

Simulating Code Growth in Libre (Open-Source) Mode

By

Jean-Michel Dalle
University Pierre-et-Marie-Curie & IMRI-Dauphine

Jean-Michel.Dalle@upmc.fr

&

Paul A. David
Stanford University & Oxford Internet Institute

pad@stanford.edu

First draft: 27 December 2004
This version: 31 January 2005

ACKNOWLEDGEMENTS

The research reported in this paper was made possible by grant awards to the Stanford
University (SIEPR) Project on the Economics of Free & Open Source Software and its
European academic partners by the National Science Foundation program on Digital
Technology and Society: IIS-0112962 (2001-04) and IIS-0329259 (2003-05).
[http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm.]
Our research has also been supported by CALIBRE, a EU FP6 Coordination Action. We
have benefited from discussions with participants at the EPIP3 and OWLS seminars,
which convened at Scuola Superiore Sant’Anna in Pisa, Italy, on 2-3 April 2004, and at
the Oxford Internet Institute in Oxford, UK, on 25-26 June 2004, respectively. Fabio
Arcangeli, Robin Cowan, Brian Fitzgerald, Alfonso Gambardella, Rishab A. Ghosh,
Jesus Gonzales-Baharona, Bronwyn H. Hall, Jim Herbsleb, Eric von Hippel, Brian
Kahin, Mathieu Lacage, Karim Lakhani, Juan Mateos-Garcia, Stephen M. Maurer, Jean-
Charles Pomerol, Gregorio Robles, Walt Scacchi, and Ed Steinmuller all had a helpful
hand in shaping this work. But, the views expressed and the defects that remain are ours.

mailto:Jean-Michel.Dalle@upmc.fr
mailto:pad@stanford.edu
http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm

1

Simulating Code Growth in Libre (Open-Source) Mode

 Jean-Michel Dalle and Paul A. David

SUMMARY

We present an original modeling tool that can be used to study the social mechanisms
by which individual software developers’ efforts are allocated within large and
complex open source projects. The dynamical agent-based model is first described
analytically in a deterministic discrete choice framework. Next, the results of
simulations experiments using a stochastic specification are presented, to study the
effects of various structural parameters that reflect “community norms” and
governance rules affecting the behaviors of individuals associated with the particular
project. In addition to the relative peer evaluation of different kinds of programming
work associated with its constituent modules, individual developer’s behaviors
choices among the latter appear to be affected by the clustering of others developers
at certain “hot spots” of development activity. Allowance for that effect enables the
simulations to generate the very high Gini coefficients describing the empirical
distributions of modules sizes that are reported in the literature.

The model is dynamic, with contributions of code being added sequentially either to
existing modules, or to create new modules that are technically related to existing
ones: consequently, the emerging global architecture of the project’s code can be
conveniently represented as an evolving hierarchical tree. For a particular “tree’’ its
morphological features at any given moment in time affects both the interest it holds
for developers at that moment, and its utility in application by end-users. Introducing
a simple representation of the latter agents’ social utility function, we find
preliminary but striking indications that the social “reward structure” (that
sociological observers suggest is influential in developers’ decisions about what and
where to contribute) is not particularly not well aligned to produce an eventual
simulated code architecture that approaches optimally when evaluated from the
viewpoint of end-users. This may have some significance for those who stress the
purely “self-organized” and undirected features of open source software projects.
When allowance is made for the existence of project governance rules, however, it is
found that the social utility index of the eventual code-tree can be enhanced
substantially if maintainers’ policies set minimum standards for “commits” that
nonetheless facilitate the “early release” of successive versions of the code.

 1. Introduction
 The initial contributions to the social science literature addressing the phenomenon of
Libre (open-source, free) software have been directed primarily to identifying the motivations
underlying the sustained and often intensive engagement of many highly skilled individuals
in this non-contractual and unremunerated mode of production.1 That focus reflects a view
that widespread voluntary participation in the creation and free distribution of economically
valuable goods is something of an anomaly, at least from the viewpoint of mainstream
microeconomic analysis.

1 See, among the salient early contributions to the “economics of open source software,” Ghosh (1998), Harhoff,
Henkel and von Hippel (2000), Lakhani and von Hippel (2000), Lerner and Tirole (2000), Weber (2000), Kogut
and Metiu (2001).

 2

 A second problem that has occupied observers, and especially economists, is to
uncover the explanation for the evident success of products of the Libre software mode in
market competition against proprietary software – significantly on the basis not only of their
lower cost, but their reputedly superior quality.2 This quest resembles the first, in reflecting a
state of surprise and puzzlement about the apparently greater efficiency that these voluntary,
distributed production organizations have been able to attain vis-à-vis centrally-managed,
profit-driven firms that are experienced in creating “closed,” software products.

 Anomalies are intrinsically captivating for intellectuals of a scientific, or just a
puzzle-solving bent. Yet, the research attention that has been stimulated by the rapid rise of a
Libre software segment of the world’s software-producing activities during the 1990’s owes
something also to the belief that this phenomenon and its relationship to the free and open
software movements, could turn out to be of considerably broader social and economic
significance. There is, indeed, much about these developments that remains far from
transparent, and we are sympathetic to the view that a deeper understanding of them may
carry implications of a more general nature concerning the organization of economic
activities in networked digital technology environments. Of course, the same might well be
said about other aspects of the workings of modern economies that are no less likely to turn
out to be important for human well-being.

 Were the intense research interest that Libre software production currently attracts to
be justified on other grounds, especially as a response to the novelty and mysteriousness of
the phenomena, one would need to point out that this too is a less than compelling rationale;
the emergence of Libre software activities at their present scale is hardly so puzzling or
aberrant a development as to warrant such attention. Cooperative production of information
and knowledge, among members of distributed epistemic communities who do not expect
direct remuneration for their efforts simply cannot qualify as a new departure. There are
numerous historical precursors and precedents for Libre software, perhaps most notably in
the “invisible colleges” that appeared among the practitioners of the new experimental and
mathematically approaches to scientific inquiry in western Europe in the course of the 17th
century.3 The professionalization of scientific research, as is well known, was a
comparatively late development, and, as rapidly as it has proceeded, it has not entirely
eliminated the contributions of non-professionals in some fields, optical astronomy being
especially notable in this regard; communities of “amateur” comet-watchers persist, and their
members continue to score – and to verify – the occasional observational coup.

 “Open science,” the mode of inquiry that emerged and became formally
institutionalized during the era of the Scientific Revolution under systems of public and
private patronage thus offers an obvious cultural and organizational point of reference for
observers of contemporary communities of programmers engaged in developing free software
and open source software.4 The “communal” ethos and norms of “the Republic of Science”

2 In this particular vein, see, for example Dalle and Jullien (2000, 2003), Bessen (2001), Kuan (2001), Benkler
(2002).
3 See, e.g., David (1998a, 1998b, 2001, 2004) and references to the history of science literature supplied
therein.
4 This has not gone unrecognized by observers of the free and open software movements. In “The Magic
Cauldron,” Raymond (1999c) explicitly notices the connection between the information-sharing behavior of
academic researchers and the practices of participants in Libre projects. Further, Raymond’s (1998b)
illuminating discussion of the norms and reward systems (which motivate and guide developers selections of
projects on which to work) quite clearly parallels the classic approach of Robert K. Merton (1973) and his
followers in the sociology of science. This is underscored by Raymond’s (1999b) rejoinder to N. Berzoukov’s
(1999) allegations on the point. See also DiBona et al. (1999) for another early discussion; Kelty (2001), and

 3

emphasize the cooperative character of the larger purpose in which individual researchers are
engaged, stressing that the accumulation of reliable knowledge is an essentially social
process. The force of its universalistic norm is to render entry into scientific work and
discourse open to all persons of “competence,” while a second key aspect of “openness” is
promoted by norms concerning the sharing of knowledge in regard to new findings and the
methods whereby they were obtained.

 Moreover, a substantial body of analysis by philosophers of science and
epistemologists, as well as theoretical and empirical studies in the economics of knowledge,
points to the superior efficiency of cooperative knowledge-sharing among peers as a mode of
generating additions to the stock of scientifically reliable propositions.5 In brief, the norm of
openness is incentive compatible with a collegiate reputational reward system based upon
accepted claims to priority; it also is conducive to individual strategy choices whose
collective outcome reduces excess duplication of research efforts, and enlarges the domain of
informational complementarities. This brings socially beneficial spill-overs among research
programs and abets rapid replication and swift validation of novel discoveries. The
advantages of treating new findings as public goods in order to promote the faster growth of
the stock of knowledge are thus contrasted with the requirement of restricting informational
access in order to enlarge the flow of privately appropriable rents from knowledge stocks.

 The foregoing functional juxtaposition suggests a logical basis for the existence and
perpetuation of institutional and cultural separations between two normatively differentiated
communities of research practice. The open “Republic of Science” and the proprietary
“Realm of Technology” on this view, constitute distinctive organizational regimes each of
which serves a different (and potentially complementary) societal purpose. One might
venture farther to point out that the effective fulfilling of their distinctive and mutually
supporting purposes was for some time abetted by the ideological reinforcement of a
normative separation between the two communities; by the emergence of a distinctive ethos
of “independence” and personal disinterested-ness (“purity”) that sought to keep scientific
inquiry free to the fullest extent possible from the constraints and distorting influences to
which commercially-oriented research was held to be subject.

