

This work is distributed as a Discussion Paper by the

STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH

SIEPR Discussion Paper No. 02-27
The Allocation of Software

Development Resources
In

‘Open Source’ Production Mode
By

Jean-Michel Dalle
Université Paris VI & IMRI-Université Paris Dauphine

And
Paul M. David

Stanford University
And

Oxford Internet-Institute
March 2003

Stanford Institute for Economic Policy Research
Stanford University
Stanford, CA 94305

(650) 725-1874

The Stanford Institute for Economic Policy Research at Stanford University supports research bearing on
economic and public policy issues. The SIEPR Discussion Paper Series reports on research and policy
analysis conducted by researchers affiliated with the Institute. Working papers in this series reflect the views
of the authors and not necessarily those of the Stanford Institute for Economic Policy Research or Stanford
University.

The Allocation of Software Development Resources
in ‘Open Source’ Production Mode

By

Jean-Michel Dalle
Université Paris VI & IMRI-Université Paris Dauphine

e-mail: jean-michel.dalle@admp6.jussieu.fr

Paul A. David
Stanford University & Oxford Internet-Institute

e-mail: pad@stanford.edu

15 February 2003

[“Early Release”: see text for a rationale]

 “I find that teams can grow much more complex entities
 in four months than they can build.”
 ---Frederick P. Brooks, Jr. The Mythical Man-Month – ‘No Silver Bullet’

Acknowledgements

We gratefully acknowledge the informative comments and suggestions of Matthijs den Besten and
Rishab Ghosh on previous drafts of this paper, as well as Nicholas Carayol’s participation in our
initial discussions of the modeling approach. Andrew Waterman contributed capable research
assistance on a number of critical points in the literature. None of those who have helped can be held
responsible for defects that have remained, or for the views expressed here.

This research has drawn support from the Project on the Economic Organization and Viability of
Open Source Software, which is funded under National Science Foundation Grant NSF IIS-0112962
to the Stanford Institute for Economic Policy Research. [See:
http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm]

ABSTRACT

This paper aims to develop a stochastic simulation structure capable of describing the
decentralized, micro-level decisions that allocate programming resources both within and
among open source/free software (OS/FS) projects, and that thereby generate an array of
OS/FS system products each of which possesses particular qualitative attributes. The core or
behavioral kernel of simulation tool presented here represents the effects of the reputational
reward structure of OS/FS communities (as characterized by Raymond 1998) to be the key
mechanism governing the probabilistic allocation of agents’ individual contributions among
the constituent components of an evolving software system. In this regard, our approach
follows the institutional analysis approach associated with studies of academic researchers in
“open science” communities. For the purposes of this first step, the focus of the analysis is
confined to showing the ways in which the specific norms of the reward system and
organizational rules can shape emergent properties of successive releases of code for a given
project, such as its range of functions and reliability. The global performance of the OS/FS
mode, in matching the functional and other characteristics of the variety of software systems
that are produced with the needs of users in various sectors of the economy and polity,
obviously, is a matter of considerable importance that will bear upon the long-term viability
and growth of this mode of organizing production and distribution. Our larger objective,
therefore, is to arrive at a parsimonious characterization of the workings of OS/FS
communities engaged across a number of projects, and their collective productive
performance in dimensions that are amenable to “social welfare” evaluation. Seeking that goal
will pose further new and interesting problems for study, a number of which are identified in
the essay’s conclusion. Yet, it is argued that that these too will be found to be tractable within
the framework provided by refining and elaborating on the core (“proof of concept”) model
that is presented in this paper.

1

The Allocation of Software Development Resources in ‘Open Source’ Mode

We aim in this paper to develop a stochastic simulation structure capable of describing the

decentralized, micro-level decisions that allocate programming resources both within and among

open source/free software (OS/FS) projects, and that thereby generate an array of OS/FS system

products each of which possesses particular qualitative attributes. Agent-based modelling of this

kind offers a framework for integrating micro-level empirical data about the extent and

distribution of participation in “open source” program development, with meso-level observations

concerning the social norms and organizational rules governing those activities. It thus takes a

step beyond the preoccupation of much of the recent economics literature with the nature of the

current and prospective rewards – whether psychic or material – that motivate individuals to

develop and freely distribute open source software. Moreover, by facilitating investigation of the

“general equilibrium” implications of the micro-behaviors among the participants in OS/FS

communities, this modelling approach provides a powerful tool for identifying critical structural

relationships and parameters that affect the emergent properties of the macro system.

