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Abstract. This paper presents a case study of the application of eScience tools and practices for 
the social science research community studying Free/Libre Open Source Software (FLOSS) 
development practices. We first describe what we mean by eScience and introduce research on 
FLOSS to motivate the need for eScience tools and approaches. We then describe our initial 
efforts to introduce eScience tools for FLOSS research, potential obstacles, and how the use of 
such tools might affect the practice of research in this field.  
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1 Introduction  

eScience is the use of information and communications technologies (ICT) to support scientific 

work. Nentwich (2003) defines eScience (using the term CyberScience) more specifically as 

“scholarly and scientific research activities in the virtual space generated by the networked 

computers and by advanced information and communication technologies” (Nentwich 2003, p. 

22). eScience is also known as eResearch, CyberScience or Science 2.0, and the supporting 

systems as cyber-infrastructure or scientific collaboratories. The different terms are popular in 

different settings, eScience being common in Europe, while the US National Science 

Foundation (NSF) typically refers to cyber-infrastructure. Because there are many types of ICT 

and many kinds of scientific activity to which they can be applied, eScience encompasses a 

broad range of distinct cyber-infrastructure applications. For many, cyber-infrastructure means 

high performance computing, e.g., grid computing to support analyses of large volumes of data 
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and simulations, for many the third approach to science, between theory and experiment. But 

cyber-infrastructure also includes Internet-enabled applications to connect scientists to a variety 

of resources: data, knowledge and other researchers.  

Data might come from instruments directly connected to the Internet, a shared 

instrument, or from structured data repositories in a community data system. Knowledge might 

be captured in digital libraries of journal articles or, increasingly, of article preprints. 

Connections between data and knowledge can also be made explicit; a simple step is to link 

publications to data sources and vice versa. More interestingly, scientific workflow tools can be 

used to capture analysis steps explicitly in an executable format, enabling reuse and sharing of 

analyses. Increasingly, eScience applications are built using semantic web technologies that 

enable automated reasoning about scientific knowledge. Finally, because science is not a 

solitary pursuit, eScience applications can also include groupware to connect researchers to 

other researchers and thus support scientific collaboration. These applications can range from 

simple email lists connecting collaborators, to digital libraries of various scopes, to newer 

collaborative applications such as wikis, shared document editors or semantic web reasoners. 

These tools can support virtual collaborations of different scales and degrees of formality. For 

example, discussion boards linked to papers in preprint archives have been proposed to augment 

or even replace some of the functions of conventional peer review (Nentwich, 2003). To the 

above list of technologies, we must add the necessary social institutions needed to make the 

technology successful, a point that we will discuss in more detail below.  

As with the applications of ICT to other kinds of work, eScience is presented as having 

substantial promise to reshape and enhance the way science is done. For example, a report by 

the US National Science Foundation (NSF) Cyberinfrastructure Council, Cyberinfrastructure 
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Vision for 21st Century Discovery, calls a "comprehensive cyberinfrastructure essential to 21st 

century advances in science and engineering research and education", and NSF has backed this 

vision by the creation of an Office of Cyber-Infrastructure to fund eScience efforts. However, 

the reality of eScience implementation is more mixed. While eScience is extensively applied in 

some fields such as physics or biology, it is scarcely visible in others. This paper introduces the 

concepts behind eScience and then presents a case study of the application of these ideas to a 

particular research area, namely social science research on the development of Free/Libre Open 

Source Software (FLOSS). This paper has two purposes: to identify potential applications of 

eScience ideas to benefit the FLOSS research area and to use this case study of eScience in a 

particular field to reflect on issues that arise in the application of eScience in the social sciences 

more generally.  

2 eScience for FLOSS research 

In this section, we explore how eScience is and could be applied to the social science study of 

free/libre open source software (FLOSS) projects. FLOSS research presents a useful case study, 

as it is interdisciplinary, small enough to comprehensible but diverse enough to present a variety 

of issues, and has some nacent eScience applications. Our goal is to explore characteristics of 

FLOSS research to understand the extent and potential for the adoption of eScience tools and 

practices in this field, shedding light on the broader applicability of these ideas. We therefore 

start by sketching the state of existing research on FLOSS.  