 It follows that if we are seeing something really new and different in the Libre
software phenomenon, that hardly can inhere in attributes shared with long-existing open
science communities.6 Rather, it must be found elsewhere, perhaps in among the more

David, Arora and Steinmueller (2001), expand the comparison with the norms and institutions of open/academic
science. Nevertheless, one should observe that that the parallel is by no means exact: formal professional
accreditation and institutional affiliation is a salient de facto requirement for active participation in modern
academic and public sector research communities, yet the computer programming and other software
development tasks – whether in the commercial or the free and open source spheres -- remains a an activity that
has resisted becoming “professionalized.”
5 See Dasgupta and David (1994), David (1998b, 2002a, b) on the cognitive performance of open science
networks in comparison with that of proprietary research organizations; David (2003) on the interaction between
modern ‘open science’ and proprietary R&D.
6 The phenomenon of free and open source software is perceived by Benkler (2002: pp. 1-2) as an exemplifying
“a much broader social-economic phenomenon.…the broad and deep emergence of a new, third mode of
production in the digitally networked environment.” This mode he labels “’commons-based peer production’, to
distinguish it from the property- and contract-based modes of firms and markets. Its central characteristic is that
groups of individuals successfully collaborate on large scale projects following a diverse cluster of motivational
drives and social signals rather than either market prices or managerial commands.” Anyone at all familiar with
the history of open science since the 17th century will be disconcerted – to say the least --by this particular
imputation of novelty and significance to Libre projects.

 4

distinctive items in the following list: (a) the sheer scale on which these activities are being
conducted, (b) the global dispersion and heterogeneous backgrounds of the participants (and
the related absence of mandatory professional certification requirements), (c) the rapidity of
their transactions, and (d) the pace at which their collective efforts reach fruition. This shift in
conceptualization has the effect of turning attention to a constellation of technical conditions
whose coalescence has especially affected this field of endeavor. Consider just these three:
the distinctive immateriality of “code,” the great scope for modularity in the construction of
software systems, and the enabling effects of advances in digital (computer-mediated)
telecommunications during the past several decades. Although it might be thought that the
intention here is merely to portray the historically unprecedented features of the Libre
software movements as primarily an “Internet phenomenon,” we have something less glib
than that in mind.

 It is true that resulting technical characteristics of both the work-product and work-
process alone cannot be held to radically distinguish the creation of software from other fields
of intellectual and cultural production in the modern world. Nevertheless, they do suggest
several respects in which it is misleading to interpret the Libre software phenomenon simply
as “another sub-species of ‘open science’.” The knowledge incorporated in software differs
in at least two significant respects from the codified knowledge typically produced by
scientific and technical work groups. Computer software is a form of information that is at
the same time a “technological artifact,” which is to say that it has immediate functional
effectiveness without requiring further expenditures of effort upon development.7 This
immediacy has significant implications not only at the micro-level of individual motivation,
but for the dynamics of collective knowledge-production. Indeed, because software code is “a
machine implemented as text,” its functionality is peculiarly self-exemplifying. Thus,
“running code” serves to short-circuit many issues of “authority” and “legitimation” that
traditionally have absorbed much of the time and attention of scientific communities; and to
radically compress the processes of validating and interpreting new contributions to the stock
knowledge.8

 In our view Libre software production activities warrants systematic investigation not
as a sub-species of the unusual class of technological objects called “computer software,” but
because its relationship with a conjunction of a particular set of trends in the modern
economy may give this development significant implications for the future of the advance of
knowledge, and consequently for knowledge-driven economic growth. The first of those
trends is that information-goods that share many of the special properties of software have
been moving more and more to center-stage among the drivers of sustainable economic
development. Secondly, the enabling of peer-to-peer organizations for information
distribution and utilization is an increasingly obtrusive consequence of the direction in which
digital technologies are advancing. Thirdly, the “open” (and cooperative) mode of organizing
the generation of new knowledge has long been recognized to have efficiency properties that
are much superior to institutional solutions to the public goods problem that entail the
restriction of access to information through secrecy or property rights enforcement, but to
pose a problem inasmuch as it seemingly requires a rising volume of public funding for
“basic research. Fourthly, and of practical significance for those who seek to study it
systematically, the Libre software mode of production itself is generating a wealth of

7 This property of software, incidentally accounts for its anomalous treatment under intellectual property law.
Software, being “a machine” implemented as “text,” is unique in being both patentable and copyrightable.
8 Therefore, at the risk of re-circulating a tired bromide, it might well be said that in regard to the sociology and
politics of the open source software communities, “the medium is the message.”

 5

quantitative information about this instantiation of “open epistemic communities.” This latter
development makes Libre software activities a valuable window through which to study the
more generic and fundamental processes that are responsible for its power, as well as the
factors that are likely to limit its domain of viability in competition with other modes of
organizing economic activities.

 Proceeding from this re-framing of the phenomenon, one is led toward a conceptual
approach that highlights a broader, ultimately more policy-oriented set of issues than those
which hitherto have dominated the economics literature concerning Libre software. A
correspondingly re-orientation of research agendas would appear to be called for.9 Its
analytical elements are in no way novel, however, but merely newly adapted to suit the
subject at hand. It is directed to answering a fundamental and interrelated pair of questions:
First, by what mechanisms do Libre software projects mobilize the human resources, allocate
the participants diverse expertise, coordinate the contributions and retain the commitment of
their members? Second, how fully do the products of these essentially self-directed efforts
meet the long-term needs of software users in the larger society, and not simply provide
satisfactions of various kinds for the developers? These will be recognized immediately by
economists to be utterly familiar and straightforward – save for not yet having been explicitly
posed or systematically pursued in this context.

 Pursuing these concrete, classic economic questions compels a detailed examination
of the actual workings of the system of social organization that actually allocates software
development resources among the various software systems and applications projects that are
being undertaken by “communities” of distributed and sometimes anonymous volunteers -- as
it is the situation of the large projects are found in the world of Libre software. How does the
ensemble of developers collectively “select” among the observed array of projects that are
launched? What processes govern the mobilization of sufficient resource inputs to enable
some among those to attain the stage of functionality and reliability that permits their being
diffused into wider use – that is to say, use beyond the circle of programmers immediately
engaged in the continuing development and ‘debugging’ of the code itself?

 Indeed, it seems only natural to expect that economists would provide an answer to
the question of how, in the absence of directly discernible market links between the
producing entities and “customers,” the output mix of the open source sector of the software
industry is determined. Yet, surprisingly, this question does not appear to have attracted any
significant amount of attention. This curious lacuna, moreover, is not a deficiency peculiar to
the economics literature, for, it is notable also in the writings of some of the Libre software
movement’s pioneering participants and popular exponents.10 Although enthusiasts have
made numerous claims regarding the qualitative superiority of products of the open source
mode when these are compared with software systems tools and applications packages
developed by managed commercial projects, scarcely any attention is directed to the issue of

9 This is the approach being pursued by the members of the project on The Economic Organization and
Viability of Open Source Software at Stanford University and its research partners at academic institutions in
France, the Netherlands and Britain. Most of the researchers associated with this project come to this particular
subject matter from the perspective formed by their previous and on-going work in “the new economics of
science,” which has focused attention upon the organization of collaborative inquiry in the “open science”
mode, the behavioral norms and reinforcing reward systems that structured the allocation of resources, the
relationships of these self-organizing and relatively autonomous epistemic communities with their patrons and
sponsors in the public and private sectors. See Dalle, David and Steinmueller (2002) for the scope of this
integrated research agenda.
10 See, e.g., Raymond (1998b, 1999); Stallman (1999), Dibona, Ockman and Stone (1999) and the statements of
contributors collected therein.

 6

whether the array of completed Libre software projects also is “better” or “just as good” in
responding to the varied demands of software users.

It is emblematic of this gap that the metaphor of “the bazaar” was chosen by Eric S.
Raymond (1998a) to convey the distinctively un-managed, decentralized mode of
organization that characterizes open source software development projects. Here is a
representative reading of this aspect of Raymond’s widely influential essay by an otherwise
perceptive commentator, Ko Kuwabara (2000):

 …The Cathedral and the Bazaar, is a metaphorical reference to two
fundamentally different styles of software engineering. On the one hand,
common in commercial development, is the Cathedral model, characterized
by centralized planning enforced from the top and implemented by
specialized project teams around structured schedules. Efficiency is the
motto of the Cathedral. It is a sober picture of rational organization under
linear management, of a tireless watchmaker fitting gears and pins one by
one as he has for years and years. On the other hand is the Bazaar model of
the Linux project, with its decentralized development driven by the whims
of volunteer hackers and little else. In contrast to the serene isolation of the
cathedral from the outside, the bazaar is the clamour itself. Anyone is
welcome – the more people, the louder they clamour, the better it is. It is a
community by the people and for the people, a community for all to share
and nurture. It also appears chaotic and unstructured, a community where
no one alone is effectively in charge of the community. Not all are heard or
noticed, and not all are bound to enjoy the excitement. For others, however,
the bazaar continues to bubble with life and opportunity.

 But “the bazaar” remains a peculiar metaphor for a system of production: the stalls of
actual bazaars typically are retail outlets, passive channels of distribution rather than agencies
with direct responsibility for the assortment of commodities that others have made available
for them to sell. Given the extensive discussion of the virtues and deficiencies of “the bazaar”
metaphor that was stimulated by Raymond’s (1998a) essay, it is all the more remarkable that
what has managed to pass with scarcely any comment is rhetorical finesse of the problem of
aligning the activities of producers with the wants of the needs and wants of the final, non-
specialist users of these information-goods.11

 In contrast, the tasks set in our project on free and open source (‘Libre’) software
represent an explicit response to the challenge of providing non-metaphorical answers to the
classic economic questions of whether and how this instance of a decentralized decision
resource allocation process could achieve coherent and socially efficient outcomes. What
makes this an especially interesting problem, of course, is the possibility of assessing the
extent to which institutions of the kind that have emerged in the free software and open
source movements are enabling them to accomplish that outcome – without help either from
the “invisible hand” of the market mechanism driven by price signals, or the “visible hands”
of centralized managerial hierarchies.12 Meeting this challenge requires that the analysis be
directed ultimately towards providing a means of assessing the social optimality properties of

11 See, e.g., Kuwabara (2000), and references in the notes accompanying Raymond (1999: pp.19-63):
“Cathedrals and Bazaars.”
12 Benkler (2002) has formulated this problem as one that appears in the organizational space between the
hierarchically managed firm and the decentralized competitive market, focuses attention primarily on the
efficiency of software project organizations, rather than considering the regime as a whole.

