using low-level ones (e.g., [45], [78]). Also,
this study provided evidence that third-party power saving
techniques cannot be seen as a silver bullet and, at the worst
case, can even corrupt a software (RQ2). Researchers can help
in this direction by providing an in-depth investigation of the
advantages and the disadvantages of general purpose power
saving techniques.

Library Designers. Our analysis showed that programmers
rely on energy-efficient libraries, such as the power-efficient
work queue (RQ1). We believe that energy-efficient libraries
can play an important role in reducing the burden of writing
energy-efficient applications. Library designers can, at least,
improve their documentation to mention how their libraries
behave, from an energy consumption standpoint. In partic-
ular, such documentation should explain in which scenarios
the library can, or cannot, be used, thus avoiding potential
correctness problems (RQ2). At best, library designers can
create energy-efficient versions of their libraries.

Tool Vendors. Developers are in need of appropriate tools
to measure/identify/refactor energy consumption hotspots [76].
Energy consumption tools do exist [57], [66], [68], but most of
them do not provide direct guidance on energy optimization,
i.e., bridging the gap between understanding where energy
is consumed and how the code can be modified in order to
reduce energy consumption. Tool vendors can play a role by
introducing novel tools for profiling energy consumption. With
appropriate tools, developers can be more certain about how
their modifications will impact energy consumption (RQ4),
and thus may hesitate less. Tool vendors can also play an
important role in empowering application developers, for
instance, supporting refactorings for energy-efficiency, thus
decreasing significantly the barrier for placing an energy-aware
commit (RQ1).

Lecturers in Computer Science. The results of this study
can be helpful for lecturers and students. First, the diversity
of projects showed in Section III can raise the discussion that

energy consumption issues are not only important for data
centers and high-performance computing in general, but for
simple applications as well. Also, our themes can be used in
programming-related courses to illustrate what are the real-
life solutions proposed by software developers when writing
energy-efficient software applications (RQ1). Lecturers can
incentivize students to provide additional solutions to these
problems, and potential problems behind them.

VI. THREATS TO VALIDITY

Internal validity. First, we collected the commits using a
GITHUB third-party mirror, GITHUBARCHIVE. Then, we can-
not be sure whether we are collecting all commits available on
GITHUB. This is, however, the most fair approach we found,
since GITHUB itself does not provide an interface for query-
ing commit messages among different software repositories.
Second, our approach does not cover the whole spectrum of
energy-related commit messages. To make the matters worse,
commit messages are often vague, meaningless, or have typo
errors. We mitigate this problem by searching with wildcards.
Thus, we can query terms regardless their position (in the
beginning, middle or end) in the commit message. Wildcards
also allow us to query part of the term (e.g., “consum*”, in-
stead of “consumption”), which can cover abbreviations, typos
or similar words. Third, commits categorization is human-
prone. For instance, a commit might be seen as “OK” for
one, but “RELATED” for another one. We mitigate this risk
by, at least, doubling-check each one of the analyzed commits.
When the authors did not agree with each other, a third
author was invited to the discussion and provided additional
comments. Fourth, we only analyzed commit messages written
in English. However, English is the de facto language used
to communicate in software development. Finally, since we
are not the commit authors, some findings might appear as a
over/under-generalization.

External validity. First, our results only apply to software
developers who performed energy-aware commits on GITHUB.
It does not cover software developers in other source code
hosting websites. Second, our results are limited by our selec-
tion of commit messages. Such commits were performed in
wide spectrum of non-trivial applications, ranging from operat-
ing systems, kernels, and mobile apps. These applications were
developed by different teams with 1 up to 1,320 contributors,
using different programming languages, from a large and var-
ied community. Third, there are other possible energy-related
source code manipulations beyond the scope of this paper.
With our methodology, we expected that similar analysis can
be conducted by others when they became relevant. Fourth,
this paper does not address the problem of understanding
whether these source code modifications actually save energy
consumption. Although we provide some discussions based
on the source code modifications, it is well known that energy
consumption is heavily application-dependent [77]. A defini-
tive answer would require a in-depth runtime investigation of
each target system. Finally, we have analyzed live and under
evolution systems. During our analyzes, we have observed that



some commits that were initially found became not-found. As
a means for replicability, we have download and stored all
commits analyzed in this study in a database. Along with it,
we make available a fine-grained report5. We encourage others
to replicate our study.

VII. RELATED WORK

Most of the existing software empirical research has focused
on the trade-off of comparing individual characteristics of
an application and energy consumption. These characteristics
vary from data structures [53], [60], [69], VM services [48],
cloud offloading [63], code obfuscation [81], and design
patterns [79], [64]. Such research serves as a guideline for
future energy-aware application programmers.