FLOSS is a broad term used to embrace software released under an “open source” 

license and often developed in a community-supported mode. Due to their size, success and 

influence, the Linux operating system and the Apache Web Server are the most well known 

FLOSS projects, but hundreds of others are in widespread use. Over the past ten years, FLOSS 
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has moved from a curiosity to mainstream, with a concurrent increase in the amount of research 

examining this phenomenon. Some of this research has focused on FLOSS as a new approach to 

innovation in the software industry, characterized by a rapid and reliable software development 

process. In addition, FLOSS has attracted great academic interest because it provides an 

accessible example of other phenomena of interest. For example, researchers have turned to 

FLOSS projects as examples of virtual work, as they are dynamic, self-organizing, and 

composed of distributed individuals working in loosely coupled teams. Effective FLOSS 

development teams somehow profit from the advantages and overcome the disadvantages of 

distributed work, and their emphasis on distributed work makes them useful as a research 

setting for isolating the implications of this organizational innovation. Traditional organizations 

have also taken note of these successes and have sought ways of leveraging FLOSS methods for 

their own distributed teams.  

FLOSS as an object of study appears to be particularly apt for the application of 

eScience practices, most clearly in terms of data availability. FLOSS teams create and retain 

public archives as a record of their activities. These archives provide researchers unparalleled 

access to data on the processes of these teams. As well, the source code of the systems is always 

available, often for many releases and even change-by-change in source code control systems, 

such as CVS. However, the ready availability of primary data is a misleading indicator of the 

nature of FLOSS research. Precisely because data are by-products, they are rarely in a form 

useful for researchers. Instead data are embedded in HTML pages, CVS log files, or text-only 

mailing list archives. Furthermore, because FLOSS projects are hosted in a variety of “forges” 

(of which Sourceforge is the largest) or individual websites with differing structures, these 

problems are multiplied. Research projects expend significant energy collecting and re-
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structuring these data sources for their research. FLOSS research to date has often involved 

redundant data collection by independent research groups, usually through spidering 

Sourceforge or similar FLOSS development sites (Howison et al., 2005, Antoniades et al., 2007, 

Conklin et al., 2005, Howison et al., 2006a). 

To support FLOSS research and to help the diverse collection of researchers interested in 

FLOSS mature into a research community, we envision a shared cyber-infrastructure that will 

facilitate access to data, analyses, papers and other researchers. This infrastructure will include 

both a technological base as well as a set of enabling social mechanisms. Initial building blocks 

of this infrastructure already exist but considerable additional work is needed, as we discuss 

below. In the remainder of this section, we discuss possible applications of eScience to FLOSS 

research, before turning to a more detailed example in the following section. To make the 

overview discussion more concrete, we will consider the example of a researcher interested in 

testing Conway’s law, which states that the structure of product mirrors the social structure of 

the group that develops it (Conley, 2008, Conway, 1968, Herbsleb and Grinter, 1999). 

2.1 Data  

To test our example proposition, we first need data for team structures and the structure of their 

software products over a period of time, ideally for a number of different teams operating under 

different conditions. As discussed above, FLOSS research is facilitated by the fact that much of 

the relevant data is “born digital”, and with the growing use of ICT, an increasing volume of 

such “trace” data is available in many settings. Significant progress has been made in the past 

few years in creating shared data sets held in what have been called Repositories of Repositories 

(RoRs) (Antoniades et al., 2007), which provide raw data on FLOSS projects and the products 

they build, such as FLOSSMole (Howison et al., 2006a), the Notre Dame SourceForge 
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repository (http://www.nd.edu/~oss/Data/data.html) and CVSanalY (Robles et al., 2004). These 

repositories provide project-level data for thousands of projects, including project 

characteristics, forums, trackers, source code, and so on. Making all of the available data usable 

also requires efforts to create better metadata, such as data dictionaries, provenance information, 

and entity resolution for developers' online identifiers. A useful contribution could be made 

simply by cataloging the available data, e.g. (Howison et al., 2008).  

A second challenge in finding data for the example study is developing a suitable sample 

of projects. As with any kind of positivist research, the key requirement is an explicit population 

of interest for the research question and a representative sample selection. Developing such a 

sample for FLOSS research can be fraught with complications. For example, many projects 

registered in a forge may not have released software, making them inappropriate for the 

example research question. A subtler problem is that code released may not be the product of a 

group effort, meaning that there is no group structure to compare to the code structure. More 

generally, researchers may want to test their propositions with groups of a particular type, e.g., 

distributed groups, or projects that have released mature code. Researchers would therefore 

benefit from accessing information such as sampling frames and previously studied samples of 

projects known to be comparable on different dimensions. A possible application would be a 

shared census of FLOSS projects to establish the universe of study, including descriptive data 

about projects, as well as ways to describe the sample used in any particular study.  

