
Seeking the Source: Software Source Code as
a Social and Technical Artifact

Cleidson de Souza1,3
 Jon Froehlich2

 Paul Dourish3

1Departamento de Informática
Universidade Federal do Pará

Belém, PA, Brazil - 66075

2Computer Science &
Engineering

University of Washington
Seattle, WA, USA – 98195

3Donald Bren School of Information
and Computer Sciences

University of California, Irvine
Irvine, CA, USA – 92667

cdesouza@ics.uci.edu jfroehli@cs.washington.edu jpd@ics.uci.edu

ABSTRACT
In distributed software development, two sorts of dependencies
can arise. The structure of the software system itself can create
dependencies between software elements, while the structure of
the development process can create dependencies between
software developers. Each of these both shapes and reflects the
development process. Our research concerns the extent to which,
by looking uniformly at artifacts and activities, we can uncover
the structures of software projects, and the ways in which
development processes are inscribed into software artifacts. We
show how a range of organizational processes and arrangements
can be uncovered in software repositories, with implications for
collaborative work in large distributed groups such as open source
communities.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
user interfaces. D.2.10 [Software Engineering]: Design –
representation. H.5.3 [Information Systems and Presentation]:
Group and Organizational Interfaces – computer-supported
cooperative work.

General Terms
Design, Human Factors, Measurement.

Keywords
Social networks, software repositories, data mining, socio-
technical systems.

1. INTRODUCTION
Studies of the social organization of technical work have
repeatedly drawn attention to the complex interactions between
social practice and technological artifacts [e.g. 2, 24, 31]. The
artifacts that mediate and support technical work reflect not just
technical constraints and needs but simultaneously reflect working
arrangements, divisions of labor, and aspects of expected practice.

This dual role is exhibited not simply by technological hardware,
but by other “technical” artifacts such as classification schemes
and formal representations.

For example, Bowker and Star [4] discuss the social embedding of
classification schemes. Drawing on a number of examples, but
most particularly the International Classification of Diseases, they
illustrate how classification schemes reflect a social order as much
as a natural order, making the phenomena they describe amenable
to forms of analysis, interpretation and computation that reflect
the social arrangements of the work. Lynch [25, 26] explores the
central role of image-making in scientific practice and
communication, and discusses the “rendering practices” by which
features of messy reality are transformed into more portable and
broadly consumable visual forms, designed again for particular
sorts of comparison and discussion. Fujimura [17] describes how
scientific discoveries are transformed into standardized packages
of techniques and technologies that allow them to be moved
between sites, and which in turn influence how scientists see
problems as “do-able” and amenable to particular solution
approaches.

Latour refers to this phenomenon as “inscription”[23]. Drawing
on anthropological studies of scientific laboratory practice [24],
he describes how social arrangements, debates, divisions of labor,
and patterns of work become inscribed into the artifacts and
representations in which science trucks. Inscription is a process
through which social practice and technological artifacts become
inextricably intertwined. For example, standardized processes
imply divisions of labor, standardizations of skill, etc. [34]; formal
models imply ways of uniformly disambiguating between
“interesting” and “uninteresting” (or “relevant” and “irrelevant”)
phenomena [3]; instruments and devices imply particular ways of
working and available infrastructures [33]; and methods and
models create conventional and acceptable ways of formulating
problems [17, 18].

One domain of technological practice that has been of particular
interest to researchers in CSCW is software systems development
[13, 20, 21]. Inscription issues are particularly relevant to software
development practice, since software artifacts are pure
inscriptions; free from traditional physical constraints, they are
written forms that describe the forms and patterns of software
system structure and operation. Software mechanisms are, in
general, subject to much less external constraint than physical
mechanisms, which is a source of tension in joint
hardware/software development teams [32]. In short, there are
very many different ways of producing working software systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GROUP’05, November 6–9, 2005, Sanibel Island, Florida, USA.
Copyright 2005 ACM 1-59593-223-2/05/0011...$5.00.

The discipline of Software Engineering is, arguably, primarily
concerned with developing software systems that satisfy not
simply internal functional constraints but also external constraints
of modularity, reusability, maintenance, comprehensibility,
documentation, etc, which themselves reflect organizational and
social expectations of how, where, when, and why the software
system may be used. For instance, Conway [9] recognized over 30
years ago that the structure of the system mirrors the structure of
the organization that designed it, while Parnas defined a software
module as “a responsibility assignment rather than a subprogram”
[29].

Software development, then, is a particularly fruitful domain in
which to study the relationship between technological artifacts
and the social structures that shape them.