The mobile arena is also an important topic of research.
Hindle [58] investigated the relationship between software
changes (several versions of the Mozilla Firefox app) and
power consumption. The author observed that intentional
performance optimization introduced a steady reduction in
power consumption. Pathak et al. [71] categorized energy
bugs through analyzing the posts from 4 online forums. They
produced a comprehensive taxonomy ranging from battery
problems, SIM card problems, OS configuration problems, to
no-sleep bugs. Pathak et al. [72] presented an investigation
aiming to understand the root causes for energy consumption
problems in mobile applications. Linares-Vasquez et al. [67]
investigated Android API usage patterns that can potentially
consume high energy consumption. The authors observed that
while some anomalous energy consumption are unavoidable,
some can be avoided by using certain categories of Android
APIs and patterns. Similarly, Li et al. [65] presented the a large
scale study on the energy-efficiency of mobile applications.
Among the findings, we describe two of interest: (1) a few
set of APIs used in applications dominate non-idle energy
consumption and (2) an HTTP request is the most energy
consuming operation of the network.

However, to the best of our knowledge, there is only one
work that deals with the topic of understanding what are
the solutions proposed by software developers in order to
improve software energy consumption [76]. In this work,
Pinto et al. [76] surveyed STACKOVERFLOW, a programmer-
centric website, considering a developer-oriented view of
energy-aware software development. This work provides useful
insights such as the most common energy consumption related
problems, and the solutions to them. However, this work
focused on what developers believe. In contrast, this work
provides a set of solutions that developers actually employ
in the hope to save software energy consumption.

VIII. CONCLUSION

In this paper we analyzed what are the solutions created by
application programmers to save software energy consumption
in practice. Starting from a set of more than 2,000 commits
performed at several kind of open-source projects in Github,

5http://bit.ly/energy-aware-mining

we manually analyzed 371 of them. We conducted an in-
depth investigation in the source modified by such commits,
we categorized them in 12 main themes and discuss 6 of them.

In future work we plan to significantly expand the scope of
the paper study. In particular, we plan to investigate whether
the approaches identified here are consistent across multiple
mobile platform and operating systems. We also plan to
conduct energy consumption experiments in order to verify
if the identified approaches actually save energy, and if so
which is the degree of saving that can be achieved in each
solution. Also, we plan to contact the commit authors to
better understanding the intention behind the commit, and thus
mitigate the over/under generalization problem.

IX. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful comments, and the members of the SPG group6 for the
fruitful discussions. Gustavo is supported by CAPES/Brazil,
Felipe is supported by FACEPE (IBPG-0791-1.03/13), and
Fernando is supported by CNPq/Brazil (304755/2014-1,
487549/2012-0 and 477139/2013-2), FACEPE/Brazil (APQ-
0839-1.03/14) and INES (CNPq 573964/2008-4, FACEPE
APQ-1037-1.03/08, and FACEPE APQ-0388-1.03/14). Any
opinions expressed here are from the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] Adaptivex set to default governor. https://github.com/
RAZR-K-Devs/android kernel motorola omap4-common/commit/
4b3f259eb0f97fab24ac3b18667a67c18c33476b. Accessed: 2015-03-19.

[2] Added adaptive cpu governor. https://github.com/k2wl/i9105Sammy/
commit/e4a7fb4237b65cec9ca909c218331a41814cabac. Accessed:
2015-03-19.

[3] Added more comfortable ui to the attiny24 lamps. need more
flash! https://github.com/madworm/ATtiny projects/commit/
412bbd3a53c990bbbc2d65c9d189b55e4a7c73b1. Accessed: 2015-
03-19.

[4] Allows switching to power saving mode. https://github.com/k2wl/
i9105Sammy/commit/e4a7fb4237b65cec9ca909c218331a41814cabac.
Accessed: 2015-03-19.

[5] cpufreq: boost the sampling rate on touch event. https://github.com/
CyanogenMod/android kernel htc msm8960/commit/694447e. Ac-
cessed: 2015-03-19.

[6] defconfig: Enable hdmi toggle, enable thermal sys
module, thermal fra. https://github.com/RAZR-K-Devs/
android kernel motorola omap4-common/commit/
3f2329812930888d37c55dc616f6a8356ff95852. Accessed: 2015-
03-19.