2.2 Analyses  

Given the data and an appropriate sample, a further challenge is raising the level of analysis 

from raw data to the concepts of interest to test the propositions. Again, connecting data and 

theory is a problem in any research, but is particularly problematic in the social sciences, where 



Working draft as of August 6, 2008 

7 

concepts may lack precise operationalizations. As well, such connections are particularly 

difficult when dealing with trace data, which are the byproducts of behaviours rather than 

measures of theoretical constructs. In the example research problem, concepts of interest are 

social structure and software structure, which can be defined and operationalized in many ways, 

using social network analysis (e.g., (Crowston and Howison, 2005)) or formal team 

membership, geographical proximity, or person-to-person contacts (Cataldo et al., 2006). 

Software structure can be measured with an array of metrics, such as coupling and cohesion 

(Conley, 2008, Kemerer and Slaughter, 1999).  

To connect our sample proposition to the existing literature, we would prefer where 

possible to reuse accepted conceptual definitions. Theoretical definitions and 

operationalizations of concepts are typically described in research publications, but even with 

full-text searching, identifying papers that have used a particular concept is difficult. 

Furthermore, it is often the case that published descriptions of data analysis are too terse to be 

easily replicated, a problem exacerbated by publication length restrictions. For example, data 

often require complex cleaning steps, which are rarely described to the level of detail required 

to duplicate the results. One possible improvement is sharing of intermediate research results, 

either as new data sets or as annotations on existing data. For example, email data might be 

coded for various theoretical concepts, e.g., those showing team structure and source code might 

be analyzed for code structure, complexity or to illuminate project interdependencies. The 

resulting datasets could themselves be shared, with appropriate metadata describing their 

provenance, and used as a starting point for further studies.  

A more useful form for conceptual definitions is a computational representation of their 

operationalizations, which allows them to be tweaked, critiqued, and easily applied to new data. 
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Scientific workflow systems are one type of tool which support high-level programming that 

binds together data sources and analysis procedures. Known collectively as “scientific workflow 

tools”, examples include Taverna (http://taverna.sourceforge.net) and Kepler (http://kepler-

project.org). The software follows the same basic principles: steps in a workflow are performed 

by modular components with multiple input and output ports through which the components are 

linked. As with most programming environments, much of these tools’ utility derives from their 

library of local and remote components, which can be applied to both quantitative and 

qualitative data. The workflow specification can be shared via email or posted on a website as 

an appendix to a publication. In this case, a researcher might retrieve a workflow that computes 

team structure from interactions on a developer email list, thus ensuring the use of the same 

definition of the concept as in prior work, or allowing a more precise comparison of existing 

and novel conceptualizations. In a later section of the paper, we will present a more detailed 

example of the use of workflow tools to illustrate these points. 

2.3 Other researchers  

Finally, our example researcher could benefit from interaction and collaboration with other 

FLOSS researchers to help them hone the research questions and approaches. The FLOSS 

research community already has several mailing lists on which researchers share news and 

occasional questions about data or research approaches. The lists associated with particular data 

repositories seem to have more substantive discussion, focused by the challenges of working 

with the data. 

However, these are still relatively minor efforts, leaving great opportunity to enhance 

interaction among researchers. For example, the FLOSS research community has a preprint 

database with more than 200 articles and efforts are being made to improve the articles' 
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metadata to facilitate access, e.g., by cataloging the concepts examined in the articles. The 

repository could support discussion of posted articles, thus mirroring some of the functions of 

conference presentation or peer review, but over longer timescales with wider audiences. 

Sharing intermediate research results might facilitate identification of possible research 

collaborators so that rather than duplicating work, researchers might be able to draw on the 

specialized knowledge of others. More ambitiously, the community could develop shared 

information resources, such wikis or more structured knowledge bases of research findings. 