It is this relationship that drives the work presented here. In
particular, we want to explore aspects of the relationship between
software artifacts and software development processes. Although
processes are more or less well-defined in formal organizations,
informal software development, such as that associated with the
free and open source software movement, has a different
character. Open source projects must essentially produce their
own structures. These structures are emergent rather than formal,
implicit in the development practice rather than explicitly
codified. While this allows open source projects to be flexible, it
also makes them more complicated for participants to understand
or explain; software development processes are a means for
organizational accountability as well as organizational regulation
[19]. Our work has been motivated by the question of whether
aspects of informal software process can be found in the structure
of the software artifact itself. Using a software visualization tool,
Augur, we have been conducting an analysis of the artifacts of a
number of software projects, a “software archeology” to explore
the relationships between artifacts and activities as they are
negotiated in distributed software development through mining
software repositories.

The paper is structured as follows: in the following section we
discuss in greater detail the sources of complexity in software
development. Next, we present our visualization-based approach
for analyzing software projects. We then explore open-source
software projects in greater detail with examples. Finally, we
discuss the implications of our results for the understanding of
open-source projects, followed by some concluding remarks.

2. ARTIFACTS AND ACTIVITIES IN
SOFTWARE DEVELOPMENT PRACTICE
Software development teams face two sources of complexity in
their work – the complexity of the artifact, and the complexity of
the activities that surround it. By the complexity of the artifact, we
mean the inherent complexity of the software system – the
appropriate design and use of algorithms, architecture, structure,
parallelism, scale, dynamic behavior, etc. The creation of software
is a skilled practice, and much of this skill is in understanding the
opportunities and limitations of different approaches to technical
problem-solving and different software designs. This sort of
complexity is inherent in software system design; it characterizes
even the creation of small-scale software systems by individuals,
such as in programming assignments to be solved by students,
personal programming projects, etc, and many empirical studies
of programming practice have pointed to aspects of the problem-
solving process [e.g., 11]. However, since most professional

software development (and even much amateur software
development, in the open source world) is conducted not by
individuals but by teams, then a second source of complexity
arises – the complexity of the development activities themselves.
By this we mean the complexity introduced by the fact that
multiple people are creating and modifying the software system at
the same time, requiring developers to coordinate parallel and
distributed work, identify, avoid and recover from conflicts,
anticipate problems, share goals, formulate strategies, and achieve
a coherent concerted effect. Many empirical studies of software
development teams focus on these coordination problems [e.g.
22].

Many researchers have studied the complexity of software
development practices with an eye to developing new
technologies that can help developers deal with these
complexities. Reflecting these two sources of complexity, two
technological strategies have emerged to deal with them and help
developers in their day to day work The first focuses on the
complexity of software artifacts, and attempts to give software
developers better tools for understanding, interpreting and
manipulating the software artifact itself. For example, many forms
of software analysis help the programmer to understand the
structure of the software system. Software systems exhibit two
forms of structure, static and dynamic. The static structure of the
software system concerns the relationship between the units that
the programmer creates – classes, methods, modules, variables,
and other components out of which software systems are built.
The dynamic structure of a software system concerns how this
program will give rise to a running process – where the program’s
static structure specifies potential action, the program’s dynamic
structure concerns actual behavior. Each of these may be analyzed
and made available to software developers as ways to help them
in the process of software development. For instance, static
analysis can uncover certain kinds of potential security concerns
[35] and uncover potential error states that might arise at run-time,
as well as helping programmers understand the relationship
between different elements in the software system [5]. Dynamic
analysis can be used to create profiles of a program’s run-time
behavior, determining which elements of the program consume
the majority of memory, activity, etc. Especially when programs
grow large, providing automatic tools to understand these
structural properties of software systems can relieve developers of
a considerable practical burden, and can help them to create
systems that operate effectively.

The second focuses on the complexity of development activities.
These tools are, perhaps, more familiar to researchers working in
Computer-Supported Cooperative Work, since the mechanisms
that have been developed to support software development have
also been applied in other domains. The most widespread set of
tools are those based on formal descriptions of the software
development process – models that specify how the software
development task is broken down into a series of sub-tasks, and
how those subtasks are to be coordinated. Configuration
Management (CM) systems describe how software systems are
arranged, and the relationship between elements within a
development process; they enforce rules that prevent simple
conflicts from taking place by regulating access to the software
artifact under construction (ensuring that only one developer can
be working on a specific module at a time, for example.) Like
workflow systems, these process-based software development
systems impose an order on the software development activities in

order to prevent breakdown situations from arising. An alternative
approach has been to support more open-ended forms of
coordination based on mutual visibility, awareness, and end-user
coordination rather than formal process-based coordination. Of
course, these two modes of operation are not exclusive. Grinter
has particularly drawn attention to this issue; in her empirical
studies of software engineering, she has noted how users of CM
systems use the information it provides to maintain an informal
awareness of each other’s activity and to interpret and anticipate
potential consequences for their own [19].