[7] Disable accelerometer sensor while in-call and screen ui is
off. https://github.com/burstlam/android packages apps Phone/commit/
1e509fe6d08f66d7fab47e01c632a6bd181afb34. Accessed: 2015-03-19.

[8] Disable auto power saving. https://github.com/alobo/SerialGSM/commit/
c616b950bd144e9e4c32c337d6429d059ef12b94. Accessed: 2015-03-
19.

[9] Disable wifi power saving. https://github.com/
J1nx-Hackable-Gadgets/buildroot-linux-kernel-m3/commit/
46fa2eea1f1c86331e4ef9e53224c103bef95533. Accessed: 2015-03-19.

[10] drivers: cpufreq: ktoonservative: tune for being more
balanced and sa. https://github.com/RAZR-K-Devs/
android kernel motorola omap4-common/commit/
e25e040cfe71ae99bb6d66dec37d4ad118da920d. Accessed: 2015-
03-19.

6http://twiki.cin.ufpe.br/twiki/bin/view/SPG

http://bit.ly/energy-aware-mining
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/4b3f259eb0f97fab24ac3b18667a67c18c33476b
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/4b3f259eb0f97fab24ac3b18667a67c18c33476b
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/4b3f259eb0f97fab24ac3b18667a67c18c33476b
https://github.com/k2wl/i9105Sammy/commit/e4a7fb4237b65cec9ca909c218331a41814cabac
https://github.com/k2wl/i9105Sammy/commit/e4a7fb4237b65cec9ca909c218331a41814cabac
https://github.com/madworm/ATtiny_projects/commit/412bbd3a53c990bbbc2d65c9d189b55e4a7c73b1
https://github.com/madworm/ATtiny_projects/commit/412bbd3a53c990bbbc2d65c9d189b55e4a7c73b1
https://github.com/k2wl/i9105Sammy/commit/e4a7fb4237b65cec9ca909c218331a41814cabac
https://github.com/k2wl/i9105Sammy/commit/e4a7fb4237b65cec9ca909c218331a41814cabac
https://github.com/CyanogenMod/android_kernel_htc_msm8960/commit/694447e
https://github.com/CyanogenMod/android_kernel_htc_msm8960/commit/694447e
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/3f2329812930888d37c55dc616f6a8356ff95852
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/3f2329812930888d37c55dc616f6a8356ff95852
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/3f2329812930888d37c55dc616f6a8356ff95852
https://github.com/burstlam/android_packages_apps_Phone/commit/1e509fe6d08f66d7fab47e01c632a6bd181afb34
https://github.com/burstlam/android_packages_apps_Phone/commit/1e509fe6d08f66d7fab47e01c632a6bd181afb34
https://github.com/alobo/SerialGSM/commit/c616b950bd144e9e4c32c337d6429d059ef12b94
https://github.com/alobo/SerialGSM/commit/c616b950bd144e9e4c32c337d6429d059ef12b94
https://github.com/J1nx-Hackable-Gadgets/buildroot-linux-kernel-m3/commit/46fa2eea1f1c86331e4ef9e53224c103bef95533
https://github.com/J1nx-Hackable-Gadgets/buildroot-linux-kernel-m3/commit/46fa2eea1f1c86331e4ef9e53224c103bef95533
https://github.com/J1nx-Hackable-Gadgets/buildroot-linux-kernel-m3/commit/46fa2eea1f1c86331e4ef9e53224c103bef95533
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/e25e040cfe71ae99bb6d66dec37d4ad118da920d
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/e25e040cfe71ae99bb6d66dec37d4ad118da920d
https://github.com/RAZR-K-Devs/android_kernel_motorola_omap4-common/commit/e25e040cfe71ae99bb6d66dec37d4ad118da920d


[11] enable power save. https://github.com/samm-git/device alcatel
OT993D/commit/d108dccc376b62e79ab5800ceac6a3d5a6acb07e. Ac-
cessed: 2015-03-19.

[12] enable power saving after boot. https://github.com/
CyanogenMod/android device sony montblanc-common/commit/
bd032afd36ab0bd45c105239550d0d97d46bcf33. Accessed: 2015-03-
19.

[13] Energy saving added, scan start, stop responsiveness
added. https://github.com/Bagception/MiniMeLibrary/commit/
5b9882167377b32c69c8eabc35f58a1c58b78ec6. Accessed: 2015-
03-19.

[14] Explicitly turn off sd card power after each data cy-
cle. https://github.com/rickshory/AVRGreenlogger/commit/
bbd6f5e60fcf77192d2eb49ed0b6129a019af5d3. Accessed: 2015-03-19.