3 Case Study: Replicating FLOSS research using cyber-infrastructure 

In this section, we present a more detailed case study of the use of one class of cyber-

infrastructure to support FLOSS research. As a proof of concept of the applicability of eScience 

ideas to FLOSS research, the authors (with Megan Conklin of Elon University) have received 

US National Science Foundation funding for a project that includes using data repositories and 

Taverna workflows to replicate five published studies. In this section, we discuss this replication 

effort in more detail. The selected studies for replication are shown in Table 1. These studies 

were chosen because they draw on the large data repositories described above, spanning a range 

of research questions and approaches amenable to automated analysis. 

Our replication effort is expected to have several benefits. First and foremost, it provides 

evidence to the community of the applicability of the tools of eScience, thus promoting 

adoption. Second, by replicating the studies using shared data sources and analysis workflows, 

we can extend the original analyses, e.g., by testing alternate choices of variables used to 

determine project success or applying the analysis to additional data covering larger periods of 

time or more projects. We also found benefits from more precise operationalizations of the 

concepts in the papers. Finally, the effort will provide a set of local and SOAP components that 
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can be reused in other workflows.   

Table 1. Studies chosen for replication.  

Study Description 

Crowston & Scozzi, 
2008 

Applies competency rallying approach to predict success of projects 
based on various project factors.   

Conklin, 2004 Examines if distribution of project sizes is consistent with a developers 
joining projects in a scale-free network.  

Howison et al., 
2006b 

Examines dynamics of social networks of project communications over 
time.  

Robles et al., 2005 Examines growth rate of software.  

English and 
Schweik, 2007 

Classifies FLOSS projects based on metrics for success versus 
abandonment and stage of project growth.  

 

In the first part of this section, we discuss the experience of developing replication 

workflows before summarizing some lessons learned in the following section. At a high level, 

the steps in replication were fairly straightforward. We began by evaluating the data, methods, 

analysis, and findings reported in our selected papers. From this, we generated a specification of 

data requirements, drawing on data in the repositories, and a list of desired outputs, followed by 

an abstract workflow representing the expected analysis to get from data to outputs. In doing so, 

we consulted the original authors of the works that we were replicating for advice on their 

original data selection parameters and to clarify the operationalization of some constructs in the 

papers. Workflow components were then created or selected and linked together to achieve the 

operational specifications represented in the abstract workflow. The resulting workflow 

underwent iterative testing and development until it was fully functional. Our process for 

replicating research was collaborative, as the more complex workflows required the cooperative 

efforts of two individuals with complementary skills. When the workflow was considered 
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functionally complete, it was documented, shared with other researchers, and used to explore 

the analysis results. The ease with which we were able to collaboratively develop complex 

analyses demonstrates several of the benefits of using Taverna and the agile, iterative approach 

that we employed in our collaborative development efforts.  

3.1 Building FLOSS workflows  

We start by describing in more detail the development process, using the English & Schweick 

(2007) paper as an example. This paper used various FLOSS project metrics to classify projects 

according to stage of growth and success versus abandonment. The classification requires 

retrieving and consolidating data about each project (e.g., release history) and then sorting 

projects into categories based on this data. As mentioned above, the first step of the replication 

is identification of the data needs for the workflow, followed by development of an abstract 

workflow that captures the main steps in the analysis. We then translate the abstract processes 

into operational processes, building a workflow by directing inputs through modular component 

processors into outputs; the components can be RShell (running the R statistical package with 

an RServe instance), Beanshell (simplified Java scripting), command-line operations, SOAP 

web services or local Java shims for common operations. In the abstract workflow for the 

classification (Figure 1), the inputs are parameters to the workflow; project data are retrieved 

from the databases in the get_data_subworkflow component. The data are manipulated for 

analysis in the summarize_releases_subworkflow and the Concatenate_two_strings Java shim. 

The classification_subworkflow component represents the main analytical process of classifying 

projects based on the project data, and in this early stage of workflow development, the specific 

workflow outputs were not yet defined. 
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Figure 1: The collaboratively developed abstract workflow for the replication of the 
classification of FLOSS projects from (English and Schweik, 2007). 

Development of the workflow components had an unanticipated benefit. As we worked 

through translating the classification criteria into a truth table to describe the classification 

subworkflow, we discovered that several cases were not described in the table of the published 

paper, likely because no projects with that mix of characteristics existed in the original sample. 