However, although these two sources of complexity (the artifacts
and the development process) are typically addressed in isolation,
empirical studies of software development practice suggest that,
for programmers and developers, they manifest themselves as part
of a common problem. For example, one of our recent studies
looked at a team of software developers engaged in the
maintenance of a software system called MVP [12]. This team
used a state-of-the-art CM tool to manage their coordination
issues surrounding the changes in the source code. However, in
addition, they had to adopt an email convention that advised
developers to send an email to the team’s mailing list with a brief
description of the impact that their work (changes) would have on
other’s work. By doing that, MVP developers allowed their
colleagues to prepare for and reflect about the effect of their
changes. This suggests that the software artifact being developed
and its development activities need to be somehow integrated. In
this case, the source-code dependencies affected the software
development activities adopted by the MVP team. Aiming to
address this problem by providing developers with a more
comprehensive view of the software development process we

developed Augur, that brings together views of the artifact and
views of its surrounding activity. Augur is explored in the next
section.

3. VISUALIZING SOFTWARE
DEVELOPMENT
The explorations that we describe here have been conducted using
a tool called Augur, a system for visualizing software systems
[16]. Augur is a visualization system based on the Seesoft
paradigm [15], in which properties of the software system are
mapped to color and other features of a graphical display of the
source code itself. For instance, in the most common case, we
might show an overview of the system in which each line of
source code is represented by an equivalent line of pixels, colored
to indicate how recently each line was modified. This view allows
a developer or manager to see which areas of the system are
“active.”

Our initial system, described elsewhere [16], integrated simple
code analysis with analysis of activity records, and made these
accessible in a single visual frame providing coordinated views. In
addition to displaying the pattern of activity over the source code,
it also displays aspects of the structure of the source code. This
coordinated view allows developers to understand the character of
the activity carried out – not just that a modification has been
carried out, but what sort of a modification it is (the addition of a
new method, code “commented out”, a revision to existing
functionality, etc.)

Figure 1 – Augur

Temporal view
of weekly
developer
activity.

Source code
view.

Network view
of author
relationships.

Temporal view
of commit
activity colored
by author.

The basic Augur interface is shown in Figure 1. Each pane
displays a different aspect of the system being examined: changes
in one view are immediately reflected in the others. The large
central pane shows the line-oriented view of the source code. In
the figure, the color of each pixel line indicates how recently it
was modified; this allows a developer, at a glance, to see how
much activity has taken place recently and where that activity has
been located.

In our informal evaluations, developers involved in distributed
software development projects relied upon both the activity
information and the structure information in coordination to
develop a holistic view of software development activity.

As noted above, Augur was originally developed as a tool for
software developers, providing them with a flexible visualization
of system activity. However, as we explored the range of ways in
which people used the tool, and the set of extensions that they
proposed, we found that it might provide value too as an analytic
tool. In particular, as users asked for mechanisms that would help
them explore the structure of the system with finer granularity, we
noted that these structures might also provide the basis for an
“archeological” exploration of a software repository. In our more
recent work, we have been extending the richness of the
representations that Augur provides, in response both to user
requests and to the new opportunities for analysis. In particular,
we have been exploring the use of call-graph analysis and network
analysis as ways of forming richer pictures of distributed
development activities. Insights from our previous fieldwork with
commercial software development [13] also suggest this avenue
of research.

3.1 Call-Graph Analysis
The original version of Augur incorporated only a simple static
form of structural analysis, one that classified lines of code
according to their type, and so allowed a developer to see each
line of code in terms of the larger structures within which it was
embedded. In our more recent versions of the system, we have
begun to augment this view with information that explores the
dynamic structure of code.

In particular, we have incorporated call-graph analysis. A call
graph is a data structure that describes which elements of a
software system make use of which other elements. Software
systems are constructed in terms of procedures (or “functions” or
“methods”), which may in turn make use of the results of other
procedures, just as, in mathematics, a function can be defined
which makes use of the results of other functions (e.g. if f(x) =
sqrt(x) + 1, then the function f makes use of the function sqrt). A
call graph lists all the procedures in a software system, and, for
each procedure, shows what other procedures it makes use of.

A call graph, then, reveals the potential dynamic structure of a
software system, although it can be derived using static analysis
techniques (i.e., it can be extracted directly from the source code,
without examining a running instance.) More importantly, in
demarking dependencies within the code (between one procedure
and another), it also begins to suggest dependencies within the
development team (between the maintainer of one procedure and
the maintainer of another) [13].

3.2 Network Analysis
The relationship between members of the development team is
made more explicit in the network view. In this view, Augur
draws views of the network of contributors to a project, relating
them according to patterns in their development activity. For
example, a simple graph shows the relationship between project
members who have contributed code to the same modules. This
view abandons the source code as the primary spatial framework
for displaying activity information; instead, it adopts a
conventional graph (node and line) structure to show the
relationships between people directly.
The network view can use different graphical properties to
indicate different features of the relationship between individuals.
For example, in the graphs shown in Figure 1, each node (circle)
represents a specific individual, while the lines between the circles
indicate that the developers have both contributed code to the
same module. The size of the circle indicates how many lines of
code someone has contributed, while the thickness of the line
indicates how many lines they have contributed to files in
common. Finally, the color of the lines indicates how recent this
activity is, with brighter colors indicating more recent activity.