The core or behavioral kernel of the stochastic simulation model of open source and free

software production presented here represents the effects of the reputational reward structure of

OS/FS communities (as characterized by Raymond 1998) to be the key mechanism governing the

probabilistic allocation of agents’ individual contributions among the constituent components of

an evolving software system. In this regard, our approach follows the institutional analysis

approach associated with studies of academic researchers in “open science” communities. For the

purposes of this first step, the focus of the analysis is confined to showing the ways in which the

specific norms of the reward system and organizational rules can shape emergent properties of

successive releases of code for a given project, such as its range of functions and reliability. The

global performance of the OS/FS mode, in matching the functional and other characteristics of

the variety of software systems that are produced with the needs of users in various sectors of the

economy and polity, obviously, is a matter of considerable importance that will bear upon the

long-term viability and growth of this mode of organizing production and distribution. Our larger

objective, therefore, is to arrive at a parsimonious characterization of the workings of OS/FS

communities engaged across a number of projects, and their collective productive performance in

2

dimensions that are amenable to “social welfare” evaluation. Seeking that goal will pose further

new and interesting problems for study, a number of which are identified in the essay’s

conclusion. Yet, it is argued that that these too will be found to be tractable within the framework

provided by refining and elaborating on the core (“proof of concept”) model that is presented in

this paper.

A new/old direction for economic research on the phenomenon of OF/FS

The initial contributions to the social science literature addressing the phenomenon of

open source and free software (OS/FS hereinafter) have been directed primarily to identifying the

motivations underlying the sustained and often intensive engagement of many highly skilled

individuals in this non-contractual and unremunerated mode of production.1 That focus reflects a

view that widespread voluntary participation in the creation and free distribution of economically

valuable goods is something of an anomaly, at least from the viewpoint of mainstream

microeconomic analysis. A second problem that has occupied observers, and especially

economists, is to uncover the explanation for the evident success of products of the OS/FS mode

in market competition against proprietary software – significantly on the basis not only of their

lower cost, but their reputedly superior quality.2 This quest resembles the first, in reflecting a

state of surprise and puzzlement about the apparently greater efficiency that these voluntary,

distributed production organizations have been able to attain vis-à-vis centrally managed, profit-

driven firms that are experienced in creating “closed,” software products.

Anomalies are intrinsically captivating for intellectuals of a scientific, or just a puzzle-

solving bent. Yet, the research attention that has been stimulated by the rapid rise of an OS/FS

segment of the world’s software-producing activities during the 1990’s owes something also to

the belief that this phenomenon and its relationship to the free and open software movements,

could turn out to be of considerably broader social and economic significance. There is, indeed,

much about these developments that remains far from transparent, and we are sympathetic to the

1 See, among the salient early contributions to the “economics of open source software,” Ghosh (1998), Harhoff,
Henkel and von Hippel (2000), Lakhani and von Hippel (2000), Lerner and Tirole (2000), Weber (2000), Kogut and
Metiu (2001).
2 In this particular vein, see, for example Dalle and Jullien (2000, 2003), Bessen (2001), Kuan (2001), Benkler
(2002).

3

view that a deeper understanding of them may carry implications of a more general nature

concerning the organization of economic activities in networked digital technology environments.

Of course, the same might well be said about other aspects of the workings of modern economies

that are no less likely to turn out to be important for human well-being.