[15] fix power consumption issue caused by ill-defined power
state at startup. https://github.com/kugel-/rockbox/commit/
73732f406ebd3e5b85a70c8f7ff60fd26144551a. Accessed: 2015-03-19.

[16] Fixed wrapping timers at 4.294 seconds. https:
//github.com/desalesouche/kernel huawei u8220/commit/
13549799684cbf29200fc183529bcf9de9a33622. Accessed: 2015-
03-19.

[17] frameworks/base: Enable lpa for music stream only.
https://github.com/CyanogenMod/android frameworks base/commit/
283df8ca2e87c89ddb9952957319191281eba818. Accessed: 2015-03-
19.

[18] Import of power saving/management project. https://github.com/adein/
Tasker/commit/ef6669ee93562d4f14b44fca1b38f7871029caf1. Ac-
cessed: 2015-03-19.

[19] Including some power savings modes. https://github.com/pfriedel/
FiveMilSpire/commit/4c3652781307a60e6e2bbc5bce0ca5c53ad95c11.
Accessed: 2015-03-19.

[20] Interrupt and power saving. https://github.com/
barney-parker/Arduino-Countdown-Timer/commit/
9178594298dbf216a241c7dbfd5ecd2889588133. Accessed: 2015-
03-19.

[21] [ivahd] disable hwsup mode and save power. https:
//github.com/ch33kybutt/kernel cmplus tuna/commit/
342dd821bed948b15c40de7276094e6e011bd379. Accessed: 2015-
03-19.

[22] Module options for power saving in ac97 and hda
audio codecs. https://github.com/intelfx/configs/commit/
5d42182ea36188e58ad8f1e0c9104b92c6f65bc0. Accessed: 2015-
03-19.

[23] msm: kgsl: Remove lowest power level. https://github.com/
Team-Blackout/Blackout-Monarudo/commit/ed0c174. Accessed: 2015-
03-19.

[24] no power saving in x. https://github.com/lmio/liox/commit/
c12e2c5bdcca28a06b5c33245ddf5f93bb528969. Accessed: 2015-
03-19.

[25] ondemandplus governor: remove adaptive timer rate
logic. https://github.com/burstlam/leanKernel/commit/
4bfcac6cd2be96ef489aabee96301efe0789e111. Accessed: 2015-03-19.

[26] Only goes into power save if has lock. https://github.com/mattbrejza/
kraken/commit/4118a9a5570d3d144e9f9b06f22a1776760859d2. Ac-
cessed: 2015-03-19.

[27] Prevent lockscreen album art from activating flag keep screen on.
https://github.com/KitKatPurity/platform frameworks base/commit/
9f3d5cf. Accessed: 2015-03-19.

[28] Prevent scanning during dhcp process. https://github.com/
CyanogenMod/android frameworks base/commit/c70ebda. Accessed:
2015-03-19.

[29] Reduce voltage to lcd screen to save power. https:
//github.com/ryrzy/LG-D802-G2- Android KK D802 v20b/commit/
cebcdec40218cd3faa51a0e9a5a76082e417c77e. Accessed: 2015-03-19.

[30] Reduce wifi voltage for power savings. https://github.
com/Metallice/android kernel samsung espresso10/commit/
34f4738019a9e04c882ffa05bed1b40b81017c51. Accessed: 2015-
03-19.

[31] Remove wifi power save off patch. https:
//github.com/M66B/cm10-fxp-extended/commit/
756592b0c655a06f48a75ec10ae3f18f532281c0. Accessed: 2015-03-19.

[32] Rest: disable usb power save for fatclients and thin-
clients. https://github.com/opinsys/puavo-users/commit/

1bfb72030a7265bfe18b9a623b2bf1218834d4fd. Accessed: 2015-
03-19.

[33] Semi working - sensors read out, but bad ra-
dio. https://github.com/Teslafly/emonTH/commit/
659afda362c0e0a23dc36d6f56fa0aab83812c91. Accessed: 2015-03-19.

[34] Sensor: Enable the motion accelerometer for screen orientation
change. https://github.com/PSX-PureSpeed/android frameworks base/
commit/b37764a0f6268bd74166117a2603e76547a4a31a. Accessed:
2015-03-19.

[35] Settings: Wireless power saver. https://github.com/OmniKang/android
packages apps Settings/commit/06922d4ef1ea6b7a09c1ba3086cbea17.
Accessed: 2015-03-19.

[36] Shutdown s2w on screen on, and activate on
off. https://github.com/dorimanx/initramfs3/commit/
b423b7c7a8afecbeb95a0441acc8e8d3fdc45211. Accessed: 2015-03-19.