 7

the organization and management of “open science”, “open source” and kindred cooperative
knowledge-creating communities. In all such circumstances were specialized expertise of
those participating is critically important for the effective conduct of the work, and prior
evaluations are made difficult the asymmetric distribution of the pertinent bodies of expert
knowledge and knowledge about expertise, one would expect to find a greater reliance upon
ex post verification and validation of the work-product, rather than on a formal management
tools for selecting the producers and monitoring the quality or intensity of their contributions.
When considering the issues surrounding the nature and efficacy of the coordination,
governance and quality regulating mechanisms that have emerged in the context of large and
complex Libre software projects, it is therefore relevant to recognize the potential tensions
between the product control devices that can be readily implemented by expert-developers
and those which may be of importance to the end-users in the society at large.

2. Modelling Libre communities at work
 The parallels that exist between the phenomena of “open source” and “open science,”
to which reference already has been made, suggests a modeling approach that builds on the
generic features of non-market social interaction mechanisms. These involve feedbacks from
the cumulative results of individual actions, and thereby are capable of achieving substantial
coordination and coherence in the collective performance of the ensemble of distributed
agents. This approach points in particular to the potential significance of the actors’
consciousness of being “embedded” in peer reference groups, and therefore to the to role of
collegiate recognition and reputational status considerations as a source of systematic
influence directing individual efforts of discovery and invention.

 Our agent-based modeling framework has been structured with a view to its suitability
for subsequent refinement and use in integrating and assessing the significance of empirical
findings about patterns of resource allocation within large and more complex F/LOSS
projects, well known exemplars of which are the Linux operating system, the Mozilla web-
browser and the Apache web-server. Systematic empirical evidence about the participants in
such projects, their behaviors, patterns of communication and the internal modes of project
organization has only lately begun to be collected.13 Nonetheless, to guide initial
specifications it is possible to draw upon insights provided by experienced project leaders and
descriptive generalizations about micro-level incentives from survey- and interview-based
studies, regarding the nature of the community norms that might not only affect the
mobilization of participants, but guide the allocation of software developers’ efforts within
particular projects. Nothing in that approach invites hypothesizing the operation in the
representative, ‘ideal-type’ F/LOSS community of a system of social norms that mimics the
particular features of collegiate reputational reward systems such as are found in the Republic
of Science, but the postulation that an equivalent functional structure exists is an entirely

13 Pioneering studies of large projects include the work of S. Koch and G. Schneider (2000) ;Tuomi (2000,
2001); Dempsey et al. (1999, 2002); S. Krishnamurthy (2002). More recent studies have sought to exploit new
methods of automated data-mining from source code repositories, and to build links between that information
and data on communications flows among project participants. On patterns of authorship and the structure of
code within large projects, obtained using the CODD data extraction algorithm (developed by R. A. Ghosh and
V. V. Prakash (and described first to measuring the code size of projects in the Orbiten Free Survey (2000) [see
http:www.orbiten.org/codd]), see Ghosh (2003)]; for findings from the application of CODD to studies of
sequential releases of the the Linux kernel see Ghosh and David (2003). See Gonzalez-Barahona and Robles
(2003, 2004); Robles, Koch and Gonzalez-Barahona (2004); Gonzalez-Baharona, Lopez and Robles (2004).

 8

plausible basis upon which to proceed. Further, it is equally clear that provision eventually
will need to be made to incorporate functional equivalents of the conventions and institutions
governing recognized claims to scientific ‘priority’ (being first), as well as the symbolic and
other practices that signify peer approbation of exemplary individual performance.

 A systems analysis perspective such as is familiar in general equilibrium economics
suggests that within such a framework we should be capable also of asking how the norms
and signals available to micro-level decision-takers in the population of potential participants
will shape the distribution of resources among different concurrent projects, and direct the
attention of individual and groups to successive new projects. That, in turn, will affect the
growth and distribution of programmer’s experiences with the code of particular projects, as
well as the capabilities of those who have gained familiarity with the norms and institutions
(e.g., software licensing practices), and the coordination and communication styles specific to
individual projects, as well as the more widely shared practices of the Libre software regime.
Obviously, the formation of generic knowledge and capabilities provides potential “spill-
overs” to other areas of endeavor – including the production of software goods and services
by commercial suppliers. From this it follows that to fully understand the dynamics of the
Libre software mode and its interactions with the rest of the information-technology sector,
one cannot treat the expertise of the software development community as a given and
exogenously determined resource.

 From the foregoing it should be evident that the task upon which we are embarked is
no trivial undertaking, and that to bring it to completion we must hope that others can be
drawn into contributing to this effort. We report here on initial progress towards that goal: the
formulation of a highly stylized dynamic model of decentralized, micro-level decisions that
shape the allocation of Libre software programming resources among project tasks, and
across distinct projects, thereby generating an evolving array of Libre software system
products, each with its associated qualitative attributes. In such work, it is hardly possible to
eschew taking account of what has been discovered about the variety prospective rewards –
both material and psychic – that may be motivating individuals to write free and open source
software, because it is only reasonable to suppose that these may influence how they allocate
their personal efforts in this sphere. At this stage, it is not necessary to go into great detail on
this matter, but among the many motives enumerated it is relevant to separate out those
involving what might be described as “independent user-implemented innovation.”14 Indeed,
this term may well apply to the great mass of identifiably discrete projects, because a major
consideration driving many individuals who engage in the production of open source would
appear to be the direct utility or satisfaction they expect to derive by using their creative
outputs.15 The power of this motivating force obviously derives from the property of
immediate efficacy, which has been noticed as a distinctive feature of computer programs.
But, no less obviously, this force will be most potent where the utilitarian objective does not
require developing a large and complex body of code, and so can be achieved quite readily by
the exertion of the individual programmer’s independent efforts. “Independent” is the

14 The term evidently derives from von Hippel’s (2001, 2002) emphasis on the respects in which open source
software exemplifies the larger phenomenon of “user-innovations.”
15 Just how great a mass of these independent projects represent in the total remains unclear, as the most
readily available indications are those obtained by studying the characteristics of the just the publicly announced
open source projects. On the basis of gathered data from Sourceforge.net on the 100 most active projects
observed in the “mature stage” (i.e., the final stage of a project’s development, when it is almost fully functional
and distributed), Krishnamurthy (2002) reports finding that the modal project has only 1 identified developer;
among the most active projects –a mere fraction of the 40 thousand-odd listed on that site -- the median number
of developers was 4.

 9

operative word here, for it is unlikely that someone writing an obscure driver for a newly-
marketed printer that he wishes to use will be at all concerned about the value that would be
attached to this achievement by “the Libre software community.” The individuals engaging in
this sort of software development may use open source tools and regard themselves as
belonging in every way to the free software and open source movements. Nevertheless, it is
significant that the question of whether or not their products are to be contributed to the
corpus of non-proprietary software, rather than being copyright-protected for purposes of
commercial exploitation really is one that they need not address ex ante. Being essentially
isolated from active collaboration in production, the issue of the disposition of authorship
rights can be deferred until the code is written.16 That is an option which typically is not
available for projects that contemplate enlisting the contributions of numerous developers,
and for which there are compelling reasons to announce a licensing policy at the outset.

For all intents and purposes software production activity in such circumstances stands apart
from the efforts that entail participation in collective developmental process, involving
successive releases of code and the cumulative formation of a more complex, multi-function
system. We will refer to the latter as Libre software production in “community-mode” or, for
convenience C-mode, contrasting it with software production in I-mode (Dalle & David,
2003). Since I-mode products and producers, almost by definition, tend to remain restricted in
their individual scope and do not provide as direct an experience of social participation, the
empirical bases for generalizations about them is still very thin; too thin, at this point, to
support interesting model-building. Consequently, our attention here focuses exclusively
upon creating a suitable model to simulate the actions and outcomes of populations of Libre
software agents that are working in C-mode.

It would be a mistake, however, to completely conflate the issue of the sources of motivation
for human behavior with the separable question of how individuals’ awareness of community
sentiment, and their receptivity to signals transmitted in social interactions, serves to guide
and even constrain their private and public actions; indeed, even to modify their manifest
goals. Our stylized representation of the production decisions made by Libre software
developers’ therefore does not presuppose that career considerations of “ability signaling,”
“reputation-building,” and the expectations of various material rewards attached thereto, are
dominant or even a sufficient motivations for individuals who participate in C-mode projects.
Instead, it embraces the weaker hypothesis that awareness of peer-group norms significantly
influences (without completely determining) micro-level choices about the individuals’
allocation of their code-writing inputs, whatever assortment of considerations may be
motivating their willingness to contribute those efforts.17

16 In this respect it can be argued that the decision of the individual developer working in I-mode to participate
in Libre software production actually is not a decision about the mode of production, but, instead is a matter of
making and ex post choice of whether or not to disclose the source code, and whether or not it is worth trying to
exploit the resulting program as protected intellectual property. The economics of such post-production
decisions certainly are of interest, and the normative force of the open source and free software movements may
come into play at this stage. The represents a promising line for future research, but it is a line of inquiry quite
different from the one we are pursuing here.
17 It will be seen that the probablistic allocational “rules” derive from a set of distinct community “norms,” and
it will be quite straightforward within the structure of the model to allow for heterogeneity in the responsiveness
to peer-influence in this respect, by providing for inter-individual differences in weighting within the rule-set.
This may be done either probabilistically, or by creating a variety of distinct “types” of agents and specifying
their relative frequencies in the population from which “contributions” are drawn. For the purposes of the basic
model presented here, we have made a bold simplification by specifying that all potential contributors respond
uniformly to a common set of allocational rules.