By applying the principle of inheritance to some of these missing cases, we were able to address 

the gaps in a manner consistent with the original classification, but one negative case remained 

somewhat ambiguous.      

3.2 Using the workflows  

After developing each workflow, we applied it to replication and exploration. To validate that a 

workflow correctly captured the original authors' intent, we ran it with a data sample 

appropriate for comparison to the original work. For some replications we had more data 

available due to the passage of time, and in others we had less due to the limitations of the 
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repository data sources. In these cases, we made the most reasonable comparison possible, 

seeking a similar distribution or proportion of classification outcomes to the original work. An 

example of our results are shown for the Conklin study in Figures 2 – 5 (Conklin, 2004). 

Conklin's analysis showed that the network of projects and developers exhibits a scale-free 

structure. As a comparison of the figures shows, the original and replicated distributions are 

very similar despite a marked increase in number of projects analyzed, from under 20,000 in 

the original work to over 65,000 in the replication analysis.  

 

 
Figure 2 

 

 

 
Figure 3 

 
Figure 4 

 
Figure 5 

Figures 2, 3, 4, 5: our replication (Figures 4 & 5) mirrors the original findings (Figures 2 & 3, 
used with author's permission) from the Conklin presentation on the scale-free structure of 
FLOSS developer-project networks (Conklin, 2004). 

Recreating prior research analyses also provided the opportunity to extend the original 
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work. For some workflows, we implemented the future work suggestions from the authors, as 

well as our own ideas for alternative processes. For example, developing two alternative 

approaches for calculating a particularly complex metric for a construct in the English & 

Schweick (2007) classification workflow was simple once the rest of the workflow design was 

in place. The immediate result of comparing the authors' original release rate measure to the one 

that they proposed as future work was striking: the tested values for a handful of projects known 

to have achieved successful software production shifted from a classification status affirming 

their success to an indeterminate status. 

Workflows also facilitate sensitivity testing on critical thresholds or input values. For 

example, the Howison et al. (2006a) paper used a sliding time window with network data to 

create dynamic social networks. Implementing this analysis as a workflow made it easy to 

examine the effects of changing the window size (Figure 6). While exhaustive sensitivity testing 

remains to be completed, we expect to implement this analysis with a reusable sensitivity testing 

workflow to automatically analyze and compare combinatorial sets of parameter values. The use 

of a workflows makes the otherwise onerous task of sensitivity testing much more manageable 

for a complex analysis, allows the researchers to more fully explore their analysis parameters 

and thus enables a more rigorous validation of the analysis results.  
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Figure 6: Workflow analysis tools allow easy comparison of analysis parameters, such as the 
length of a sliding window for smoothing dynamic data. 

 

3.3 Sharing the workflows   

Finally, sharing an analysis workflow begins a stage of development in which peer feedback can 

play an important role in improving and extending the research. To prepare a workflow for 

sharing, metadata are assigned to every component to describe the relevant details for 

understanding the analysis, such as input values, processor functions, and configuration options 

for running alternative analyses. Any processes that access repository databases directly or 

leverage web services created to support the analysis are carefully engineered so that the shared 

workflow does not pose security problems to the server that provides the web services. Once 

these issues have been addressed, the workflow is shared on MyExperiment.org, from which we 

can link papers or data sets that are related to the analysis, allowing us to better close the loop 

between data and results. 

Sharing analysis workflows with researchers outside of our own research group also 
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achieves the desired transparency of operational specifics that the published papers themselves 

do not possess, so the workflows also allow more rigorous evaluation of the research. This is 

especially valuable in an area where many researchers are using the same raw data sources but 

handling them differently, leading to questions surrounding validity. If researchers routinely 

provided such transparent details of their analyses, the entire research community could more 

usefully compare different measures of concepts, indicating another potential long-term benefit 

from adoption of these methods and tools. 

3.4 Lessons Learned  

The effort of replicating research with eResearch workflows provided many learning 

opportunities. In this section, we discuss our observations about the use of eScience for FLOSS 

research that may have implications for the application of eScience ideas to social science more 

generally. We found that data is one particularly key issue; although data are readily available in 

repositories amenable to use with workflows, handling the data is a more significant challenge 

than we foresaw. In addition, we found that designing for flexibility and transparency eased the 

collaborative development process, yielding workflow products that are well suited to reuse and 

repurposing. 

