
Working with Open Source Development Data

Considerations triggered by a study of bug scenarios

Matthijs den Besten
Oxford e-Research Centre &

e-Horizons Institute
University of Oxford

Oxford, UK
matthijs.denbesten@oerc.ox.ac.uk

Hela Masmoudi
University Pierre et Marie

Curie
Paris, France

masmoudi hela@yahoo.fr

Jean-Michel Dalle
University Pierre et Marie

Curie
Paris, France

jean-
michel.dalle@upmc.fr

ABSTRACT
The retrieval and preparation of public data on software
development calls for more than just technical skills. In
addition, care and judgement are needed to avoid dispro-
portionate costs to the providers of data or unnecessary em-
barrassment to the participants tracked in the data. Taking
the extraction of bug scenarios as a use case, we illustrate
these concerns and discuss how they could be translated into
social requirements that would help to make retrieval and
preparation a sustainable exercise. In particular, we call for
more efforts to establish institutional repositories of pub-
lic data on software development and, besides, we suggest
that reviewers could play a role in making sure that em-
pirical research is performed in a way that does not bring
the long-term relationship between software developers and
researchers in jeopardy.

1. BUG SCENARIOS
The extraction of bug scenarios from bug repositories has
a lot of potential as it helps shed a light on creative com-
munities as problem-solving organizations. The quality of
the output of such commmunties is, by definition, linked to
their ability to solve problems and enhance the quality of
the goods they produce. What are the processes that they
then set up? How are they related to the emergent pro-
cesses that also characterize these communities, and that
for instance drive the attention of developers toward more
complex and “interesting” pieces of code? Recent inquiries
have shown that there exist superbugs [5]. Could appro-
priately improved processes help creative communities get
rid of part of the superbug problem? But also, what is the
influence of the tools that creative communities use and im-
plement? Such ’bug trackers’ are now commonplace and,
besides the well-known Bugzilla, a new generation is emerg-
ing. Could innovative solutions and functionalities be iden-
tified and implemented so as to foster bug resolution within
the context of creative communities? These would be inter-
esting questions to address.

Not only is research on bug management relevant to under-
stand how open-source software communities develop code
and solve associated problems, or to inform the design of
well-adapted bug tracking systems, research on debugging
also addresses the more general issue of online problem solv-
ing — a problem that is of an increasing relevance nowadays.
However, only a limited number of contributions have ad-
dressed this issue and even fewer have focused on it. Early
contributions notably include work by Mockus and Herb-
sleb [11] and by Crowston and colleagues [4, 3], for whom
bug resolution was one among the relevant characteristics
of open-source software projects. A few other investigations
have followed, in a software engineering flavour, suggesting
for instance how bug reports could be assigned automati-
cally [1]. Also related are investigations under the auspices
of the economics of information security [12] and discussions
of information practices [14].

What we propose here is to extract bug scenarios from bug
repositories, much like earlier work done by Ripoche [13].
The extraction has three stages. First, we want to develop
a scenography and an automated detection of scenes and
episodes (sequences of scenes). Second, we want to develop
a database based on several bug repositories connected to
different open-source projects and use the scenography of
stage 1 to automatically classify bug resolution scenarios in
the database. Furthermore, based on the measures devel-
oped in stage 3, we would like to suggest rules according
to which inefficient scenarios could be detected and fixed.
Third, we want to measure the efficiency of different classes
of scenarios, using survival analysis and related economet-
rics techniques, in terms of how quickly and completely bugs
get fixed. Scenes would be characterized by various ele-
ments such as their duration, and the types of contribu-
tors involved. The identification of the context in which a
bug appears could be done by adopting a technique of “bug
dressing” that has been developed elsewhere [2]. In addition,
text analysis could provide interesting clues. For instance,
ineffective tensions can be revealed by the use of specific
paradigms such as discouragement (“I give up”), conflict
(“This is stupid!”) and misunderstanding (“I don’t under-
stand”), while other paradigms are cues for synergy, be it
encouragement (“Impressive, John!”), thanks (“Thanks to
John, I found it.”), or something else. Standard classifi-
cation techniques could then be used to produce tentative
classification of scenarios.



Eventually this kind of analysis could produce the specs of a
module that could be inserted in all interested forges (collab-
orative development environments) and to help improve the
bug resolution process by through the early identification of
deviant scenarios.

2. CONCERNS
The retrieval and preparation of bug scenarios depends on
active and passive collaboration of at least three groups of
people. First of all, there are the software developers whose
bug resolution practices are studied. For them, it is obvi-
ously important that the retrieval of data does not impose
an unreasonable cost such as a big increase in bandwidth
charges. But, in addition, developers may feel uneasy with
the idea that their practices, and in particular, their indi-
vidual behaviour are being showcased at conferences and in
scientific journals. It would not seem unreasonable that re-
searchers would go to some lengths in order to insure that
the confidentiality of developers is kept. For, as Waskul puts
it, “private interactions persist in spite of public accessibil-
ity” [16]. At the same time, however, researchers have to
think about the research community as scholars should be
able to check and replicate research. Finally, the research
should produce results at a reasonable cost and in a rea-
sonable amount of time, at least to keep research funders
happy.