3.3 Combining Networks and Software
Structure
While useful individually and in combination with the other views
that Augur provided, we found that these two perspectives could
be fruitfully combined to tackle the problem noted in our earlier
empirical work – that is, the ways in which software developers
must orient towards dependencies between their own work and
the work of others.
Essentially, these perspectives highlight two sets of relationships
in the software development process – the relationships between
elements of the system (in particular, dependency relationships
between different components), and relationships between the
people who work on those components. Bringing these together
begins to uncover the ways in which dependencies between parts
of the software system can reflect or lead to dependencies
between the developers themselves. They provide a technical
means to explore the question that we raise at the start of this
paper – that is, the extent to which software artifacts have
inscribed into them patterns of interaction and participation.
Augur, with these facilities, allows these questions to be explored
empirically.

There are two ways in which we have been exploring this. First,
we have combined the two sources of information to replace the
module-dependency graphs that arise from the call-graph analysis
with author-dependency graphs that detail the relationships
between authors. In particular, this allows us to resolve some
problems that the engineers in our field study need to resolve,
which is to determine who is likely to be affected by upcoming
changes (or, conversely, whose work is likely to have an impact
upon my own.) Second, by using the revision history features of
the underlying CM system, we are able to look at patterns in the
evolution of both technical and social structure of the system –
how people join and leave a project, how participation patterns
change over time, and how these changes might be related to the
evolution of the software system itself.

Figure 2: Forms of participation

4. EXPLORING SOFTWARE PROJECTS
The particular focus for our analysis is open source software
development. Open source is an approach to software system
development in which loosely-knit collections of volunteers,
collaborating over the public Internet, create software systems
whose source code is available to all (rather than being protected
as a trade secret, as it is in most commercial development.)
Proponents of open source development models claim many
advantages for this approach, both practically and politically,
including faster and more responsive development cycles, and
more secure and robust software products. Unencumbered access
to the source code and the development process is the central
feature of the open source model, although its details vary from
project to project. Although it is most commonly associated with
non-commercial software development, many open source
projects are at least partially funded by commercial activities and
involve professional software developers whose participation is
sponsored by their employers [36]. However, since open source
projects exist either partly or entirely outside an organizational
context, development processes and procedures do not follow
organizationally mandated models [1]. Indeed, in advocating open
source development models, open source analysts explicitly
contrast regularized management and oversight (what is called the
“cathedral” approach) with the more informal and ad hoc
arrangements of open source projects (the “bazaar”). Since open
source projects must, therefore, evolve their own working
arrangements and means of enforcing them, they are a particularly
interesting object of study.

This section describes different analysis that we performed in
different open-source projects using Augur, in particular
combining network and software structure, as discussed in the
previous section.

4.1 Types of Projects
By looking at the networks of relationships between developers as
indicated by dependencies between code modules, we can see
how different approaches to project organization are reflected or
“inscribed” in the source-code itself of each project. In a
centralized approach, the control is potentially reflected in a call-
graph structure where other developers’ code is called by the
“architect”s code. This developer’s code is the “glue” that
connects the whole project together, all other developers’ code
does not interact among themselves. That is not to say that the
other code is not important nor relevant, we are just arguing that

the architect’s code is the one integrating the whole project.
Figure 2a illustrates this example; it is possible to identify a high
degree of centralization around developer “gt78,” the “architect”
developer in this project.

Figure 2b illustrates a different structure, which we call densely
networked. Instead of a single developer being responsible for
integrating the whole project, now, this responsibility is evenly
divided among a group of six different developers with a high
degree of interdependence between them. There is no central
“architect”, but a group of developers interconnected. These
densely networked projects are marked by a high degree of
interdependence between different modules and developers, often
approaching a “fully connected” state in which each developer
depends on the code of each other developer. The degree of
participation may vary (it is rare for all members of the project to
contribute equally, and a set of primary developers normally
emerges), but they cannot be easily distinguished in terms of their
particular roles and responsibilities as developers.

Finally, Figure 2c shows a variation of the previous structures
where not only a core of seven developers strongly connected can
be found, but also a medium sized set of other four developers in
the periphery of the project, that is, whose code does not interact.
In this case, called the core and periphery division, a core phalanx
of major developers are surrounded by a peripheral set of
developers, less strongly connected. Note, again, that this is not a
distinction between degrees of participation, but between forms of
participation, as characterized by the interdependencies of the
work. This is not an arrangement where a core group of
developers is doing the majority of the work; rather, it is an
arrangement where a core set of developers generate code that is
strongly interdependent, while a peripheral set of developers tend
to be more isolated from each other.