3.4.1 Data  

In selecting research to replicate, we chose studies requiring data from several FLOSS 

repositories, and one study that required data from multiple sources. Our success in meshing 

data from two repositories for the English & Schweick (2007) classification workflow proves 

that it is possible to leverage the federated wealth of FLOSS data resources, but the experience 

also suggests that our repository managers will need to consider how to better accommodate this 
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type of data usage scenario if we hope to support use by a broader population of researchers. 

We were fortunate to have individuals with excellent understanding of the data repository 

contents and the skills to employ a variety of methods to retrieve data from different sources, 

but this is not the case in every research group. 

Combining data drawn from multiple repositories was challenging, but we were 

fortunate that in our research population—FLOSS projects—each project adopts a unique 

identifier by forge, and these identifiers are not only present but consistent across FLOSS data 

repositories. Without this key identifier, cross-repository analysis would have been significantly 

impeded. Unfortunately, the existence of a unique identifier across data sources is likely an 

exception rather than the norm. Semantic technologies seem particularly promising for 

improving data retrieval by increasing interoperability across multiple data repositories without 

requiring structural changes to the repository databases. The challenges we encountered with 

data indicates this a primary area for improvement; creating and extending a library of reusable 

components for handling FLOSS repository data will make a significant impact by improving 

data accessibility if eScience approaches are more widely adopted in the FLOSS research 

community. 

3.4.2 Design for flexibility and transparency  

We also developed some useful experience in approaches to workflow development. To 

maximize the potential uses of the workflows, our goal was to produce analysis workflows that 

are modular, transparent, reusable, and have low interdependence. To accomplish this goal, we 

applied two guiding design principles. First, we parameterized all thresholds and variables. This 

parameterization enables sensitivity testing of the values, where the original research typically 

used only one carefully selected value. The resulting design of the workflow incorporates more 



Working draft as of August 6, 2008 

18 

inputs while permitting maximum flexibility. 

Second, we created simple components with low interdependence, following the design 

philosophy of creating "small things loosely connected." We attempted to reduce each 

component to just one operation or data manipulation; these small components have maximum 

reusability and transparency, both in their internal code (for Beanshell or RShell) and in the 

structure of interdependence of operations. This design approach has numerous benefits, 

yielding workflows that were more transparent, less system-dependent, and easier to 

troubleshoot and share. 

Modularity yielded several notable benefits. First, by constructing our workflows with 

many small components, we found it easier to co-develop the components and integrate 

independent efforts. It also permitted us to easily and quickly change strategies by inserting new 

components that required minimal adjustment of the existing workflow structure. For example, 

two researchers independently designed, developed and tested the subworkflows defined in the 

abstract workflow for the English & Schweick (2007) replication, and then merged our 

subworkflows and components to create a fully functional workflow (Figure 7). The task of 

merging the workflows was remarkably fast and straightforward despite the overall complexity 

of the analysis, and required less than 15 minutes of effort. The resulting workflow, shown in 

Figure 7, appears quite complex, but the modular structure means that much of that complexity 

can be hidden.  
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Figure 7: The most recent version of the classification workflow. Note that most of the 
workflow complexity lies in the "GetData" subworkflow that accesses repositories and 
prepares the raw data for analysis. 

However, modularity must be moderated with good sense; for example, in our 

classification workflow, each pre-classification criterion check (e.g., are there enough 

downloads to consider this software useful?) is an independent component but the actual 

classification determination resides in only one component, which has a much higher internal 

complexity, but also serves as a human-readable logically complete truth table. In this case, the 

transparency of the process is improved by containing the whole of the classification in one 
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component. 

Second, the workflow analysis software directly supports a modular development 

approach by allowing use of a variety of component types in implementation. For example, we 

created Web services for one of our replications, using SOAP to wrap the existing code from the 

original research analysis for the replication. The same processes could be achieved by 

developing local Beanshell scripts to perform the data manipulations, but in this case, it was 

more expedient to set up the Web service. In addition, using SOAP to repurpose bespoke scripts 

allows replication in the strictest sense, in which the original data handling is recreated by using 

the same scripts invoked through Taverna.  