[37] Slowed down sensorprobe sampling frequency in hopes of reducing
power consumption. https://github.com/OpenSensing/funf-v4/commit/
b109d4bd71df191c414eab61ef57e00265f2afdb. Accessed: 2015-03-19.

[38] Test: Wcd9310: Use power efficient workqueue. https://github.com/
yseras/SGS4-3.13/commit/7618d681. Accessed: 2015-03-19.

[39] Tuned abyssplug for more power save! https://
github.com/dorimanx/Dorimanx-SG2-I9100-Kernel/commit/
fe6fc634b61f68306a8929b464e7d6ce1ff24a90. Accessed: 2015-03-19.

[40] Tuned govs to more agressive power save. https://github.com/dorimanx/
initramfs3/commit/a8d84e287a9c27828577d940f66d6a1245706157.
Accessed: 2015-03-19.

[41] Turns off screen power saving. https://github.com/lomogoto/ConfigFiles/
commit/ea6bf6ea591e2c94e5094dbcf90f94e5. Accessed: 2015-03-19.

[42] Updated to be more energy efficient. https://github.com/Ferroin/
mspbinclk/commit/c561c0db151d2988fdfce2f3482cc4846cdf45b9. Ac-
cessed: 2015-03-19.

[43] Use new control value to stol logcat from writing logs, and
save power! https://github.com/dorimanx/initramfs3/commit/
086132af909d46bb9dac3c713e5db0. Accessed: 2015-03-19.

[44] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 588–598, 2014.

[45] T. W. Bartenstein and Y. D. Liu. Green streams for data-intensive
software. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 532–541, 2013.

[46] A. Begel, J. Bosch, and M.-A. Storey. Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder. IEEE Softw., 30(1):52–66, Jan. 2013.

[47] J. a. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey.
Do developers discuss design? In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 340–
343, 2014.

[48] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and
yang of power and performance for asymmetric hardware and managed
software. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 225–236, 2012.

[49] Cat Phones. New research reveals mobile users want phones to have a
longer than average battery life. http://bit.ly/1Eccqr3, November 2013.
[Online; accessed 14-Feb-2015].

[50] L. F. Cortes-Coy, M. L. Vásquez, J. Aponte, and D. Poshyvanyk. On
automatically generating commit messages via summarization of source
code changes. In 14th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada,
September 28-29, 2014, pages 275–284, 2014.

[51] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
github: Transparency and collaboration in an open software repository.
In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1277–1286, 2012.

[52] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl:
Memory power estimation and capping. In Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED ’10, pages 189–194, 2010.

[53] E. G. Daylight, T. Fermentel, C. Ykman-Couvreur, and F. Catthoor.
Incorporating energy efficient data structures into modular software
implementations for internet-based embedded systems. In Proceedings
of the 3rd International Workshop on Software and Performance, WOSP
’02, pages 134–141, 2002.