 10

Our model-building activity aims to provide more specific insights not only into the workings
of Libre software communities, but also into their interaction with organizations engaged in
proprietary and “closed mode” software production. It seeks to articulate the
interdependences among distinct sub-components of the resource allocation system, and to
absorb and integrate empirical findings about micro-level mobilization and allocation of
individual developer efforts both among projects, and within projects. Stochastic simulation
of such social interaction systems is a powerful tool for identifying critical structural
relationships and parameters that affect the emergent properties of the macro system. Among
the latter properties, the global performance of the Libre software mode in matching the
functional distribution and characteristics of the software systems produced to the evolving
needs of users in the economy at large, obviously is an issue of importance for our analysis to
tackle.

It is our expectation that in this way it will be feasible to analyze some among the
problematic tensions that may arise been the performance of a mode of production guided
primarily by the internal value systems of the participating producers, and that of a system in
which the reward structure is tightly coupled by managerial direction to external signals
deriving from the satisfaction of end-users’ wants. Where the producers are the end-users, of
course, the scope for conflicts of that kind will be greatly circumscribed, as enthusiasts for of
“user-directed innovation” have pointed out.18 But, the latter solution is likely to serve the
goal of customization only by sacrificing some of the efficiencies that derive from producer
specialization and division of labor. The analysis developed in this paper is intended to
permit investigations of this classic “trade-off” in the sphere of software production.

3. The model19

3.1 Structure and rationale

The core of the stochastic simulation model of open source software production presented
here is a behavioral kernel: heterogeneous developers face an existing set of software
modules20 – about the state of which we assume that they are fully informed21 –, and they
choose the module they will contribute to stochastically, according to their effort
endowments and to the reward that each module can grant them. Heterogeneity, represented
here by the existence of a stochastic (discrete) choice function, classically accounts for all the
un-observed characteristics of each developer. Each developer will prefer to undertake the

18 See von Hippel (2001), Franke and von Hippel (2002), on the development of “user toolkits for innovation,”
which are specific to a given production system and product or service type, but, within those constraints, enable
producers to transfer user need-related aspects of product or service design to the users themselves.
19 The current version of this model, and its exposition, have enormously benefited from various comments and
criticisms we have received from various people after we had previously opted for an “early” release (Dalle &
David, 2003), precisely to elicit comments both from the academic community and also from participant
observers in open-source projects. Any modelling exercise like this one implies some conscious level of
abstraction and simplification: however, the modellers might not be immediately accurate in their modelling
attempts, over-estimating some parameters while underestimating others, and therefore critically need insights
and inputs from many other experts. Needless to say, this basic assumption still completely holds here.
20 Which would probably correspond more to packages than to individual files according to the terminology in
vigour in most open-source projects.
21 Which implies that each new contribution is immediately made accessible to all developers. We do not
account for now for the fact that some contributions are suitable not to be integrated in the code, depending
notably on their relevance, and on maintenance policy, at least at the module level: see section 3 below for
simulation experiments with various global maintenance rules.

 11

most rewarding tasks, according to a reward system still to be determined: however, this is
not a deterministic choice as there are necessarily unobserved heterogeneous characteristics
which drive this choice, and for which no model can account for if it wants to avoid to
absolute contingency trap in which it would fall if it assumed it could take all relevant
variables into account. A simple, and now relatively traditional way to handle this (Anderson,
de Palma & Thisse, 1992), is to consider that the more rewarding modules will be chosen
with a higher probability – or, in the statistical physicist’s language now common in most
disciplines including economics, to consider rewards as weights and to compute the
probability that each module is chose according to a ratio between its weight and the sum of
all weights, possibly distorted by various parameters and coefficients. Namely:

 () ()

() ()
1 1

m
all modules all virtual modules

i i
i i

chosen module virtual module m
ρ α

ρ α ρ ′
= =

⎡ ⎤= =⎣ ⎦
+∑ ∑

P
α

 (2.1)

Where ()ρ α stands for the reward of α contributed to each module.

Among un-observed characteristics, an important caveat concerns here the precise nature of
the problems that each developer faces in its own idiosyncratic situation, a feature which is
reportedly known as a significant determinant of developer choice among various open-
source projects: from Eric S. Raymond’s “Every good work of software starts by scratching a
developer’s personal itch.” (Raymond, 1998a) to Eric von Hippel’s user theory (Harhoff,
Henkel & von Hippel, 2000; Franke & von Hippel, 2002; von Hippel, 2002) and to more
recent and quantitative evaluations (see e.g. Ghosh, Glott, Kreiger & Robles, 2002; David,
Waterman & Arora, 2003; Lakhani, Wolf, Bates & DiBona, 2003). This is something that we
only deal with stochastically in the current version of the model: namely, we account for un-
observed characteristics like this one, but we do not specify it fully yet. A later version of this
model should involve the development of such an improved behavioral kernel, which would
account for the matching process between developer and module characteristics – not
underestimating the precautions that would be needed to support the validity of the claims
then obtained as these developments would increase the non-ergodicity (David, 2001), and
perhaps the deterministic features, of the system, due to a higher number of variables which
would then accounted for.

 12

Figure 1

Graphical representation of a software system growth process as an upward evolving tree

It would mean developing a new module. Indeed, this is exactly what open-source software
development generally implies, since open-source developers do not simply consider adding
their efforts to existing modules, but they also create new ones to supplement existing ones,
when appropriate: this is precisely the mechanism that we have implemented to induce
simulated code growth. To do so, we consider the following modeling finesse: we suppose
that to each existing module is associated a ‘virtual’ module, which stands for the eventuality
that a new module could be created from the existing one, either by developing an existing
functionality out of it, in the form of an external module, or simply by adding a new one
which would supplement this module: clearly then, the new module and the existing one
would be technically linked22, the new external module would typically be included in the
existing during the compilation process, or sometimes simply called. Figure 1 represents the
growth of a software system according to this rule: at each step, red lines and circles
represented the last created module, while blues lines and circles represent virtual modules
attached to each existing one, and black lines and circles represent older modules created
during earlier steps.

22 Also in the sense of the wording of the GPL licence, for instance, which implies that if the “parent” module
was GPL’d, then the new one would also be.

 13

In this framework, the emerging architecture of the modules is indeed mathematically a tree,
since, by construction, there are no loops and each module is linked to only one (parent)
module. This tree does not completely correspond to the actual directory tree, nor to the full
set of technical and functional dependencies, which are usually known as the architecture of a
software system per se (Bass, Clements & Kazman, 1998), since some of technical
dependencies are not accounted for here, namely the fact that some modules can be called by
several others. We have rather characterized it here as an emerging architecture, i.e. the one
which stems from the fact that developers generally decide to create a new module to solve a
technical problem they face while working on a particular existing one, or as a development
or part of an existing module. Therefore, this emerging architecture here has much to do with
the kind of phenomenon that Herbert A. Simon (1962) famously characterized years ago in a
seminal article on the “architecture of complexity”, and we indeed feel very much
intellectually indebted to him, all the more so as the emerging architecture that he considers is
also a tree-like “hierarchical system”23: Simon indeed precisely suggested that the emerging
architecture of complex systems tended to often be spontaneously such, because complex
systems were born out of simple ones, and because simple systems then tend to be somehow
included in more complex ones. As for our modeling of open-source software development,
the rationale for the emergence of a hierarchy of modules is strongly similar: a complex
system is dynamically born out of a simple one; new modules are created out of existing ones
to supplement them by developing existing functionalities or adding new ones; and these new
modules can be included in higher ones during the compilation process or at least are called
as sub-systems. We are also very close here to the recent research on modularity (Baldwin &
Clark, 2000), and extending the model further in this direction, notably by studying more
extensively, and modeling more accurately, the actual technical interactions between
modules, would also be a very fruitful research avenue

This model then allows us to test one of the main hypotheses that have been suggested about
software development in open-source mode, namely, what we suggest to call the “regard”
hypothesis. According to this theory, developers are significantly influenced by reputation
effects: Eric S. Raymond (1998ab) was among the first to emphasize this idea in the famous
essays he wrote as a participant observer in open-source communities; and it has been since
suggested repeatedly by several other important studies of open-source software
development, also as a more general attempt to analyze the striking similarities between
open-source and open science communities (Benkler, 2001; Kelty, 2001; Dalle, David &
Steinmuller, 2002)24. In a companion paper to this one (Dalle, David, Ghosh & Wolak, 2004),
we indeed suggest that open-source software falls into a broader category which we
characterize as peer regard economies: not reputation in a traditional sense, but rather to
account for the fact that in these economies the actions undertaken by developers should at
the margin account for the relative regard of their peers about their deeds25.

We therefore suggest that developer statistically tend to prefer lower-level modules to higher-
level ones in the hierarchical structure presented above, since the former, more general ones,
are regarded as more generally relevant by their peers than more specialized ones, and also
because their visibility being higher, it will automatically grant their contributors more regard
from their peers. Contributing to the Linux kernel is deemed a potentially more rewarding

23 But not in the traditional sense of hierarchy, just as a description of an architecture with several levels: indeed,
so as to avoid mis-understanding, the French translation of this paper has precisely selected a word meaning
“tree-like” (arborescent) to translate “hierarchy”.
24 On the economics of Open Science, see Dasgupta & David (1987, 1994), David (1998abc, 2000).
25 At least when they are in C-mode, as opposed to I-mode: see Dalle & David (2003).

 14

activity than contributing to the file system, and the latter still dominates writing an obscure
driver for a newly-marketed printer. Stated differently, we postulate here that there is a strong
dependency between the emerging hierarchical architecture of the software system and the
associated hierarchy of peer regard. Yet in other words, we postulate that there is
lexicographic ordering of rewards based upon a discrete, mainly technically-based “tree-like”
structure formed by the successive addition of modules. Clearly, this is an important
assumption that should be tested empirically: in this respect, our companion paper presents
preliminary elements in this direction, by showing that the pattern of signed and un-signed
contributions in the Linux kernel is not random, and tends to show that technical
dependencies tend to play a relatively significant role, among other factors (Dalle, David,
Ghosh & Wolak, 2004).