Third, modular workflows are easier to debug and execute. At each development 

iteration of testing and revision, exception cases were identified using Taverna's native process 

reporting. Inspecting intermediate values passing between many small components allows us to 

more quickly identify and solve problems, some of which might otherwise cause errors that 

would be hidden if they occurred within a compound process. The workflow was adjusted 

accordingly, and when it successfully processed a data sample, it was tested on a larger sample, 

working up to full sample size or the limits of the computational resources, whichever came 

first. Besides allowing us to more efficiently identify problems with the workflow design, 

running the workflow processes on small data samples was important for two additional 

reasons: we could manually verify the outcomes and therefore were able to reduce our 

debugging time by testing as many edge cases as we could mock up, and we were also able to 

get a sense of the computational resources that each workflow would require for performing 

large-scale analysis. 

Finally, the design of the workflow is where variations in operationalization of concepts 
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can be implemented, transparency and modularity can be preserved for future reuse and 

auditing, repository data sources can be used instead of re-collecting raw data, and analysis 

design can be extended. The benefits of these design outcomes are hard to properly value: 

repository data becomes easier to retrieve and use, providing access to a wider research 

audience; data handling processes can standardize to best practices based on combined 

expertise, supporting greater confidence in research findings, while still allowing alternate 

approaches; and analyses are easily shared, vetted, reused, and extended. However, the ability to 

modularize an analysis in this way depends on the state of the field, as we will discuss below. 

4. Discussion: Issues in adoption of eScience  

In this paper, we have described the nature of eScience as applied to the social science study of 

FLOSS development, as driven by the nature of FLOSS development itself. The research area 

seems ripe for the application of eScience tools, demonstrated in our case study, which will 

benefit the field by providing a shared base of data and tools and in the long term, more 

accumulation of results as researchers learn to build on each others’ findings. Indeed much 

progress has already been made, especially through the FLOSS repositories. In this section, we 

attempt to generalize from our case experiences to discuss possible implications for eScience in 

the social sciences more generally. 

4.1 Where does eScience work? 

In order to understand the broader implications of eScience in the social sciences, it is important 

to delineate the kinds of research for which eScience approaches are likely to be feasible and 

useful. For example, we have identified the availablity of common data sources in FLOSS as a 

driver for the application of eScience practices. On the other hand, much research in the social 
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sciences relies on survey and interview methods, where there are clear privacy issues in the 

collation and publication of raw results. Nonetheless, the established practice of sharing survey 

instruments and content analysis schemes could be formalized into a searchable repository and 

techniques such as factor analysis could be published as workflows, even if 'dummy' data is 

used to demonstrate the techniques.   

Another useful distinction is between “big science” and “little science” (de Solla Price 

1963). “Big science” refers to scientific projects that draw on multiple disciplines to address a 

broad set of goals, which are often set by a committee that then selects the researchers to carry 

out the work. Big science increasingly demands eScience methods: more researchers are 

dependent on the outputs of scientific infrastructure and indeed, the most prominent examples 

of cyber-infrastructure are found in these fields. The fundamental nature of the data produced in 

big science has also changed; petabytes of data and teraflops of processing are now normal 

operating conditions for many natural sciences. Growing arrays of sensors and instrumentation 

produce more data streams to fuse for analysis, creating additional challenges for researchers. In 

addition, funders increasingly require that data generated by large research efforts to be shared 

with the research community more widely, making eScience contributions by “outsiders” an 

increasingly likely source of new knowledge discovery. Because big science has been working 

on adapting to eScience technologies for some time, many fields in the natural sciences have 

developed standards to enable efficient use of the data and technology. While learning these 

standards is a barrier to entry for newcomers into the field, the standards support a more 

complete, carefully vetted documentation of the state of scientific practice than most individual 

research experiences can encompass. 

By contrast, “little science” refers to a single investigator working on projects of their 
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own choosing with relatively modest support, such as a graduate student or two. Such 

approaches are more typical in many social science fields, though there are certainly exceptions. 