Were the intense research interest that OS/FS software production currently attracts to be

justified on other grounds, especially as a response to the novelty and mysteriousness of the

phenomena, one would need to point out that this too is a less than compelling rationale; the

emergence of OS/FS activities at their present scale is hardly so puzzling or aberrant a

development as to warrant such attention. Cooperative production of information and knowledge,

among members of distributed epistemic communities who do not expect direct remuneration for

their efforts simply cannot qualify as a new departure. There are numerous historical precursors

and precedents for OS/FS, perhaps most notably in the “invisible colleges” that appeared among

the practitioners of the new experimental and mathematically approaches to scientific inquiry in

western Europe in the course of the 17th century.3 The professionalization of scientific research,

as is well known, was a comparatively late development, and, as rapidly as it has proceeded, it

has not entirely eliminated the contributions of non-professionals in some fields, optical

astronomy being especially notable in this regard; communities of “amateur” comet-watchers

persist, and their members continue to score – and to verify -- the occasional observational coup.

“Open science,” the mode of inquiry that become fully elaborated and institutionalized

under systems of public and private patronage during the latter part of the nineteenth and the

twentieth centuries, thus offers an obvious cultural and organizational point of reference for

observers of contemporary communities of programmers engaged in developing free software

and open source software.4 The “communal” ethos and norms of “the Republic of Science”

emphasize the cooperative character of the larger purpose in which individual researchers are

3 See, e.g., David (1998a, 1998b, 2001c) and references to the history of science literature supplied therein.
4 This has not gone unrecognized by observers of the free and open software movements. In “The Magic Cauldron,”
Raymond (1999c) explicitly notices the connection between the information-sharing behavior of academic
researchers and the practices of participants in OS/FS projects. Further, Raymond’s (1998b) illuminating discussion
of the norms and reward systems (which motivate and guide developers selections of projects on which to work)
quite clearly parallels the classic approach of Robert K. Merton (1973) and his followers in the sociology of science.
This is underscored by Raymond’s (1999b) rejoinder to N. Berzoukov’s (1999) allegations on the point. See also
DiBona et al. (1999) for another early discussion; Kelty (2001), and David, Arora and Steinmueller (2001), expand
the comparison with the norms and institutions of open/academic science.

4

engaged, stressing that the accumulation of reliable knowledge is an essentially social process.

The force of its universalist norm is to render entry into scientific work and discourse open to all

persons of “competence,” while a second key aspect of “openness” is promoted by norms

concerning the sharing of knowledge in regard to new findings and the methods whereby they

were obtained.

Moreover, a substantial body of analysis by philosophers of science and epistemologists,

as well as theoretical and empirical studies in the economics of knowledge, points to the superior

efficiency of cooperative knowledge-sharing among peers as a mode of generating additions to

the stock of scientifically reliable propositions.5 In brief, the norm of openness is incentive

compatible with a collegiate reputational reward system based upon accepted claims to priority; it

also is conducive to individual strategy choices whose collective outcome reduces excess

duplication of research efforts, and enlarges the domain of informational complementaries. This

brings socially beneficial spill-overs among research programs and abets rapid replication and

swift validation of novel discoveries. The advantages of treating new findings as public goods in

order to promote the faster growth of the stock of knowledge are thus contrasted with the

requirement of restricting informational access in order to enlarge the flow of privately

appropriable rents from knowledge stocks.

The foregoing functional juxtaposition suggests a logical basis for the existence and

perpetuation of institutional and cultural separations between two normatively differentiated

communities of research practice. The open “Republic of Science” and the proprietary “Realm of

Technology” on this view, constitute distinctive organizational regimes each of which serves a

different (and potentially complementary) societal purpose. One might venture farther to point

out that the effective fulfilling of their distinctive and mutually supporting purposes was for some

time abetted by the ideological reinforcement of a normative separation between the two

communities; by the emergence of a distinctive ethos of “independence” and personal

disinterested-ness (“purity”) that sought to keep scientific inquiry free to the fullest extent

possible from the constraints and distorting influences to which commerically-oriented research

was held to be subject.

5 See Dasgupta and David (1994), David (1998c, 2001b) on the cognitive performance of open science networks in
comparison with that of proprietary research organizations.