Still according to the “regard” hypothesis, and to also account for other observations by
Raymond and others, we also add the two following properties influencing developer choice:

[a] Launching a new project is more rewarding than contributing to an existing one, all the
more so when several contributions have already been made: namely, the first contributions
to a given module are more rewarding than later ones – this is more or less analogous to the
“first to publish” rule in open science communities, and it seems to be also relevant in open
source ones.

[b] Contributing to an active project is more rewarding that contributing to a stagnant or
dormant one, as contributions will simply be more noticed by a larger number of peers.

This last property could be considered as a second-order effect, since it supposes that
developers and contributions will be attracted by modules that already have drawn more
numerous contributions, inasmuch as developers share take signals from one another’s
behavior as to which modules are “interesting.” But it also is a relevant consideration for
individuals seeking peer regard that one’s contributions, however technically astute, should
have an audience.26

26 The empirical study by Dalle, David, Ghosh and Wolak (2004) of the proportions of unsigned (uncredited)
code in modules of the Linux kernel finds that the number of developers contributing to the package exerts no
appreciable independent effect on the probability that code is signed (credited). This result – and other related
findings – are understandable, as Dalle et al. point out, if it is borne in mind that signing one’s code is likely to
be a more important means of gaining recognition (and approbation) for developers who make comparatively
smaller contributions to multiple projects, and who join projects in their later, more mature growth phases, that
it is for major core developers who become identified with a project during its early stages by virtue of their
extensive contributions to its technically critical modules. Were it to be thought that an enlarged audience of
“spectators” would induce a larger proportion of code to be signed in the expectation of gaining greater “peer
regard,” that would pre-suppose that there had been an exogenous increase in the size of the relevant audience –
i.e., in the total number of developers engaged in contributing to the module in question. Yet, the findings on
the joint determination of average code-signing propensities and developer participation in the modules of the
Linux kernel does not support such a supposition of exogeneity. Rather, it appears that larger modules
(measured in terms of code size) exert a selective drawing power that results in larger average contributions of
code per developer. If considerations of peer regard underlay the bias in the selectivity effect on contributors,
that would suggest not only that the number of developers contributing to a given module was an endogenous
variable, but that the selectivity effect (itself was an indirect reflection of considerations of peer regard on the
part of early contributors of larger blocks of code) worked to vitiate the emergence of a positive statistical
association between the proportion of code that was signed and the total number of developers in the module.

 15

3.2. Mathematical description

In mathematical terms, we therefore get:

 () () ()a module: m m m mm r xρ α α∀ = + mr x− (2.2)

Where ()mρ α still stands for the expected27 reward of contributing α to module m , ()mr is
the cumulative reward function, i.e. the total reward associated with the sum of all
contributions to module , m mx is the current improvement of module m, i.e. precisely the
sum of all past contributions, and α is a potential contribution for a developer’s given effort
endowment. Clearly then, by construction, for m′ the virtual module associated with m :

 (): 0m mm x r xm′ ′ ′′∀ = = (2.3)

Thus:

 () (the virtual module associated with module : m mm m)rρ α′ ′′∀ = α

)

 (2.4)

And is a (positive) increasing convex function in coherence with rule [a] above, which
imposes that the first contributions are more rewarded than the later ones.

()r

We will further consider here that:

 () () () () () () ()(()1m m m md m d mr x r x v x d m c m
γλ−

= = + (2.5)

Where is the distance of module m from the first “root” module; is the

function which gives the version number of module at distance

()d m () ()md mv x

m ()d m from the root from

its current improvement mx ; is the number of contributions received by module ,
and

()c m m
0λ ≥ and 0γ ≥ are parameters.

This simplification of into ()mr () ()d mr is a direct consequence of the hierarchical and

lexicographic assumption presented above: the reward associated with module m depends on
its location in the software architecture only as it depends from the height of the module in
the hierarchical module tree, . This dependency is then given according to
characteristic exponent

()d m
λ : when 0λ = all modules are similarly rewarded, whatever their

height , while as ()d m λ goes to infinity the dependency of rewards to the height of the
module increases, with:

 (2.6) () () ()()() ()0 0 1 and : 0 as m m m mr x v x c m m root r x
γ

λ= + ∀ ≠ → → +∞

Since, by construction, the height of a virtual module is the height of its parent plus one, (2.4)
and (2.5) above imply that:

27 Part of the reward at least, especially for new modules, depends upon other contributions to be added later:
therefore its expected nature.

 16

 () () () () () () ()()1 1: 1m m d m d mm r r v d m
λ

ρ α α α α
−

′ ′ + +∀ = = = + (2.7)

If of course we note also that :

 (2.8) ()()() (): 1 1 since : 0m c m m c m
γ

′∀ + = ∀ =′

By construction: the term in in equation (2.5) above allows us to account for rule [b],
namely, to render the more active projects – the “hot spots” – more rewarding for further
contributions – even more and more so as

()c m

γ increases, while this effect disappears
completely when 0γ = . It is therefore not relevant for potential virtual modules, and the
mathematical expression has been chosen in consequence.

We then define also:

 () () ()log 1m md mv x x d µ= + , (2.9)

where 0µ ≥ is another characteristic exponent, which simply implies that it is easier to
increase version numbers for high modules than for lower ones, and we easily verify that

, and therefore () ()md mv x ()mr x are positive increasing convex functions of mx .

To complete the description of the model, what we are finally missing is a distribution of
effort endowments α within the population of independent developers28, normalized by
individual productivities to directly translate into potential improvements added to modules:
that is, a distribution of the size of contributions29. On the basis of the relative sizes of the
high- and low-activity segments of the developer population found by various surveys, and
notably the FLOSS survey, we suppose that these endowments are distributed according to an
exponential distribution function30. Using the classical inverse transformation method on the
cumulative distribution (e.g. Ross, 2003), we then compute the following exponential random
number generator, which generates contributions α from a uniformly distributed probability:

 (1 ln 1 pα
δ

)= − − , (2.10)

28 Whatever their unit of measurement, typically in SLOC or in KLOC: if such a measure was to be selected, it
should be noted that we do not differentiate here between lines added, replaced and deleted. As a consequence, a
more appropriate measure of improvement would then be the sum of all lines added, replaced, and deleted.
29 Since, as we mentioned above, this model is for now a model of contributions and not a model of
contributors: the heterogeneity of contributions is a consequence of the heterogeneity of contributors, and we do
not track for now for individual developers and for instance for the history of their contributions, which would
necessarily imply to attach idiosyncratic characteristics to each individual developer. As a consequence, the
model presented here is not properly speaking agent-based, but is more stochastic in its nature, accounting better
for the intrinsic heterogeneity of economic actors through the observable heterogeneity of their actions.
30 For now, we do not make any distinction different types of contributions, be they patches to correct bugs, or
the addition of new features – which Raymond (1998a) indeed characterizes as the correction of “bugs of
omission”. This aspect of the model could certainly also be improved in later versions. We do not account either
for the involvement of commercial developers: we have started doing experiments in this respect, which will be
reported elsewhere.

 17

where []0;1p ∈ is uniformly distributed and δ is a parameter which controls for the mean of

the distribution, as a straightforward calculation will show that 1α
δ

= , where . stands for

the means.

Simulation experiments can then be run easily according to this model, in discrete time: at
each time step a new contribution is simply added to the existing system31, i.e. either an
existing module is improved or a new one is created. The procedure is the following:

i. A random contribution is given by (2.10) ;

ii. The rewards of all existing modules, considering their current improvements, and
of all virtual modules are computed according to (2.5), (2.7), and (2.9);

iii. A module is chosen according to (2.1), and the system is then modified in
consequence.

Figure 2 represents the typical growth path of such a system, and should therefore be
compared to Figure 1 above (numbers for each module are version numbers).

To finish with the mathematical description of the model, we just need to add that our
ultimate goal is to analyze some of the characteristics of the emerging software systems,
described here as code trees: in particular, we are interested in measure how sensitive their
morphology (software-tree forms) is to parameter variation. Just to push the tree metaphor
further, the obvious trade-offs of interest are those between intensive effort being allocated to
the elaboration of a few “leaves,” i.e. modules, which may be supposed to be highly reliable
and fully elaborated software systems whose functions in each case are nonetheless quite
specific, and the formation of a “dense canopy” containing a number and diversity of
“leaves” that, typically, will be less fully developed. Indeed, a simple way to characterize this
morphology, which we will use below, is simply to compute the Gini coefficient of the
distributions of the sizes all “leaves” – modules.

The reason for this is that an important empirical finding, reported by Ghosh & David (2003),
is that the Gini coefficients of the distribution of module sizes tend to be very (indeed,
extremely) high. As for now, these results were obtained for the Linux kernel. This relatively
striking feature means that there is a very limited number of modules with receive numerous
contributions, and a very large number of modules with only a limited number of
contributions, maybe only one32.

31 As in all the experiments presented here, starting only with the root module with initial improvement 1.
32 We would suggest that one-contribution (and therefore one-contributor) modules realized in I-mode can
eventually be contributed to the project according to a global C-mode behavior (Dalle & David, 2003).