In little science, the advantages of eScience methods are less clear. Little science is less likely to 

have standardized work in a way that allows smooth reuse of data and analysis tools. The 

benefits of modular workflow development are less useful if there is only one person working 

on the analysis. While in principle the technologies and practices have the same potential for 

enabling discovery in little science, the reality is that in small research communities, data and 

technologies have generally been created for the individual research groups’ goals, and the 

infrastructure that enables transferability and interoperability of data and analysis technologies 

may not be available. It seems likely that little science will require more time to adopt the social 

infrastructure of practice that big science has already developed of necessity, more coaxing to 

achieve community buy-in of the principles and practices in the absence of funding-driven 

collaboration of eScience, and more flexibility built into the standards as they evolve. At the 

same time, little science has the advantage of the examples of infrastructure developed by big 

science. Strategic efforts by leaders in specialized fields to adopt and adapt the existing 

practices and technologies has the potential to produce dramatic results. 

A related distinction is between normal and pre-paradigmatic science (Kuhn 1962). 

Many eScience applications rely on shared agreements about data, concepts, theories and 

analysis approaches. Such agreement characterizes normal science, but is largely absent in pre-

paradigmatic areas. In the absence of such agreement, there will be little interest in reuse of data 

or workflow modules for particular analyses. Many social sciences are quite paradigmatic (e.g., 

economics) but others are less so. It may be that such agreement is achieved only within certain 

subfields, as we suggest may be the case for FLOSS research. 
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4.2 Social issues in the adoption of eScience in FLOSS 

In the discussion above, we have mostly focused on the technological aspects of eScience. 

However, technical tools are only half of an infrastructure. To make the technology successful 

will require addressing a set of social issues that encourage or discourage the use of the 

infrastructure. When applied to data or knowledge, these issues raise a broader set of questions, 

such as the issues around policies for data curation to ensure that data have the necessary 

documentation and are of acceptable quality to be reusable. In many cases, a considerable 

amount of tacit or domain knowledge is needed to make sense of the data, posing an obstacle to 

broader use. Long-term funding must be obtained to preserve and migrate data and workflows, 

and to make them accessible to researchers. A common objection to data sharing is concerns 

about the privacy of research subjects. The use of public data sources avoids some of these 

concerns, though FLOSS data poses interesting ethical questions about appropriate privacy 

policies for aggregated data that is already available elsewhere on the Internet. A related issue is 

the intellectual property concerns about storing and redistributing such data. 

Beyond these challenges, the most important challenge will be motivating individual 

researchers to participate, both in using and contributing raw data, intermediate results and 

analyses. Developers of the current repositories described above have made data available, 

driven in part by the prevailing ethos of openness in the communities they are studying, but for 

eScience approaches to be more broadly adopted, further incentives seem necessary. To 

understand these issues requires an institutional level of analysis, taking into account how 

current work practices are situated in a variety of settings and organizational structures. Given 

this context, motivations for participation might include policies about rewards for sharing, e.g., 

citations, letters of recommendation or generalized reciprocity as well as more coercive 
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enforcement via reviewing or funding policies. 

In addition, research practices that extend beyond one's own desktop or research group 

requires shared goals and direction for a larger research agenda which may be lacking where the 

research community has not defined a set of accepted grand challenges. Without a common 

direction for future research, the lack of funding imperative for collaboration in small sciences 

means that there is little incentive for individual researchers and small research groups to reach 

out to their peers. Ironically, while big science funding has required collaboration due to the 

high costs of instrumentation for data collection, reduced funding to little science research may 

serve a similar function by promoting data reuse and broader collaborations to make the most of 

increasingly limited fiscal resources. 

A key question in developing collaborations asks who can participate and what 

differential benefits they may gain. On the one hand, eScience presents the opportunity for 

increased participation in science, since researchers can access data, knowledge and 

collaborators from wherever they are, rather than having to be where those resources are 

located. On the other hand, since there is a cost to developing, maintaining and using cyber-

infrastructure, it may be that only well connected and well endowed institutions can fully 

participate. Greater openness through eScience methods may confer advantage unevenly, but 

shows good potential for more meritocratic criteria for evaluation of research contributions. In a 

more ideal world, the development of robust citation mechanisms to link data, analyses, and 

publications may lead to a changed perception of the kinds of work that comprise research. 

5 Conclusion  

Through our workflow development efforts, we have demonstrated the potential capacity for 
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extending the analysis and scale of the research by implementing analysis design to extend prior 

research efforts and enabling analysis on a potentially larger scale than the original research. 

The workflows and analysis outputs are proof of applicability of methods for the field, and 

while reproducing research as published in papers can pose significant challenges, we find the 

results of these initial forays into developing workflows for FLOSS research encouraging. 
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