https://github.com/samm-git/device_alcatel_OT993D/commit/d108dccc376b62e79ab5800ceac6a3d5a6acb07e
https://github.com/samm-git/device_alcatel_OT993D/commit/d108dccc376b62e79ab5800ceac6a3d5a6acb07e
https://github.com/CyanogenMod/android_device_sony_montblanc-common/commit/bd032afd36ab0bd45c105239550d0d97d46bcf33
https://github.com/CyanogenMod/android_device_sony_montblanc-common/commit/bd032afd36ab0bd45c105239550d0d97d46bcf33
https://github.com/CyanogenMod/android_device_sony_montblanc-common/commit/bd032afd36ab0bd45c105239550d0d97d46bcf33
https://github.com/Bagception/MiniMeLibrary/commit/5b9882167377b32c69c8eabc35f58a1c58b78ec6
https://github.com/Bagception/MiniMeLibrary/commit/5b9882167377b32c69c8eabc35f58a1c58b78ec6
https://github.com/rickshory/AVRGreenlogger/commit/bbd6f5e60fcf77192d2eb49ed0b6129a019af5d3
https://github.com/rickshory/AVRGreenlogger/commit/bbd6f5e60fcf77192d2eb49ed0b6129a019af5d3
https://github.com/kugel-/rockbox/commit/73732f406ebd3e5b85a70c8f7ff60fd26144551a
https://github.com/kugel-/rockbox/commit/73732f406ebd3e5b85a70c8f7ff60fd26144551a
https://github.com/desalesouche/kernel_huawei_u8220/commit/13549799684cbf29200fc183529bcf9de9a33622
https://github.com/desalesouche/kernel_huawei_u8220/commit/13549799684cbf29200fc183529bcf9de9a33622
https://github.com/desalesouche/kernel_huawei_u8220/commit/13549799684cbf29200fc183529bcf9de9a33622
https://github.com/CyanogenMod/android_frameworks_base/commit/283df8ca2e87c89ddb9952957319191281eba818
https://github.com/CyanogenMod/android_frameworks_base/commit/283df8ca2e87c89ddb9952957319191281eba818
https://github.com/adein/Tasker/commit/ef6669ee93562d4f14b44fca1b38f7871029caf1
https://github.com/adein/Tasker/commit/ef6669ee93562d4f14b44fca1b38f7871029caf1
https://github.com/pfriedel/FiveMilSpire/commit/4c3652781307a60e6e2bbc5bce0ca5c53ad95c11
https://github.com/pfriedel/FiveMilSpire/commit/4c3652781307a60e6e2bbc5bce0ca5c53ad95c11
https://github.com/barney-parker/Arduino-Countdown-Timer/commit/9178594298dbf216a241c7dbfd5ecd2889588133
https://github.com/barney-parker/Arduino-Countdown-Timer/commit/9178594298dbf216a241c7dbfd5ecd2889588133
https://github.com/barney-parker/Arduino-Countdown-Timer/commit/9178594298dbf216a241c7dbfd5ecd2889588133
https://github.com/ch33kybutt/kernel_cmplus_tuna/commit/342dd821bed948b15c40de7276094e6e011bd379
https://github.com/ch33kybutt/kernel_cmplus_tuna/commit/342dd821bed948b15c40de7276094e6e011bd379
https://github.com/ch33kybutt/kernel_cmplus_tuna/commit/342dd821bed948b15c40de7276094e6e011bd379
https://github.com/intelfx/configs/commit/5d42182ea36188e58ad8f1e0c9104b92c6f65bc0
https://github.com/intelfx/configs/commit/5d42182ea36188e58ad8f1e0c9104b92c6f65bc0
https://github.com/Team-Blackout/Blackout-Monarudo/commit/ed0c174
https://github.com/Team-Blackout/Blackout-Monarudo/commit/ed0c174
https://github.com/lmio/liox/commit/c12e2c5bdcca28a06b5c33245ddf5f93bb528969
https://github.com/lmio/liox/commit/c12e2c5bdcca28a06b5c33245ddf5f93bb528969
https://github.com/burstlam/leanKernel/commit/4bfcac6cd2be96ef489aabee96301efe0789e111
https://github.com/burstlam/leanKernel/commit/4bfcac6cd2be96ef489aabee96301efe0789e111
https://github.com/mattbrejza/kraken/commit/4118a9a5570d3d144e9f9b06f22a1776760859d2
https://github.com/mattbrejza/kraken/commit/4118a9a5570d3d144e9f9b06f22a1776760859d2
https://github.com/KitKatPurity/platform_frameworks_base/commit/9f3d5cf
https://github.com/KitKatPurity/platform_frameworks_base/commit/9f3d5cf
https://github.com/CyanogenMod/android_frameworks_base/commit/c70ebda
https://github.com/CyanogenMod/android_frameworks_base/commit/c70ebda
https://github.com/ryrzy/LG-D802-G2-_Android_KK_D802_v20b/commit/cebcdec40218cd3faa51a0e9a5a76082e417c77e
https://github.com/ryrzy/LG-D802-G2-_Android_KK_D802_v20b/commit/cebcdec40218cd3faa51a0e9a5a76082e417c77e
https://github.com/ryrzy/LG-D802-G2-_Android_KK_D802_v20b/commit/cebcdec40218cd3faa51a0e9a5a76082e417c77e
https://github.com/Metallice/android_kernel_samsung_espresso10/commit/34f4738019a9e04c882ffa05bed1b40b81017c51
https://github.com/Metallice/android_kernel_samsung_espresso10/commit/34f4738019a9e04c882ffa05bed1b40b81017c51
https://github.com/Metallice/android_kernel_samsung_espresso10/commit/34f4738019a9e04c882ffa05bed1b40b81017c51
https://github.com/M66B/cm10-fxp-extended/commit/756592b0c655a06f48a75ec10ae3f18f532281c0
https://github.com/M66B/cm10-fxp-extended/commit/756592b0c655a06f48a75ec10ae3f18f532281c0
https://github.com/M66B/cm10-fxp-extended/commit/756592b0c655a06f48a75ec10ae3f18f532281c0
https://github.com/opinsys/puavo-users/commit/1bfb72030a7265bfe18b9a623b2bf1218834d4fd
https://github.com/opinsys/puavo-users/commit/1bfb72030a7265bfe18b9a623b2bf1218834d4fd
https://github.com/Teslafly/emonTH/commit/659afda362c0e0a23dc36d6f56fa0aab83812c91
https://github.com/Teslafly/emonTH/commit/659afda362c0e0a23dc36d6f56fa0aab83812c91
https://github.com/PSX-PureSpeed/android_frameworks_base/commit/b37764a0f6268bd74166117a2603e76547a4a31a
https://github.com/PSX-PureSpeed/android_frameworks_base/commit/b37764a0f6268bd74166117a2603e76547a4a31a
https://github.com/OmniKang/android_packages_apps_Settings/commit/06922d4ef1ea6b7a09c1ba3086cbea17
https://github.com/OmniKang/android_packages_apps_Settings/commit/06922d4ef1ea6b7a09c1ba3086cbea17
https://github.com/dorimanx/initramfs3/commit/b423b7c7a8afecbeb95a0441acc8e8d3fdc45211
https://github.com/dorimanx/initramfs3/commit/b423b7c7a8afecbeb95a0441acc8e8d3fdc45211
https://github.com/OpenSensing/funf-v4/commit/b109d4bd71df191c414eab61ef57e00265f2afdb
https://github.com/OpenSensing/funf-v4/commit/b109d4bd71df191c414eab61ef57e00265f2afdb
https://github.com/yseras/SGS4-3.13/commit/7618d681
https://github.com/yseras/SGS4-3.13/commit/7618d681
https://github.com/dorimanx/Dorimanx-SG2-I9100-Kernel/commit/fe6fc634b61f68306a8929b464e7d6ce1ff24a90
https://github.com/dorimanx/Dorimanx-SG2-I9100-Kernel/commit/fe6fc634b61f68306a8929b464e7d6ce1ff24a90
https://github.com/dorimanx/Dorimanx-SG2-I9100-Kernel/commit/fe6fc634b61f68306a8929b464e7d6ce1ff24a90
https://github.com/dorimanx/initramfs3/commit/a8d84e287a9c27828577d940f66d6a1245706157
https://github.com/dorimanx/initramfs3/commit/a8d84e287a9c27828577d940f66d6a1245706157
https://github.com/lomogoto/ConfigFiles/commit/ea6bf6ea591e2c94e5094dbcf90f94e5
https://github.com/lomogoto/ConfigFiles/commit/ea6bf6ea591e2c94e5094dbcf90f94e5
https://github.com/Ferroin/mspbinclk/commit/c561c0db151d2988fdfce2f3482cc4846cdf45b9
https://github.com/Ferroin/mspbinclk/commit/c561c0db151d2988fdfce2f3482cc4846cdf45b9
https://github.com/dorimanx/initramfs3/commit/086132af909d46bb9dac3c713e5db0
https://github.com/dorimanx/initramfs3/commit/086132af909d46bb9dac3c713e5db0
http://bit.ly/1Eccqr3