 18

1.97

0.68

0.89

0.02

2.21

1.03

0.89 0.39

0.81 0.08 0.42

2.33

1.03

0.89 0.39 0.29

0.81 1.13 0.66

0.29

0.54

2.41

1.21

0.93

0.92

1.22

0.15

0.29

1.41 1.6

0.23 0.52

1.47

0.59

0.2

1.02

0.2

0.04

0.06 0.13

0.48

0.87

0.15 0.78

0.26

1.32

0.2

0.37 0.76

Figure 2

A simulation of the growth of a software project

But we also believe that the emerging morphologies of such software systems are absolutely
non-neutral with regard to their social utility. Clearly, this should be and must be here a
highly debated issue, but the reason why we dare enter this area is because we really feel
critical to make some progress in the understanding of this difficult problem: for the purposes
of this first step, the focus of the analysis is confined to showing the ways in which the
specific norms of the reward system and organizational rules can shape emergent properties
of software systems, such as its range of functions and reliability. Indeed, the global
performance of development in open source mode, in matching the functional and other
characteristics of the variety of software systems that are produced with the needs of users in
various sectors of the economy and polity, obviously, is a matter of considerable importance
that will bear upon the long-term viability and growth of this mode of organizing production
and distribution.

Therefore, we introduce here a simple social utility function, which basically captures 3
principles, which we first make clear:

(1) Lower modules are more socially valuable than higher ones because more users use
them, and because also of the range of other modules and applications that
eventually can be built upon them;

 19

(2) A greater diversity of functionalities is more valuable because it provides software
solutions to fit a wider array of user needs;

(3) Users value greater reliability, which is likely to increase as more work is done on
the code, leading to a higher number of releases. Releases that carry higher version
numbers are likely to be regarded as ‘better’ in this respect.

We then capture these ideas together according to the following33 social utility function:

 ()()
()

1 1
modules

d
m

u v m
ν

d ξ−⎡= + −⎢⎣∑ ⎤
⎥⎦

 (2.11)

Where []0;1ν ∈ and 0ξ ≥ are parameters, again in the form of characteristic exponents:
obviously, ν controls rule (3) above, while ξ controls rule (1) and while the summation in
itself accounts for rule (2).

4. Simulating the allocation of efforts in open-source software development

For the sake of the exposition, Figure 3 (in annex) presents a typical collection of trees
generated in the context of the simulation experiments presented in this section. In any case,
all simulations reported in this paper have been conducted with similar values of the
parameters, excluding λ and γ since they control the main regard effects that we intend to
test, and which we will therefore keep as parameters, namely:

3
0.5
0.5
2

δ
µ
ν
ξ

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

.

Which, at this point, can be considered as reasonable numerical values, all the more so
similar results to the ones presented here hold for other values in the same range, except for
higher values of ξ which tend to eliminate the existence of non-corner maxima to social
utility, by typically, and logically, driving the maxima toward low very high values of λ .

4.1 Simulation results on project architecture an the distribution of module sizes

Table 1 and Figure 4 now present Gini coefficients measuring the degree of concentration of
the module-size distribution for various values of λ and γ , i.e. depending on the strength of
the two main “regard” effects in the model: λ controlling the influence of the inner hierarchy
of modules within the project, and γ controlling the attractivity of “hot spots” – active
modules. Clearly, there is a region of the parameter-space within which both coefficients
exert a positive influence on the Gini coefficient: one can see the boundary of that region
describes a steeply rising “ridge-line” in Table 1 along which the entries for G attain a
maximum in the neighborhood 0.86-.88. The row-maxima and column maxima for the Gini
coefficient, which coincide along that ridge-line are marked in boldface in the table. In other
words, there is a linear combination of λ and γ that constitutes a limit, above which the

33 In the future, we might be willing to implement a better differentiation between functionality and reliability,
with the idea also that different users might typically value both aspects differently.

 20

software system fails to develop, so that virtually all the code growth is confined to a single
(root) module.34

We certainly do not generate Gini coefficients as high as those found in actual open-source
project code (sometimes over 0.99), but this would have been impossible due to the
limitations of our stylized simulation experiments; furthermore, we do not account for the
technical peculiarities of some specific modules in a software project like Linux – where the
modules providing a great variety of “drivers” results in a multiplicity of comparatively small
code-packages, which contributes the projects high Gini coefficient. But simulations that
displayed even the results did not hold in various simulation experiments that we conducted,
and that are not described here in detail, for which Gini coefficients typically remained low
(i.e., rarely exceeding 0.5). This was for instance the case when we grew software systems:

i. Without rule [b] above, i.e. without the “hot spot” effect;

ii. Without rule [b], but with another rule, [c], accounting for a negative effect that a
higher number of existing modules stemming from any given one would have on
the motivation to create still another child to this module.

We would therefore suggest, according to these results but also to the other ones presented
below which similarly exhibit high Gini coefficients, that there is a positive correlation
between the existence of regard-based reward structures, and specially fashion effects, and
the observed characteristics of package size distributions within some open-source software
projects.

4.2 Simulation results on developers’ choices, project “release” rules, and social utility

To turn now to results about social utility, Table 2 and Figure 5 show that social utility varies
systematically with λ and γ . But the effect of higher γ , raising the attractiveness of “hot
spots” of developer activity among the modules, is to monotonically reduce the social utility
of the overall project code. In Table 2 only the column maxima are marked in boldface, to
highlight the fact that these occur at successively lower values of λ as the attractiveness of
“hot spots” is increased, and that the value of the column maxima themselves decreases. It
will be seen, therefore, that the locus of column maxima, and therefore the maxima of social
utility nowhere correspond to the ridge-line region of Gini coefficients that appears in Table
1 and Figure 4 (Note that the γ axis has been inverted between the Figures 4 and 5, in order
to obtain greater clarity in the perspective imposed by the 3-D view).

Although these results are remain quite tentative, it is difficult to escape the conclusion that
the ‘regard’ motivations which we have hypothesized to operate within the open-source
software communities of large projects are not conducive to generating socially optimal, or
even second-best optimality in the emerging functional design of software systems. To put it
differently, and still more hypothetically, if the motivations of independent developers drive
them to take decentralized decisions that are responsive to “peer regard” and imitative of
“social fashion” within the project-community (which would correspond to specifying
parameters λ and γ in the “high Gini” zone), then the results could be considered as a less
socially beneficial global outcome, compared to other situations were fashion and regard
effects would typically have less potency in guiding developer’s decisions.

34 A close approximation to this boundary line is found as: max-Gini = (0.1) λ + (0.43)γ . As one may see, this
relationship begins to break down for value of λ < 1.

 21

 γ

 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

0,0 0,47 0,47 0,47 0,48 0,47 0,48 0,50 0,55 0,61 0,70 0,68

0,5 0,48 0,47 0,47 0,47 0,49 0,50 0,54 0,60 0,70 0,83 0,73

1,0 0,48 0,48 0,48 0,49 0,51 0,53 0,58 0,67 0,82 0,87 0,67

1,5 0,48 0,49 0,50 0,52 0,53 0,57 0,65 0,75 0,85 0,72 0,41

2,0 0,50 0,50 0,51 0,54 0,58 0,61 0,74 0,86 0,87 0,71 0,32

2,5 0,50 0,52 0,53 0,57 0,61 0,69 0,79 0,88 0,81 0,43 0,30

3,0 0,52 0,53 0,56 0,60 0,65 0,74 0,85 0,87 0,61 0,38 0,17

3,5 0,53 0,56 0,59 0,63 0,70 0,79 0,88 0,72 0,58 0,15 0,17

4,0 0,55 0,57 0,61 0,66 0,75 0,84 0,86 0,61 0,56 0,22 0,05

4,5 0,57 0,60 0,65 0,70 0,79 0,87 0,83 0,52 0,22 0,05 0,00

λ

 5,0 0,59 0,62 0,67 0,74 0,82 0,87 0,79 0,46 0,25 0,05 0,00

Table 1: Gini coefficient for module size distribution

0,0

2,5

5,0
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

λ

γ

Figure 4: Gini coefficient for module size distribution

 22

Needless to say, this rather striking conclusion rests entirely on the specification of the social
welfare criterion, as well as the other behavioral specifications of the model. That it overturns
the results reported by Dalle and David (2003) on the basis of an earlier version of the model
is not problematic in itself: the present model, as has been seen, incorporated a previously
overlooked “externality effect” – in the form of mimetic behaviors affecting individual
choices about what parts of the project to which code is contributed, and effect that “social
fashion – that enables the model to capture an important empirical feature of large projects’
code, namely, the skewed distribution of the module sizes. But, there are still other empirical
regularities, such the characteristics of the distribution of individual developer contributions
to each of the modules, that the model in its still present, highly simplified form cannot
simulate. Therefore, it is undoubtedly premature to attach any finality and certainly any
policy significance to the finding just reported.

Nevertheless, in view of the importance and intrinsic theoretical interest of understanding the
factors that will affect the assessment of open-source project performance from the viewpoint
of external evaluators, and final users in particular –which our social welfare function seeks
to represent, we believe it is appropriate to call attention to the foregoing results. At very
least, it exposes the “instability” of the results yielded by the model during this still early
phase of the sequential modification of its specifications. Indeed, one can do no less than
report such reversals in results, if we are to adhere to the general scientific norm of “full
disclosure” – placing one’s trust in the latter’s efficacy in promoting rapid, cumulative
advances in knowledge.