These general concerns come out to the fore when we con-
sider a step-by-step procedure to retrieve and prepare bug
scenarios for bug repositories. First of all, we have to find
bug repositories and ideally, we would need to find the code
repositories that are associated with the bug repositories so
that we can check how the bug resolution affects the final
code (I). Next, we need to retrieve bug reports for a selection
or for all bugs in the repository (II). Then, we need to ana-
lyze these reports and publish our findings (III). Finally, we
need to make sure that our bug scenarios remain available
after the end of the research project (IV).

Step I, the retrieval of repositories, depends on the will
of software development communities to make their data
available or on the ability of researchers or their backers to
archive raw development data before they disappear from
the Internet. For code repositories, we are already experi-
encing a small drama as open source communities switch
from CVS to other systems and fail to maintain access to
their old repositories. Bug repositories like Bugzilla pose an
additional difficulty to investigators as they are Web-based
and generally do not provide straightforward means to get
a hold of all their contents. Of course, one can use a tech-
nique known as “scraping” in order to download the relevant
pages. However, a site like bugzilla.mozilla.org does not ap-
prove of this technique and has put a file “robots.txt” on
its web-site which prohibits all access to crawlers to most
of its site. This in itself is perfectly understandable since
the automated downloading of large amounts of data that
crawlers do tends to take up a lot of bandwidth and comes
at a sometimes considerable cost for the provider of the site.
Should we contact the web-site owners to get explicit per-
mission for our scraping? Or could we get away with scrap-
ing provided it was sufficiently non-obtrusive and perhaps
as slow as downloading by hand? Really downloading the
bug-reports by hand would make the process too costly and

would take too long.

The concerns associated with step II, the retrieval of bug
reports from the repositories, are more about transparency
and replicability. For instance, if we would only want to
select the bugs reports that relate to bugs that result in
changes in the code base, we would have to do an analysis
of the comments that are associated with commits in the
repository and extract the numbers of the bugs that are ref-
erenced there. Unfortunately, however, in most open source
projects, there are no clear guidelines on how to reference
bugs in commits and even if these guidelines are there, they
are not always strictly adhered to. For instance, in mozilla,
some prefix the bug number with “b=”, others insert the
word “bug” and yet others use a verb like “fixes”. To iden-
tify bugs on the basis of comments like these, inevitably, one
misses out on some of the bug references and inevitably, one
will identify some numbers as references when in fact they
are not. And so the data will be biased as only the bugs
associated with certain code committers will be found. The
concern here then, is how to account for this bias and to
place the appropriate caveats whenever aggregate data are
represented. To some extent this concern can be mitigated
by given other researchers full access to the code that was
used to extract the data, but then, these other researchers
also have to understand the code.

The concerns associated with step III, the analyis of the bug
resolution processes, are about preventing harm to the in-
dividuals we are studying. When people report a bug and
participate in the resolution of that bug, they do not nec-
essarily expect that someone will later look back at the in-
teractions and analyze their behaviour. Especially when the
bug resolution process goes nowhere, it would be highly un-
confortable for the participants if they were put on the spot
and if their behaviour was showcased at conferences and
in journals. Yet, at the same time, it is important for re-
searchers to be able to give concrete examples of the scenes
that are identified. It is one thing to say a large crowd some-
times just indicates a low signal to noise ratio. It would be
altogether better if one could point to a specific example,
say Mozilla bug 8427, where there is a lot of commentary,
but just a few people who propose solutions. Sometimes,
one observes a parallel discussion. Sometimes one can iden-
tify a ”clan” that works seperately on the resolution of the
bug and ignores whatever anyone else has to say. For in-
stance, in bug 94349 of Mozilla that seems to be the case.
Should we try to contact Scott, Mitesh, Brian and Conrad,
who form the clan in this bug, and obtain there permission
before exposing them as such? And how about people who
seem incapable of collaboration?

These concerns of step III are exacerbated once we turn to
step IV and make our scenario database available to the
public. From a research perspective, it would be good to
not only store abstract scenes but also the actual episodes
in the bug resolution processes from which they are derived.
But even though we as researchers are only interested in the
processes and mechanisms that lead to deviant scenarios,
others may use the same data in order to identify the persons
involved. And that, in turn may harm the reputation of
those persons, possibly without justification. A concern of
a different nature is how to make sure that the data will



actually become available to the public and remain available.
This concern becomes especially acute once project funding
runs out and researchers move to different topics. Here, an
institutional repository might provide a solution, but again
someone has to maintain and pay for it.