[54] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. Anderson.
Quantifying the energy consumption of a pocket computer and a java
virtual machine. In Proceedings of the 2000 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’00, pages 252–263, 2000.

[55] J. Fereday and E. Muir-Cochrane. Demonstrating rigor using thematic
analysis: A hybrid approach of inductive and deductive coding and
theme development. International Journal of Qualitative, 5, 2006.

[56] Google. Eficciency: How can other do it – data centers. http:
//www.google.com/about/datacenters/efficiency/external/, 2015. [Online;
accessed 21-Jan-2015].

[57] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating
mobile application energy consumption using program analysis. In
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, pages 92–101, 2013.

[58] A. Hindle. Green mining: A methodology of relating software change
to power consumption. In Mining Software Repositories (MSR), 2012
9th IEEE Working Conference on, pages 78–87, June 2012.

[59] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design.
In Low Power Electronics, 1994. IEEE Symposium, 1994.

[60] N. Hunt, P. S. Sandhu, and L. Ceze. Characterizing the performance
and energy efficiency of lock-free data structures. In Proceedings of the
2011 15th Workshop on Interaction Between Compilers and Computer
Architectures, INTERACT ’11, pages 63–70, 2011.

[61] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 77–88,
2012.

[62] M. Kambadur and M. A. Kim. An experimental survey of energy
management across the stack. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2014, part of SPLASH 2014,
Portland, OR, USA, October 20-24, 2014, pages 329–344, 2014.