5

Therefore, if we are seeing something really new and different in the OS/FS phenomenon,

that hardly can inhere in attributes shared with long-existing open science communities.6 Rather,

it must be found elsewhere, perhaps in the sheer scale on which these activities are being

conducted, in the global dispersion and heterogeneous backgrounds of the participants, in the

rapidity of their transactions, and in the pace at which their collective efforts reach fruition. This

shift in conceptualization has the effect of turning attention to a constellation of technical

conditions whose coalescence has especially affected this field of endeavor. Consider just these

three: the distinctive immateriality of “code,” the great scope for modularity in the construction of

software systems, and the enabling effects of advances in digital (computer-mediated)

telecommunications during the past several decades. Although it might be thought that the

intention here is merely to portray the historically unprecedented features of the OS/FS

movements as primarily an “Internet phenomenon,” we have something less glib than that in

mind.

 It is true that resulting technical characteristics of both the work-product and work-

process alone cannot be held to radically distinguish the creation of software from other fields of

intellectual and cultural production in the modern world. Nevertheless, they do suggest several

respects in which it is misleading to interpret the OS/FS phenomenon simply as “another sub-

species of ‘open science’.” The knowledge incorporated in software differs in at least two

significant respects from the codified knowledge typically produced by scientific work groups.

Computer software is “technology” (with a small “t”), which it is to say that it becomes effective

as a tool immediately, without requiring further expenditures of effort upon development. This

immediacy has significant implications not only at the micro-level of individual motivation, but

for the dynamics of collective knowledge-production. Indeed, because software code is “a

machine implemented as text,” its functionality is peculiarly self-exemplifying. Thus, “running

code” serves to short-circuit many issues of “authority” and “legitimation” that traditionally have

6 The phenomenon of free and open source software is perceived by Benkler (2002: pp. 1-2) as an exemplifying “a
much broader social-economic phenomenon.…the broad and deep emergence of a new, third mode of production in
the digitally networked environment.” This mode he labels “’commons-based peer production’, to distinguish it from
the property- and contract-based modes of firms and markets. Its central characteristic is that groups of individuals
successfully collaborate on large scale projects following a diverse cluster of motivational drives and social signals
rather than either market prices or managerial commands.” Anyone at all familiar with the history of open science
since the 17th century will be disconcerted – to say the least --by this particular imputation of novelty and
significance to OS/FS projects.

6

absorbed much of the time and attention of scientific communities; and to radically compress the

processes of validating and interpreting new contributions to the stock knowledge.7

In our view OS/FS warrants systematic investigation in view of a particular historical

conjuncture, indeed a portentous constellation of trends in the modern economy. The first is that

information-goods that share these technical properties are moving increasingly to the center of

the stage as drivers of economic growth. Secondly, the enabling of peer-to-peer organizations for

information distribution and utilization is an increasingly obtrusive consequence of the direction

in which digital technologies are advancing. Thirdly, the “open” (and cooperative) mode of

organizing the generation of new knowledge has long been recognized to have efficiency

properties that are much superior to institutional solutions to the public goods problem which

entail the restriction of access to information through secrecy or property rights enforcement.

Finally, and of practical significance for those who seek to study it systematically, the OS/FS

mode of production itself is generating a wealth of quantitative information about this

instantiation of “open epistemic communities.” This last development makes OS/FS activities a

valuable window through which to study the more generic and fundamental processes that are

responsible for its power, as well as the factors that are likely to limit its domain of viability in

competition with other modes of organizing economic activities.

Consequently, proceeding from this re-framing of the phenomenon, we are led to a

conceptual approach that highlights a broader, ultimately more policy-oriented set of issues than

those which have hitherto dominated the emerging economics literature concerning OS/FS. A

correspondingly re-oriented research agenda is needed.8 Its analytical elements are in no way

novel, however, but merely newly adapted to suit the subject at hand. It is directed to answering

a fundamental and interrelated pair of questions: First, by what mechanisms do OS/FS projects

mobilize the human resources, allocate the participants diverse expertise, coordinate the

7 Therefore, it might well be said that in regard to the sociology and politics of the open source software
communities, “the medium is the message.”
8 This is the approach being pursued by the members of the project on The Economic Organization and Viability of
Open Source Software at Stanford University and its research partners at academic institutions in France, the
Netherlands and Britain. Most of the researchers associated with this project come to this particular subject matter
from the perspective formed by their previous and on-going work in “the new economics of science,” which has
focused attention upon the organization of collaborative inquiry in the “open science” mode, the behavioral norms
and reinforcing reward systems that structured the allocation of resources, the relationships of these self-organizing
and relatively autonomous epistemic communities with their patrons and sponsors in the public and private sectors.
See Dalle, David and Steinmueller (2002) for the scope of this integrated research agenda.