3. GUIDELINES
The gamut of concerns described above can be addressed
in a variety of ways — ideally in consultation with the de-
velopers, researchers, and funding bodies who have a stake.
To help in this process, there are a number of guidelines
that we can consult. A good starting point is the overview
of the debate about the ethics of Internet research written
by Eynon, Fry, and Schroeder [6]. Specific guidelines for
crawling of web-sites are discussed by Thelwell and Stuart
[15] and guidelines on the preparation are proposed by King
[9], among others. These guidelines are, however, not guide-
lines that can be adopted without thinking. For instance,
King is very thorough with respect to the removal of person-
identifiers as he is concerned with data that are very sensi-
tive such as exchanges within a depression self-help group.
It would seem doubtful that a same level of meticulousness
would be needed for less sensitive topics such as the reso-
lution of bugs. At the same time, in a way, King is not
rigorous enough as he does allow for quotations where the
person-identifier is obscured. Yet, in many cases, this won’t
be sufficient as search engines will lead you straight back to
the source on the basis of the quote alone and allow you to
identify its originator [10]. For retrieval, the issues are not
black and white either. For instance, Thelwell and Stuart
themselves already note that the existing robots guidelines
are a bit out-dated and recommend to “follow the robots
guidelines, but re-evaluate the recommendations for crawl-
ing speed.”

4. SUPPORT
Since guidelines in themselves are unlikely to become useful
and general enough to apply to a large number of situations,
it is important to develop other kinds of support for scholars
who try to carry out empirical research.

There are several important ways in which life could be made
easier for researchers trying to do empirical research on soft-
ware development like the extraction of bug scenarios. Here
we propose two. First, it would be greatly beneficial, if
reviewers of paper submissions to conferences on software
development could take into consideration concerns of cost
and confidentiality of software developers and provide guid-
ance and comments to the authors of these papers in trying
to strike the right balance. Second, it would help if more
alternative sources of information were available. Initiatives
like FLOSSMole [8] are a good start and common needs have
been described [7]. But, in addition, more support should be
sought to safeguard original data on software development
in institutionally backed repositories before they disappear
from view and to provide a place to researchers to deposit
their data and extraction and analysis code for others to
inspect and reuse.

5. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In Proceedings of the International
Conference on Software Engineering, 2006.

[2] J. Brézillion and P. Brézillion. Context modelling:
Task model and model of practices. In Proceedings of
the 6th International and Interdisciplinary Conference
on Modelling and Using Context, Roskilde, Denmark,
2007.

[3] K. Crowston, J. Howison, and H. Annabi. Information
systems success in free and open source software
development. Software Process: Improvement and
Practice, 2006.

[4] K. Crowston and B. Scozzi. Coordination practices for
bug fixing within FLOSS development teams. In
Proceedings of the First International Workshop on
Computer Supported Activity Coordination, Porto,
Portugal, April 2004.

[5] J.-M. Dalle and M. den Besten. Different bug fixing
regimes? A preliminary case for superbugs. In
Proceedings of the Third International Conference on
Open Source Systems, Limerick, Ireland, June 2007.
To appear.

[6] R. Eynon, J. Fry, and R. Schroeder. The ethics of
internet research. In N. Fielding, R. Lee, and
G. Black, editors, Handbook of Online Research
Methods. Sage, Forthcoming.

[7] L. Gasser, G. Ripoche, and R. J. Sandusky. Research
infrastructures for empirical science of F/OSS. In
Proceedings of ICSE Workshop on Mining Software
Repositories, 2004.

[8] J. Howison, M. Conklin, and K. Crowston.
FLOSSmole: A collaborative repository for FLOSS
research data and analyses. International Journal of
Information Technology and Web Engineering,
1(3):17–26, 2007.

[9] S. A. King. Researching internet communities:
Proposed ethical guidelines for the reporting of
results. The Information Society, 12:119–127, 1996.

[10] H. McKee and J. E. Porter. The ethics of digital
writing research: A rhetorical approach. College of
Composition and Communication, in press.

[11] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11:309–346, 2002.

[12] A. Ozment and S. E. Schechter. Milk or wine: Does
software security improve with age? In A. D.
Keromytis, editor, Proceedings of the 15th USENIX
Security Symposium (USENIX06), pages 93–104, 2006.

[13] G. Ripoche and J.-P. Sansonnet. Experiences in
automating the analysis of linguistic interactions for
the study of distributed collectives. Computer
Supported Cooperative Work, 15:149–183, 2006.

[14] R. J. Sandusky, L. Gasser, and G. Ripoche.
Information practices as an object of DCP research. In
Distributed Collective Practices Workshop in CSCW,
2004.

[15] M. Thelwall and D. Stuart. Web crawling ethics
revisited: Cost, privacy, and denial of service. Journal
of the American Society for Information Science and
Technology, 57(13):1771–1779, 2006.

[16] D. Waskul and M. Douglass. Considering the
electronic participant: Some polemical observations on
the ethics of on-line research. The Information
Society, 12:129–139, 1996.