4.2 Forms of Peripheral Participation
We can further distinguish between various forms of peripheral
participation. By tracing dependencies, we can see whether
peripheral members are dependent on core members, or vice
versa. Clearly, in some cases, the dependencies are mutual; these
often characterize a peripheral developer who is playing a
traditional role in the project, yet tends to be responsible for only
some small portion of the system. More interesting, perhaps, are
peripheral participants whose connection to the core is a one-way
dependency; either core modules depend on peripheral ones, or
peripheral ones on core modules.

 (a) “Centralized” (b) “Densely Networked” (c) “Core and Periphery”

Dependency, in our case, is a call from one component to another
(or form the components of one developer to those of another.)
So, peripheral modules that are called from core modules is a
structure that is often associated with plugins, extensible
component-based systems, or other systems in similar styles. In
this case, a peripheral developer might develop a relatively self-
contained module, which must be activated from the system core.
We typically see, then, that the core developers, whose code is
tightly interdependent, are associated with central functionality;
the plug-in or self-contained module is peripheral in both
functionality and in connectedness.

The inverse relationship characterizes a peripheral developer
whose peripheral relationship is one of dependence on core
functionality. Most commonly, we find this when a developer
writes a test case, a novel user interface or application, or some
other “wrapper” function that calls or relies upon the functionality
of the rest of the system.

4.3 Core/Periphery Shifts
Earlier discussions of core and periphery focus on static structure,
but we are interested in the dynamics of software processes, and
in how participation shifts between core and peripheral
participation. This phenomenon has been classified as both a
learning and a political process, where one has to identify allies
that back up a developer, “just like a statement in a scientific
paper when it is accompanied by a large number of references and
citations” [14].

This shift can be observed by examining the same open-source
project at two different moments. By looking at the dependency
structures in the source code, we can identify a developer’s
contributions and their impact. In a shift from the periphery to the
core, we expect to identify developers who initially contribute
code that performs some function by calling others’ code. When
these developers become more and more important in the project,
their code starts to be called by other developers.

Figure 3 illustrates this in the project Megamek1. Initially,
developer Hawkprime was located on the edge of the project, as
measured by connections in the network. At left, he is connected
to one other developer through his code (indicated by the
directions of the interdependencies edges: from Hawkprime to the
other). The reason for this is that BMazur is the principal interface
author, consequently more central than Hawkprime. Later (right),
Hawkprime assumes a more central role in the project. Now, he is
also a source of dependencies because he is the author of an
interface being implemented by others; now, other developers
depend on his work. Furthermore, instead of only being connected
to one other developer, he is now connected to six of them. Again,
the shift can be noticed based on the relative importance of the
code being contributed.

Using a similar approach, we identified the opposite effect, a
developer’s shift from the core to the periphery of another project,
ANT2. This time, the developer Umagesh initially had a central
participation in the project. This can be observed by the five edges
directed to him in the graph. Later, Umagesh shifted to the
periphery of the project (Figure 4).

1 http://megamek.sourceforge.net
2 http://ant.apache.org/

As in previous examples, the important issue here is not so much
that these shifts take place; the movement of people between
peripheral and central positions is both common-sense and
empirically well observed. The important issue is the way in
which it can be found in the data record; that is, that the pattern of
participation is manifest within the inscription, and can be
analyzed structurally through dependency analysis of the software
artifacts.

4.4 Authorship Changes
One of the arguably factors leading to open-source success is the
freedom in allowing developers to join and leave open source
projects. Some authors indeed use the term active developers to
indicate the developers who have contributed to the project in a
specified time period. Of course, authorship information extracted
from the configuration management repository will provide this
information for those interested. Figure 5 shows these transitions
for two separate projects. This figure displays a bipartite graph
where square nodes are authors and the slim, oval nodes are files.
Author nodes are never connected directly to one another but
instead are connected through their relationship to shared source
files. The file node, then, becomes the link between author nodes.

Figure 5a (left), this project (sugarcrm3) relied on a few authors
who implemented nearly all components in the system. More
recently, however, work has been split among five or six different
authors, as indicated by the different colors in the right side of
Figure 5a. That is, code in the system initially developed by one
author has shifted ownership over time to other authors.

Adopting the same approach, we identified an author domination
effect, where the code starts out owned by multiple authors and
then a developer begins to take over (Figure 5b). In this case, the
green and yellow authors’ code has begun to pervade nearly every
aspect of two separate sub-modules in the project parrot4.

4.5 Patterns of Stability and Changes
Finally, our last observation is with regards to patterns of stability
and change in open source projects. For this example, we use data
from the Python5 project to explore stability and change within the
context of the file tree structure of the project. Files and packages
are nodes in this graph colored by authors. They are linked by
containment relationships (between a package and a file). There is
no connection between two files.