7

contributions and retain the commitment of their members? Second, how fully do the products of

these essentially self-directed efforts meet the long-term needs of software users in the larger

society, and not simply provide satisfactions of various kinds for the developers? These will be

recognized immediately by economists to be utterly familiar and straight-forward – save for not

yet having been explicitly posed or systematically pursued in this context.

Pursuing these questions in more concrete terms brings one immediately to inquire into

the workings of the system that actually allocates software development resources among various

software systems and applications when the production of code takes place in a distributed

community of volunteers, as it does in the OS/FS regime. How does the ensemble of developers

collectively “select” among the observed array of projects that are launched, and what processes

govern the mobilization of sufficient resource inputs to enable some among those to attain the

stage of functionality and reliability that permits their being diffused into wider use – that is to

say, use beyond the circle of programmers immediately engaged in the continuing development

and ‘debugging’ of the code itself?

Indeed, it seems only natural to expect that economists would provide an answer to the

question of how, in the absence of directly discernible market links between the producing

entities and “customers,” the output mix of the open source sector of the software industry is

determined. Yet, to date, the question does not appear to have attracted any significant research

attention. This curious lacuna, moreover, is not a deficiency peculiar to the economics literature,

for, it is notable also in the writings of some of the OS/FS movement’s pioneering participants

and popular exponents.9 Although enthusiasts have made numerous claims regarding the

qualitative superiority of products of the open source mode when these are compared with

software systems tools and applications packages developed by managed commercial projects,

scarcely any attention is directed to the issue of whether the array of completed OS/FS projects

also is “better” or “just as good” in responding to the varied demands of software users.

It is emblematic of this gap that the metaphor of “the bazaar” was chosen by Eric S.

Raymond (1998a) to convey the distinctively un-managed, decentralized mode of organization

that characterizes open source software development projects – despite the fact that the bazaar

9 See, e.g., Raymond (1998b, 1999); Stallman (1999), Dibona, Ockman and Stone (1999) and the statements of
contributors collected therein.

8

describes a mode of distribution, not of production. Here is a representative reading of this aspect

of Raymond’s widely influential essay by an otherwise perceptive commentator, Ko Kuwabara

(2000):

 …The Cathedral and the Bazaar, is a metaphorical reference to two
fundamentally different styles of software engineering. On the one hand,
common in commercial development, is the Cathedral model, characterized by
centralized planning enforced from the top and implemented by specialized
project teams around structured schedules. Efficiency is the motto of the
Cathedral. It is a sober picture of rational organization under linear
management, of a tireless watchmaker fitting gears and pins one by one as he
has for years and years. On the other hand is the Bazaar model of the Linux
project, with its decentralized development driven by the whims of volunteer
hackers and little else. In contrast to the serene isolation of the cathedral from
the outside, the bazaar is the clamour itself. Anyone is welcome - the more
people, the louder the clamour, the better it is. It is a community by the people
and for the people, a community for all to share and nurture. It also appears
chaotic and unstructured, a community where no one alone is effectively in
charge of the community. Not all are heard or noticed, and not all are bound to
enjoy the excitement. For others, however, the bazaar continues to bubble with
life and opportunity.