 γ

 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

0 5,1 5,2 5,0 5,1 4,7 5,1 5,2 5,0 4,6 4,3 2,4

0,5 7,1 6,3 7,0 6,8 6,7 6,4 7,0 5,6 5,4 3,5 2,3

1,0 8,4 8,4 7,8 8,6 8,2 8,2 7,2 6,5 4,3 3,0 2,0

1,5 10,0 9,5 10,1 9,5 9,4 8,8 8,0 6,2 3,4 2,1 1,7

2,0 11,2 11,4 11,0 10,5 10,1 9,2 6,9 4,3 2,6 1,9 1,7

2,5 12,3 12,1 11,4 11,2 10,2 8,6 6,4 3,2 2,2 1,7 1,7

3.0 13,3 13,2 12,3 11,4 10,5 8,0 4,8 2,8 1,9 1,7 1,6

3,5 13,8 13,4 12,4 11,9 9,6 7,0 3,7 2,0 1,8 1,6 1,6

4.0 14,4 13,8 12,6 11,5 8,8 5,7 2,7 1,8 1,7 1,7 1,6

4,5 14,6 14,1 12,4 10,6 7,8 4,6 2,4 1,8 1,6 1,6 1,6

λ

 5.0 15,0 13,8 12,2 9,7 6,9 3,4 2,2 1,7 1,6 1,6 1,6

 23

Table 2: Social utility

0

1

2

3

4

5

0

1

2

0

2

4

6

8

10

12

14

16

So
ci

al
 U

til
ity

λ
γ

Figure 5: Social utility (without maintainers)

5. Conclusion
We have reported in this paper of an effort to construct a simulation model of software
development in Libre (open-source) mode. Obviously, the next steps can be taken in either of
two directions. Following the empirical path and the iterative development, we can seek to
calibrate the model more precisely by using the empirical regularities (e.g., on the types and
sizes of modules, and the overall architectural morphology) observed in a number of large
open-source projects of various kinds. But there are also clearly are a number of research
agenda items in view on the analytical path, many having been set out by our first report on
this undertaking (Dalle and David 2003), with several new ones being added in the course of
the foregoing discussion. Perhaps the most important discrete elaboration will be the steps
from modeling the tree to modeling a forest: adding typically a second “project tree” that may
compete with the first for developers’ contributions but also benefit from experience that they
gain in working on the “rival” project. Next we envisage exploring whether the dynamics of
the system becomes markedly more complex when the forest expands to beyond two trees,
allowing some projects to have relationships marked by complementarity whereas other pairs
are substitutes as far as the production relationships are concerned.

Looking ahead on both paths, it seemed obvious that it will be beyond our power to
adequately pursue on our own even the principal items in the vast research agenda that we

 24

have opened – at least not at a rate that can keep up with the proliferating sources of
empirical data that a fully specified model could illuminate, and the multiplying policy
questions that a carefully parameterized model could be used to analyze. Consequently, in a
somewhat self-referential fashion, we are moving towards facilitating the conduct of the
simulation project in the distributed open-source manner. The next version (release) of the
model will provide not only the mathematical structure of a modularized version of the
simulation structure, but the source code we are running, and which others may use to
replicate our results and modify the structure.

Whether this should formally become an experiment in the organizing of this kind of research
on open-source as an open-source-like project (with all that this implies about claims to
copyrights, licensing terms and governance norms), is an intriguing question. But, for the
present, the “open science” mode seems to be powerful and attractively familiar way in
which to move forward, inviting others to join in the collective advancement of knowledge.

REFERENCES

Anderson, de Palma and Jacques-François Thisse. 1992. “Discrete Choice Theory of Product
Differentiation.” Cambridge, Mass.: MIT Press.

Baldwin, Carliss Y. and Kim B. Clark. 2000. Design Rules: Vol.1. “The Power of Modularity.”
Cambridge, Mass: MIT Press.

Bass, Len J., P. Clements and Rick Kazman. 1998. “Software Architecture in Practice”. Addison-
Wesley.

Benkler, Yochai. 2002. “Coase’s Penguin, or Linux and the Nature of the Firm.” Yale Law Journal.
112: 369-446.

Bonaccorsi, Andrea and Cristina Rossi, 2003. “Comparing motivations of individual programmers
and firms to take part in the open source movement: From community to business.”
http://opensource.mit.edu/papers/bnaccorsirossimotivationlong.pdf

Boston Consulting Group. 2002. Survey of free software/open source developers conducted by the
Boston Consulting Group. See <http://www.osdn.com/bcg>

Carayol, Nicolas and Jean-Michel Dalle. 2000. “Science wells: Modelling the ‘problem of problem
choice’ within scientific communities.” Presented at the 5th WEHIA Conference, GREQAM,
Marseille, June.

Dalle, Jean-Michel. 1997. “Heterogeneity vs. externalities: a tale of possible technological
landscapes“, Journal of Evolutionary Economics 7: 395-413.

Dalle, Jean-Michel and Paul A. David. 2001. “On open source software and the organization of
cathedral-building: metaphors and realities.” Working Paper, SIEPR-NOSTRA Project on the
Economics of Open Source Software, December, revised version submitted to First Monday.

________. 2003. “The Allocation of Software Development Resources in ‘Open Source’ Production
Mode,” SIEPR-Project NOSTRA Working Paper, (15th February) [Accepted for publication in Joe
Feller, Brian Fitzgerald, Scott Hissam, Karim Lakhani, eds., Making Sense of the Bazaar,
forthcoming from MIT Press in 2004].

Dalle, Jean-Michel, Paul A. David, Rishab Aiyer Ghosh and W. E. Steinmueller,

Dalle, Jean-Michel, Paul A. David and W.E. Steinmueller. 2002. “An Agenda for Integrated Research
on the Economic Organization & Efficiency of Libre Software Production.” Available at:
http://siepr.stanford.edu/programs/OpenSoftware_David/FLOSS%20Conf%20Stmt_JMD+PD+ES_v6
.htm.

http://opensource.mit.edu/papers/bnaccorsirossimotivationlong.pdf
http://www.osdn.com/bcg
http://siepr.stanford.edu/programs/OpenSoftware_David/FLOSS Conf Stmt_JMD+PD+ES_v6.htm
http://siepr.stanford.edu/programs/OpenSoftware_David/FLOSS Conf Stmt_JMD+PD+ES_v6.htm

 25

Dalle, Jean.-Michel, P. A. David, Rishab A. Ghosh, and W. E. Steinmueller, 2004 “Advancing
Economic Research on the Free and Open Source Software Mode of Production,” (Publication
forthcoming in Building Our Digital Future:Future Economic, Social & Cultural Scenarios Based
On Open Standards, Marleen Wynants and Jan Cornelis, Eds., Brussels: Vrjie Universiteit Brussels
(VUB) Press, 2005.) [Pre-print as SIEPR Discussion Paper (December 2004) available at:
http://siepr.stanford.edu/programs/OpenSoftware_David/NSFOSF_Publications.html.]

Dalle, Jean-Michel, Paul A. David, Rishab Aiyer Ghosh and Frank Wolak. 2004. “Free and Open
Source Software Developers and the Economy of ‘Regard’: A Quantitative Analysis of Code-Signing
Patterns within the Linux Kernel,” paper presented to the EPIP3 Seminar, Schuola Superiore
Sant’Anna, Pisa, April, and to the Oxford Workshop on Libre Software (OWLS), Oxford Internet
Institute, June.

Dalle, Jean-Michel and Nicolas Jullien. 2000. “NT vs. Linux, or some explorations into the economics
of free software,” In: Application of simulation to social sciences, G. Ballot and G. Weisbuch, eds.
Paris, France: Hermès, pp. 399-416.

Dalle, Jean-Michel and Nicolas Jullien. 2003. “‘Libre’ software : turning fads into institutions?”,
Research Policy, 32(1):1-11.

Dasgupta, Partha and Paul A. David. 1987. Information Disclosure and the Economics of Science and
Technology. Ch. 16 in Arrow and the Ascent of Modern Economic Theory, (G. Feiwel, ed.), New
York: New York University Press, 1987, pp. 519-542.

——— 1994. “Toward a new economics of science”, Research Policy, vol. 23, no. 5, pp. 487-521.

David, Paul A. 1998a. Communication Norms and the Collective Cognitive Performance of ‘Invisible
Colleges in Creation and Transfer of Knowledge: Institutions and Incentives, Physica-Verlag Series
Contributions to Economics, G.Barba. Navaretii et al., eds., Berlin, Heidelberg, New York: Springer-
Verlag.

——— 1998b. Common Agency Contracting and the Emergence of ‘Open Science’ Institutions,
American Economic Review, 88(2): 15-21 (May).

——— 2000. “Patronage, Reputation, and Common Agency Contracting in the Scientific Revolution:
From Keeping ‘Nature’s Secrets’ to the Institutionalization of ‘Open Science.” (Unpublished; under
review at Journal of Economic History).

——— 2001. “Path dependence, its critics and the quest for ‘historical economics’,” in Evolution and
Path Dependence in Economic Ideas: Past and Present, eds. P. Garrouste and S. Ioannidies.
Cheltenham, Glos.: Edward Elgar, 2001.

_____ 2002a. “La coopération, la créativité et al cl^ture des débats dans les sciences, in Institutions et
innovation: De la recherche aux systèms sociaux d’innovation.” (Sous la direction de Jean-Phillipe
Touffut) Paris:Bibliothèque Albin Michel Economié, pp. 67-104.

_____ 2002b. “Cooperation, Creativity and Closure in Scientific Research Networks:
Modeling the Simpler Dynamics of Invisible Colleges,” SIEPR/CEEG-Social Science and
Technology Seminar Series Paper (December 4, 2002). [Available at:
http://siepr.stanford.edu/programs/SST_Seminars/David_All.pdf].

_____ 2003. “The Economic Logic of ‘Open Science’ and the Balance between Private Property
Rights and the Public Domain in Scientific Data and Information: A Primer,” in National Research
Council, The Role of the Public Domain in Scientific Data and Information, Washington, D.C.:
National Academy Press/

_____ 2004. “Understanding the Emergence of Open Science Institutions: Functionalist Economics in
Historical Context,” Industrial and Corporate Change, 13(1), August.

David, Paul A., Andrew H. Waterman and Seema Arora .2003. “FLOSS-US: The Free/Libre Open
Source Software Developer Survey for 2003: A First Report.” (September) [Available at:
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf.]

http://siepr.stanford.edu/programs/OpenSoftware_David/NSFOSF_Publications.html
http://siepr.stanford.edu/programs/SST_Seminars/David_All.pdf
http://siepr.stanford.edu/programs/SST_Seminars/David_All.pdf
http://siepr.stanford.edu/programs/SST_Seminars/David_All.pdf
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf

 26

Dempsey, B., Weiss, D., Jones, P. and Greenberg, J. 1999. “A quantitative profile of a community of
open source Linux developers.” SILS Tech. Rep. TR-1999-05, School of Information and Library
Science, University of North Carolina at Chapel Hill, (October). [Available at:
www.metalab.unc.edu/osrt/.
_____2002. “Who is an open source software developer?” Communications of the ACM,
Volume 45, Number 2 (2002), Pages 67-72.