These graphs show how the structure of the source code (its
organization in packages) is being used to structure the activities
of the developers. For instance, Figure 6A describes a particular
part of the source code initially implemented by a single
developer. Later in the project, Figure 7A, it is possible to note
that this developer remains the sole author of that module. That is,
there was no change in the authorship of that code from one time
snapshot to another. In contrast, part B of Figures 6 and 7 reveal
how the authorship of code changes over time. Initially, in Figure
6B, the highlighted section was primarily authored by one author,
but overtime, this section was distributed amongst many authors.

3 http://sugarcrm.sourceforge.net
4 http://cvs.perl.org
5 http://www.python.org/

Figure 3: Shift from periphery to core

Figure 4: Shift from core to periphery

Figure 5: Authorship changes in projects over time.

 (a) Code ownership expands (b) Code ownership contracts

 (a) “Umagesh” in core (b) “Umagesh” shifts to periphery

 (a) “Hawkprime” in periphery (b) “Hawkprime” shifts to core

5. DISCUSSION
Augur provides us with a way to place software modules and
software developers within the same frame of reference, and
describe their relationships. By analyzing dependencies and
activities, it highlights not just the links between people and code,
but the links between people and others through code, and vice
versa. This homogeneous analytic perspective is reminiscent of
the actor-network approach [6, 7, 8, 23]. Actor-Network Theory
maintains a deliberate agnosticism as to sources of agency, and
insists that human and technological “actants” be given analytic
parity. Latour [23] points out that functions embedded in social
settings may also be delegated to technology; for instance, rather
than have a policeman monitor road traffic to ensure conformance
with speed limits, we can lay down “speed bumps” to achieve the
same effect. (In the UK, speed bumps are sometimes known as
“sleeping policemen,” in vivid testimony to the potential
relationship between physical and social elements.) Technological
arrangements, as much as social arrangements, can be used to
produce control and conformance with social norms. Actor
Networks, then, bring together heterogeneous elements, including
technologies, artifacts, and people.

Latour and Woolgar discuss the social processes that shape
scientific practice and discourse [24]. Scientific processes, he
suggests, are a means to “delete modalities,” that is, to remove the
conditions on truth statements. So, through this process,
statements of the form “in the fourth experimental run, a
correlation was observed between inputs and outputs” might be
transformed into “our research suggests that outputs are
proportional to inputs”, which in turn can be transformed into “O
= k.I”; at each stage, some of the conditional elements are
removed, and more universal statements can be made. Part of
successful scientific practice, then, is the construction of networks
that can help to “stabilize” particular results, deleting modalities
by establishing the reliability of observations, results and
conclusions. In this view, prestigious institutional affiliations,
sensitive laboratory equipment, experimental verification, and
solid theoretical foundations are not simply historical or technical;
they are elements in the network, playing a strategic role in the
stabilization of scientific facts.

One concept arising from this perspective on scientific processes
is that of the “obligatory passage point” – a narrowing of the
network that designates some particular element as one that must
be navigated in order to achieve a result. As befits the
homogeneous treatment of heterogeneous elements in actor-
network theory, this might be any sort of entity. Professional
certification might play such a role, for example; so might a
particular theory, a scientific leader, a particular laboratory, and so
forth. We can see how this can operate in open source domains.

Figure 6 - Stability and Changes - First Moment

Figure 7 - Stability and Changes - Second Moment

In general, the relevance of these concepts to the work presented
here is the light that they cast on the interplay between social and
technical in distributed activities. A number of authors have
explored aspects of the social structure of open source projects
[10, 27, 28, 36]. Our approach has been to look at the ways in
which aspects of the social and organizational structure are both

 B

 A

 B

 A

inscribed into and achieved through the technological
organization of the underlying artifact, the software source code.
The central lesson here is two-fold. First, that while the rhetoric of
open source is of openness and access, the practice of open source
is about closedness and regulation; essentially, a central
consideration in managing a successful technical project is to
ensure the consistency and quality of the technological artifact
under production, which is managed by vetting both contributors
and contributions, and so a structure must be produced by which
such a vetting can be achieved. Second, this structure is manifest
collectively by the social and technical organization of the project.
The same engineering principles by which software systems can
be organized to achieve technical properties (modularity,
extensibility robustness, etc.) are also ones by which activities can
be partitioned and managed, and access to the system limited.
What we see in these examples, then, is essentially the emergence
of obligatory passage points within software development
practices. Those points may be technical or human elements. As
presented among the forms of peripheral participation, there may
be a particular module or component into which others must be
hooked; a dispatch table, an event loop, or so forth.

That these structures should emerge in successful software
projects is not surprising; these projects, after all, require careful
coordination, and some mechanisms are needed to ensure that this
takes place. That they should emerge within open source projects,
while not surprising, is nonetheless interesting, in light of the open
source movement’s focus on participation and accessibility. What
is particularly interesting, though, is that these processual
elements of software production can, themselves, be found within
the software structures that are the focus of activity. While Latour
and others argue that processes and social structures are inscribed
into scientific and technical artifacts, our experiences with Augur
point to the ways in which, for software artifacts, they might be
“read off” again. Our empirical examinations demonstrate that
both software components (modules) and software developers can
act, for example as obligatory points of passage; the structure of a
software project both reflects and constrains the development
process. An important piece of further work concerns the
automatic recognition and extraction of these patterns; our work
was oriented first towards determining whether process patterns
could be found within software repositories. The answer is yes.