Yet, “the bazaar” remains a peculiar metaphor for a system of production: the stalls of

actual bazaars typically are retail outlets, passive channels of distribution rather than agencies

with direct responsibility for the assortment of commodities that others have made available for

them to sell. Given the extensive discussion of the virtues and deficiencies of “the bazaar”

metaphor that was stimulated by Raymond’s (1998a) essay, it is rather remarkable that the

latter’s rhetorical finesse of the problem of aligning the activities of producers with the wants of

users managed to pass with scarcely any comment.10

In contrast, the tasks we have set for ourselves in regard to OS/FS represent an explicit

return to the challenge of providing non-metaphorical answers to the classic economic questions

of whether and how this instance of a decentralized decision resource allocation process could

achieve coherent and socially efficient outcomes. What makes this an especially interesting

problem, of course, is the possibility of assessing the extent to which institutions of the kind that

have emerged in the free software and open source movements are enabling them to accomplish

that outcome -- without help either from the “invisible hand” of the market mechanism driven by

10 See, e.g., Kuwabara (2000), and references in the notes accompanying Raymond (1999: pp.19-63): “Cathedrals
and Bazaars.”

9

price signals, or the “visible hands” of centralized managerial hierarchies.11 Responding to this

challenge requires that the analysis be directed towards ultimately providing a means of assessing

the social optimality properties of the way “open science”, “open source” and kindred

cooperative communities organize the production and regulate the quality of the information-

tools and -goods – outputs that will be used not only for their own, internal purposes, but by

others with quite different purposes in the society at large.

The general conceptual approach: modelling OS/FS communities at work

The parallels that exist between the phenomena of “open source” and “open science,” to

which reference already has been made, suggests a modelling approach that builds on the generic

features of non-market social interaction mechanisms. These involve feedback from the

cumulative results of individual actions, and thereby are capable of achieving substantial

coordination and coherence in the collective performance of the ensemble of distributed agents.

This approach points in particular to the potential significance of the actors’ consciousness of

being “embedded” in peer reference groups, and therefore to the to role of collegiate recognition

and reputational status considerations as a source of systematic influence directing individual

efforts of discovery and invention.

Consequently, our agent-based modelling framework has been structured with a view to

its suitability for subsequent refinement and use in integrating and assessing the significance of

empirical findings -- including those derived from studies of the micro-level incentives and social

norms that structure the allocation of software developers’ efforts within particular projects and

that govern the “release” and promotion of software code. While it does not attempt to mimic the

specific features of collegiate reputational reward systems such as are found in the Republic of

Science, it is clear that provision eventually should be made to incorporate functional equivalents

of the conventions and institutions governing recognized claims to scientific ‘priority’ (being

first), as well as the symbolic and other practices that signify peer approbation of exemplary

individual performance.

11 Benkler (2002) has formulated this problem as one that appears in the organizational space between the
hierarchically managed firm and the decentralized competitive market, focuses attention primarily on the efficiency
of software project organizations, rather than considering the regime as a whole.

10

The systems analysis approach familiar in general equilibrium economics tells us, further,

that within such a framework we also should be capable of asking how the norms and signals

available to micro-level decision-takers in the population of potential participants will shape the

distribution of resources among different concurrent projects, and direct the attention of

individual and groups to successive projects. That will, in turn, affect the growth and distribution

of programmer’s experience with the code of specific projects, as well as the capabilities of those

who are familiar with the norms and institutions (e.g., software licensing practices) of the OS/FS

regime. Obviously, some of those capabilities are generic and thus would provide potential “spill-

overs” to other areas of endeavor – including the production of software goods and services by

commercial suppliers. From this it follows that to fully understand the dynamics of the OS/FS

mode and its interactions with the rest of the information-technology sector one cannot treat the

expertise of the software development community as a given and exogenously determined

resource. It should be evident from the foregoing that the task upon which we are embarked is no

trivial undertaking, and that to bring it to completion we must hope that others can be drawn into

contributing to this effort.