Elliott, Margaret. S. and Walt Scacchi. 2003. “Free Software Development: A Case Study of Software
Development in a Virtual Organizational Culture.” April.
http://opensource.mit.edu/papers/eliottscacchi.pdf

Feller, Joe and Brian Fitzgerald. 2002. “Understanding Open Source Software Development.”
Addison-Wesley: UK.

Franke, Nikolaus and Eric von Hippel. 2003. “Satisfying heterogeneous user needs via innovation
toolkits: the case of Apache security software.” Research Policy, 32 (7): 1199-1215, Special Issue on
open source software development edited by Georg von Krogh and Eric von Hippel.

Gambardella, Alfonso and Bronwyn H. Hall. 2004. ”Proprietary vs. Public Domain Licensing
of Software and Research Products.” Working Paper. Scuola Superiore Sant’ Anna, Pisa.
February. (Revised version forthcoming in Research Policy).

Ghosh, Rishab Aiyer. 2003. “Clustering and Dependencies in Free/Open Software Development:
Methodology and Preliminary Analysis,” MERIT-Infonomics Institute and SIEPR-Project NOSTRA
Working Paper, 15th February). http://opensource.mit.edu/papers/ [Forthcoming in Joe Feller, Brian
Fitzgerald, Scott Hissam, Karim Lakhani, eds., Making Sense of the Bazaar, Cambridge, MA: MIT
Press, 2005]

Ghosh, Rishab Aiyer and Ved Prakash, Vipul. 2000. “The Orbiten Free Software Survey,” First
Monday, 5:7. http://www.firstmonday.org/issues/issue5_7/ghosh/

Ghosh, Rishab Aiyer and Paul A. David. 2003. “The nature and composition of the Linux kernel
developer community: a Dynamic Analysis,” SIEPR-Project NOSTRA Working Paper (21st
February). http://opensource.mit.edu/papers/

Ghosh, Rishab Aiyer, Rudiger Glott, Bernhard Kreiger and Gregario Robles. 2002. The Free/Libre
and Open Source Software Developers Survey and Study—FLOSS Final Report. June.
http://www.infonomics.nl/FLOSS/report/

González-Barahona, Jesús M. et al. 2002. “Counting potatoes: The size of Debian 2.2,” (Version 3a: 3
January). http://people.debian.org/~jgb/debian-counting/counting-potatoes/.
Gonzalez-Barahona, Jesus and Gregorio Robles. 2003. “Free Software Engineering: A Field to
Explore,” Upgrade, IV(4), August..

Gonzalez-Baharona, Jesus M., Luiz Lopez and Gregorio Robles. 2004. "The community structure of
the modules in the Apache project." GSyC Working Paper, Universidad Rey Juan Carlos (Mostoles).
February. http://opensource.mit.edu/papers/

Gonzalez-Barahona, Jesus and Gregorio Robles. 2004. “Getting the Global Picture,” A presentation at
the Oxford Workshop on Libre Software (OWLS), Oxford Internet Institute, 25-26 June 2004.
[Available at: http://www.oii.ox.ac.uk/fiveowlsgohoot/postevent/Barahona&Robles_OWLS-
slides.pdf].

Harhoff, Dietmar, J. Henkel and Eric von Hippel. 2000. “Profiting from Voluntary Information
Spillovers: How Users Benefit by Freely Revealing their Innovations.” (July).
opensource.mit.edu/papers/evhippel-voluntaryinfospillover.pdf.

Kelty, Christopher M. 2001. “Free Software / Free Science.” First Monday 6 (12: December).
www.firstmonday.org/issues/issue6_12/kelty/index.html.

http://www.metalab.unc.edu/osrt/
http://opensource.mit.edu/papers/eliottscacchi.pdf
http://opensource.mit.edu/papers/
http://www.firstmonday.org/issues/issue5_7/ghosh/
http://opensource.mit.edu/papers/
http://www.infonomics.nl/FLOSS/report/
http://people.debian.org/~jgb/debian-counting/counting-potatoes/
http://opensource.mit.edu/papers/
http://www.oii.ox.ac.uk/fiveowlsgohoot/postevent/Barahona&Robles_OWLS-slides.pdf
http://www.oii.ox.ac.uk/fiveowlsgohoot/postevent/Barahona&Robles_OWLS-slides.pdf
http://opensource.mit.edu/papers/evhippel-voluntaryinfospillover.pdf
http://www.firstmonday.org/issues/issue6_12/kelty/index.html

 27

Koch, S. and G. Schneider. 2000. “Results From Software Engineering Research Into Open Source
Development Projects Using Public Data,” Vienna University of Economics and Business
Administration http://opensource.mit.edu/papers/koch-ossoftwareengineering.pdf.

Kogut, B. and A. Metiu. 2001. “Open-Source Software Development and Distributed Innovation,”
Oxford Review of Economic Policy 17 (2): 248-64.

Krishnamurthy, S. 2002. “Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects,” University of Washington, Bothell. (May).
http://opensource.mit.edu/papers/krishnamurthy.pdf.

Lakhani, Karim and Eric von Hippel. 2000. “How Open Source Software Works: "Free" User-to-User
Assistance.” Research Policy 32 (6): 923-943.

Lakhani, Karim R., Bob Wolf, Jeff Bates and Chris DiBona, 2003. “The Boston Consulting Group
Hacker Survey (in cooperation with OSDN)”. [Available at: <http://www.osdn.com/bcg/bcg-
0.73/BCGHackerSurveyv0-73.html >.]

Lerner, Josh and Jean Tirole. 2002. “The Simple Economics of Open Source.” National Bureau of
Economic Research (NBER) Working Paper 7600 (March). www.nber.org/papers/w7600.

Mateos-Garcia, J. and W. E. Steinmueller. 2003a. "The Open Source Way of Working: A New
Paradigm for the Division of Labour in Software Development?" Falmer, UK, SPRU -- Science and
Technology Policy Research, INK Open Source Working Paper No. 1. January.

——— 2003b. “Dynamic Features of Open Source Development Communities and Community
Processes,” Brighton: SPRU -- Science and Technology Policy Studies, Open Source Movement
Research INK Working Paper No. 3. February.

Ramil Juan F. & Neil Smith. 2004. “Qualitative simulation of models of software evolution”, Journal
of Software Process – Improvement and Practice, forthcoming.

Raymond, Eric S. 1998a. "The Cathedral and the Bazaar," First Monday, 3 (3: March),
firstmonday.org/issues/issue3_3/raymond/index.html and www.tuxedo.org/~esr/writings/cathedral-
bazaar.

———1998b. "Homesteading the Noosphere," First Monday, 3 (10: October). [Available at:
http://firstmonday.org/issues/issue3_10/raymond/index.html and
www.tuxedo.org/~esr/writings/homesteading.

Robles, Gregorio, Stefan Koch and Jesus Gonzalez-Barahona. 2004. “Remote Analysis and
Measurement by Means of the CVSAnalY Tool,” Working Paper, Informatics Department,
Universidad Rey Juan Carlos, (June). [Available at: http://opensource.mit.edu/papers/robles-koch-
barahona_cvsanaly.pdf.]

Ross, Sheldon M. 2003. “Introduction to Probability Models.” 8th Edition. Academic Press.

Simon, Herbert A. 1962. “The Architecture of Complexity.” Proceedings of the American
Philosophical Society, 106 (December): 467-482.

Tuomi, Ilka. 2000. “Learning from Linux: Internet Innovation and the New Economy,” Working
Paper (February) [available at: http://www.jrc.es/~tuomiil/articles/LearningFromLinux.pdf.]

_____ 2001.“Internet, Innovation, and Open Source: Actors in the Network,” First Monday 6(1), Jan.
8, 2001.

von Krogh, Georg, Sebastian Spaeth and Karim R. Lakhani. 2003. “Community, joining, and
specialization in open source software innovation: a case study.” Research Policy, 32(7): 1217-1241

von Hippel, Eric. 2002. "Horizontal innovation networks - by and for users" Cambridge, MA,
Massachussetts Institute of Technology, Sloan School of Management, Working Paper No. 4366-02.
June.

http://opensource.mit.edu/papers/koch-ossoftwareengineering.pdf
http://opensource.mit.edu/papers/krishnamurthy.pdf
http://www.nber.org/papers/w7600
http://www.tuxedo.org/~esr/writings/cathedral-bazaar
http://www.tuxedo.org/~esr/writings/cathedral-bazaar
http://firstmonday.org/issues/issue3_10/raymond/index.html
http://www.tuxedo.org/~esr/writings/homesteading
http://opensource.mit.edu/papers/robles-koch-barahona_cvsanaly.pdf
http://opensource.mit.edu/papers/robles-koch-barahona_cvsanaly.pdf
http://www.jrc.es/~tuomiil/articles/LearningFromLinux.pdf
http://opensource.mit.edu/papers/krishnamurthy.pdf

	Simulating Code Growth in Libre (Open-Source) Mode
	Jean-Michel Dalle
	University Pierre-et-Marie-Curie & IMRI-Dauphine
	Stanford University & Oxford Internet Institute
	ACKNOWLEDGEMENTS
	Simulating Code Growth in Libre (Open-Source) Mode
	Jean-Michel Dalle and Paul A. David
	2. Modelling Libre communities at work
	3. The model

	Figure 1
	Figure 2
	A simulation of the growth of a software project

	Table 1: Gini coefficient for module size distribution
	Table 2: Social utility
	REFERENCES