[63] Y. Kwon and E. Tilevich. Reducing the energy consumption of mobile
applications behind the scenes. In 2013 IEEE International Conference
on Software Maintenance, Eindhoven, The Netherlands, September 22-
28, 2013, pages 170–179, 2013.

[64] D. Li and W. G. J. Halfond. An investigation into energy-saving
programming practices for android smartphone app development. In
Proceedings of the 3rd International Workshop on Green and Sustain-
able Software, GREENS 2014, pages 46–53, 2014.

[65] D. Li, S. Hao, J. Gui, and W. G. J. Halfond. An empirical study of the
energy consumption of android applications. In 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, pages 121–130, 2014.

[66] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source
line level energy information for android applications. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ISSTA 2013, pages 78–89, 2013.

[67] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk. Mining energy-greedy api usage
patterns in android apps: An empirical study. In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014,
pages 2–11, 2014.

[68] K. Liu, G. Pinto, and D. Liu. Data-oriented characterization of
application-level energy optimization. In Proceedings of the 18th
International Conference on Fundamental Approaches to Software En-
gineering, FASE’15, 2015.

[69] I. Manotas, L. Pollock, and J. Clause. Seeds: A software engineer’s
energy-optimization decision support framework. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014,
pages 503–514, 2014.

[70] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging
on smartphones: A first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 5:1–5:6, 2011.

[71] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging
on smartphones: A first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 5:1–5:6, 2011.

[72] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof.
In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 29–42, 2012.

[73] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my
phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’12, pages 267–
280, 2012.

[74] T. Pering, T. D. Burd, and R. W. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Proceedings of the
1998 International Symposium on Low Power Electronics and Design,
1998, Monterey, California, USA, August 10-12, 1998, pages 76–81,
1998.

[75] G. Pinto and F. Castor. Characterizing the energy efficiency of java’s
thread-safe collections in a multicore environment. In Proceedings of the
SPLASH’2014 workshop on Software Engineering for Parallel Systems
(SEPS), SEPS ’14, 2014.

[76] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 22–31, 2014.

[77] G. Pinto, F. Castor, and Y. D. Liu. Understanding energy behaviors
of thread management constructs. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’14, pages 345–360, 2014.

[78] H. Ribic and Y. D. Liu. Energy-efficient work-stealing language
runtimes. In Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5,
2014, pages 513–528, 2014.

[79] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. E. Kiamilev, L. L.
Pollock, and K. Winbladh. Initial explorations on design pattern energy
usage. In First International Workshop on Green and Sustainable
Software, GREENS 2012, Zurich, Switzerland, June 3, 2012, pages 55–
61, 2012.

[80] C. Sahin, L. L. Pollock, and J. Clause. How do code refactorings
affect energy usage? In 2014 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, Torino,
Italy, September 18-19, 2014, page 36, 2014.

[81] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause. How
does code obfuscation impact energy usage? In 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, pages 131–140, 2014.

[82] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. Is
the linux kernel a software product line? In Proc. SPLC Workshop on
Open Source Software and Product Lines, 2007.

[83] W. Stallings. Operating Systems - Internals and Design Principles (7th
ed.). Pitman, 2011.

[84] TheGuardian. Facebook ’unfriends’ coal and ’likes’ clean
power. http://www.theguardian.com/environment/2011/dec/15/
facebook-coal-clean-power-energy-greenpeace, 2015. [Online;
accessed 21-Jan-2015].

[85] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang. Network structure of
social coding in github. In Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, CSMR ’13,
pages 323–326, 2013.

[86] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Assmann. Energy
consumption and efficiency in mobile applications: A user feedback
study. In Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing, pages
134–141, Aug 2013.

[87] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky. Go with
the flow: Profiling copies to find runtime bloat. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’09, pages 419–430, 2009.

[88] C. Zhang, A. Hindle, and D. M. Germán. The impact of user choice on
energy consumption. IEEE Software, 31(3):69–75, 2014.

[89] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang. Refac-
toring android java code for on-demand computation offloading. In
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12,
pages 233–248, 2012.

[90] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving energy efficiency of
location sensing on smartphones. In Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, MobiSys
’10, pages 315–330, 2010.

http://www.google.com/about/datacenters/efficiency/external/
http://www.google.com/about/datacenters/efficiency/external/
http://www.theguardian.com/environment/2011/dec/15/facebook-coal-clean-power-energy-greenpeace
http://www.theguardian.com/environment/2011/dec/15/facebook-coal-clean-power-energy-greenpeace