6. CONCLUSIONS
Distributed software development presents two sources of
complexity to its participants – the complexity of the software
artifacts under development, and the complexity of the process of
developing those artifacts. We have presented a study of software
artifacts, conducted using a visualization tool, which demonstrates
how these twin sources of complexity are intertwined. Software
artifacts are not merely the objects of software development
processes, but are also the means by which those processes are
enacted and regulated. The structure of the artifact both reflects
the processes by which it has been created and can be used to
control those processes by centralizing points of access, by
regulating the relationships between independent activities, and by
making visible the relationships between individuals. It is a
means, then, by which the articulation work of the project can be
carried out [30].

The intertwining of artifacts and activities is no surprise to CSCW
researchers, of course. What is of interest here is to see how it

happens in one particular case. Free and open source development
is a particularly enlightening domain within which to study these
concerns. On a mundane level, the artifacts of open source
development are easily available; but more significantly, the inter-
or extra-organizational context of much open source development
means that the tools of the trade – CM systems, web sites, and the
source code itself – are the site at which access and activity
structure are negotiated. In particular, we have shown how both
individuals and software components may act as “obligatory
passage points,” constrictions in the loose network of artifacts and
activities that can be used to achieve local and partial
stabilizations of dynamics socio-technical settings. Further, we
have shown the use of computational tools to help make these
structures visible.

Our approach has been methodologically unusual, since we have
been conducting, essentially, an “archeology” of software
development processes. The critical next step is a more immersive
engagement with large-scale distributed software development
enterprises, in order to gain a better understanding of these
processes “close up.” These open source settings provide a
valuable site for examining the evolution of practice around
technological artifacts – a central consideration for CSCW. Our
explorations demonstrate that software artifacts can reveal the
relationship between technical and social structure of large-scale
development projects, and so suggest that collaborative tools can
exploit not only technical but also social structures in supporting
collaborative software development.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under awards IIS-0133749, IIS-0205724 and IIS-
0326105, by Intel Research, and by the Brazilian Government
under CAPES grant BEX 1312/99-5.

8. REFERENCES
[1] Adler, P. (2003). Practice and Process: The socialization of

software development. Unpublished manuscript, University
of Southern California.

[2] Bannon, L. & Bødker, S. 1999. Constructing Common
Information Spaces. Proceedings of European Conf.
Computer-Supported Cooperative Work ECSCW97, 81-96.

[3] Bowers, J. 1992. The Politics of Formalism. In Lea (ed),
Contexts of Computer-Mediated Communication, 231-261.
Harvester Wheatsheaf.

[4] Bowker, G. and Star, S.L. 1997. Sorting Things Out:
Classification and its Consequences. Cambridge, MA: MIT
Press.

[5] Brooks, R. 1983. Towards a Theory of the Comprehension of
Computer Programs. Intl. Jnl. Man-Machine Studies, 18,
543-554.

[6] Callon, M. 1986. Some elements of a sociology of
translation: Domestication of the scallops and fishermen of
St. Brieuc Bay. In Law (ed.), Power, Action and Belief: a
new sociology of knowledge?, 196-233. London: Routledge.

[7] Callon, M. 1986. The Sociology of an Actor-Network: The
case of the electric vehicle. In Callon, Law, and Rip, (eds.),
Mapping the Dynamics of Science and Technology, 19-34.
London: Macmillan.

[8] Callon, M. 1991. Techno-Economic Networks and
Irreversability. In Law (ed.), A Sociology of Monsters:
Essays on Power, Technology and Domination, 132-161.

[9] Conway, M. E. (1968). "How Do Committees invent?"
Datamation 14(4): 28-31.

[10] Crowston, K. and Howison, J. 2004. The Social Structure of
Free and Open Source Software. First Monday, 10(2), 2005.

[11] Davis, S. 1990. The Nature and Development of
Programming Plans. Intl. Jnl Man-Machine Studies, 32(4),
461-481.

[12] de Souza, C., Redmiles, D., and Dourish, P. 2003. Breaking
the Code: Moving between Private and Public Work in
Collaborative Software Development. In Proceedings of the
ACM Conference on Supporting Group Work GROUP 2003.

[13] de Souza, C.R.B., Redmiles, D., Cheng, L.-T., Millen, D. and
Patterson, J., Sometimes You Need to See Through Walls -
A Field Study of Application Programming Interfaces. In
Proceedings of the ACM Conference on Computer-
Supported Cooperative Work (CSCW '04), (Chicago, IL,
USA, 2004), ACM Press, 63-71.

[14] Ducheneaut, N. "The reproduction of Open Source software
programming communities." Unpublished Ph.D. thesis, U.C.
Berkeley.

[15] Eick, S., Steffan, J., and Sumner, E. 1992. Seesoft: A Tool
for Visualizing Line-Oriented Software Statistics. IEEE
Trans. Software Engineering, 18(11), 957-968.

[16] Froehlich, J. and Dourish, P. 2004. Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Developers. Proc. Intl. Conf. Software Engineering ICSE
2003 (Edinburgh, Scotland). New York: IEEE.

[17] Fujimura, J. 1987. Constructing “Do-Able” Problems in
Cancer Research: Articulating Alignment. Social Studies of
Science, 17(2), 257-293.

[18] Fujimura, J. 1997. The Molecular Biological Bandwagon in
Cancer Research. In Strauss and Corbin (eds), Grounded
Theory in Practice, 131-145.

[19] Grinter, R. 1995. Using a Configuration Management Tool to
Coordinate Software Development. Proc. ACM Conf.
Organizational Computing Systems COOCS '95 (San Jose,
California), 168-177. New York: ACM.

[20] Grinter, R. 1998. Recomposition: Putting it All Together
Again. Proc. ACM Conf. Computer-Supported Cooperative
Work CSCW’98 (Seattle, WA).

[21] Herbsleb, J. and Grinter, R. 1999. Splutting the Organization
and Integrating the Code: Conway’s Law Revisited. Intl.
Conf. Software Engineering ICSE (Los Angeles, CA), 85-95.

[22] Herbsleb, J., Mockus, A., Finholt, T. and Grinter, R. 2000.
Distance, Dependencies, and Delay in a Global
Collaboration. Proc. ACM Conf. Computer-Supported
Cooperative Work CSCW 2000 (Pittsburgh, PA), 319-328.

[23] Latour, B. 1994. Where are the missing masses? The
sociology of a few mundane artifacts. In Bijker and Law

(eds.), Shaping Technology / Building Society: Studies in
Sociotechnical Change, 225-258. Cambridge, MA: MIT
Press.

[24] Latour, B. and Woolgar, S. 1979. Laboratory Life: The
Social Construction of Scientific Facts. Beverly Hills, CA:
Sage.

[25] Lynch, M. 1985. Discipline and the Material Form of
Images: An Analysis of Scientific Visibility. Social Studies
of Science, 15(1), 37-66.

[26] Lynch, M. 1988. The Externalized Retina: Selection and
Mathematization in the Visual Documentation of Objects in
the Life Sciences. In Lynch and Woolgar (eds),
Representation in Scientific Practice. Cambridge, MA: MIT
Press.

[27] Mockus, A.,, Fielding, R. and Herbsleb, J. 2000. A Case
Study of Open Source Software Development: The Apache
Server. Intl. Conf. Software Engineering (Limerick, Ireland),
263-272.

[28] O’Mahoney, S. and Ferraro, F. 2004. Managing the
Boundary of an ‘Open’ Project. Harvard NOM Working
paper No. 03-60. Cambridge, MA: Harvard Business School.

[29] Parnas, D. L. (1972). On the Criteria to be Used in
Decomposing Systems into Modules. Communications of the
ACM 15(12): 1053-1058.

[30] Schmidt, K. and Bannon, L. 1992. Taking CSCW Seriously:
Supporting Articulation Work. Computer-Supported
Cooperative Work, 1(1-2), 7-40.

[31] Schmidt, K and Wagner, I. 2004. Ordering systems:
Coordinative practices and artifacts in architectural design
and planning. Computer Supported Cooperative Work, 13 (5-
6), 349-408.

[32] Sharrock, W. and Button, G. 1997. Engineering
Investigations: Practical Sociological Reasoning in the Work
of Engineers. In Bowker, Star, Turner, and Gasser (eds),
Social Science, Technical Systems, and Cooperative Work:
Beyond the Great Divide, 79-104. Mahwah, NJ: Lawrence
Erlbaum.

[33] Star, S.L. and Ruhleder, K. 1994. Steps Towards an Ecology
of Infrastructure. Proc. ACM Conf. Computer-Supported
Cooperative Work CSCW’94 (Chapel Hill, NC), 253-264.
New York: ACM.

[34] Suchman, L. 1983. Office Procedures as Practical Action:
Models of Work and System Design. ACM Trans. Office
Information Systems, 1(4), 320-328.

[35] Wagner, D. and Dean, D. 2001. Intrusion Detection via Static
Analysis. Proc. IEEE Symposium on Security and Privacy
(Oakland, CA).

[36] West, J. and O’Mahoney, S. 2005. Contrasting Community
Building in Sponsored and Community Founded Open
Source Projects. Proc. Hawaii Intl. Conf. Systems Sciences
HICSS-3.