We report here on a start towards that goal: the formulation of a highly stylized dynamic

model of decentralized, micro-level decisions that shape the allocation of OS/FS programming

resources among project tasks, and across distinct projects, thereby generating an evolving array

of OS/FS system products, each with its associated qualitative attributes. In such work, it is

hardly possible to eschew taking account of what has been discovered about the variety

prospective rewards – both material and psychic – that may be motivating individuals to write

free and open source software. For, it is only reasonable to suppose that these may influence how

they allocate their personal efforts in this sphere. At this stage it is not necessary go into great

detail on this matter, but, among the many motives enumerated it is relevant to separate out those

involving what might be described as “independent user-implemented innovation.”12 Indeed, this

term may well apply to the great mass of identifiably discete projects, because a major

consideration driving many individuals who engage in the production of open source would

appear to be the direct utility or satisfaction they expect to derive by using their creative

12 The term evidently derives from von Hippel’s (2001, 2002) emphasis on the respects in which open source
software exemplifies the larger phenomenon of “user-innovations.”

11

outputs.13 The power of this motivating force obviously derives from the property of immediate

efficiacy, which has been noticed as a distinctive feature of computer programs. But, no less

obviously, this force will be most potent where the utilitarian objective does not require

developing a large and complex body of code, and so can be achieved quite readily by the

exertion of the individual programmer’s independent efforts. “Independent” is the operative word

here, for it is unlikely that someone writing an obscure driver for a newly-marketed printer that he

wishes to use will be at all concerned about the value that would be attached to this achievement

by “the OS/FS community.” The individuals engaging in this sort of software development may

use open source tools and regard themselves as belonging in every way to the free software and

open source movements. Nevertheless, it is significant that the question of whether or not their

products are to be contributed to the corpus of non-proprietary software, rather than being

copyright-protected for purposes of commercial exploitation really is one that they need not

address ex ante. Being essentially isolated from active collaboration in production, the issue of

the disposition of authorship rights can be deferred until the code is written.14 That is an option

which typically is not available for projects that contemplate enlisting the contributions of

numerous developers, and for which there are compelling reasons to announce a licensing policy

at the outset.

For all intents and purposes software production activity in such circumstances stands

apart from the efforts that entail participation in collective developmental process, involving

successive releases of code and the cumulative formation of a more complex, multi-function

system. We will refer to the latter as OS/FS production in “community-mode” or, for

convenience C-mode, contrasting it with software production in I-mode. Since I-mode products

and producers, almost by definition, tend to remain restricted in their individual scope and do not

13 Just how great a mass of these independent projects represent in the total remains unclear, as the most readily
available indications are those obtained by studying the characteristics of the just the publicly announced open source
projects. On the basis of gathered data from Sourceforge.net on the 100 most active projects observed in the “mature
stage” (i.e., the final stage of a project’s development, when it is almost fully functional and distributed),
Krishnamurthy (2002) reports finding that the modal project has only 1 identified developer; among the most active
projects –a mere fraction of the 40 thousand-odd listed on that site -- the median number of developers was 4.
14 In this respect it can be argued that the decision of the individual developer working in I-mode to participate in
OS/FS production actually is not a decision about the mode of production, but, instead is a matter of making and ex
post choice of whether or not to disclose the source code, and whether or not it is worth trying to exploit the resulting
program as protected intellectual property. The economics of such post-production decisions certainly are of interest,
and the normative force of the open source and free software movements may come into play at this stage. The

12

provide as direct an experience of social participation, the empirical bases for generalizations

about them is still very thin. Too thin, at this point, to support interesting model-building.

Consequently, our attention here focuses exclusively upon creating a suitable model to simulate

the actions and outcomes of populations of OS/FS agents that are working in C-mode.

It would be a mistake, however, to completely conflate the issue of the sources of

motivation for human behavior with the separable question of how individuals’ awareness of

community sentiment, and their receptivity to signals transmitted in social interactions, serves to

guide and even constrain their private and public actions; indeed, even to modify their manifest

goals. Our stylized representation of the production decisions made by OS/FS developers’

therefore does not presuppose that career considerations of “ability signalling,” “reputation-

building,” and the expectations of various material rewards attached thereto, are dominant or even

a sufficient motivations for individuals who participate in C-mode projects. Instead, it embraces

the weaker hypothesis that awareness of peer-group norms significantly influences (without

completely determining) micro-level choices about the individuals’ allocation of their code-

writing inputs, whatever assortment of considerations may be motivating their willingness to

contribute those efforts.15

Our model-building activity aims to provide more specific insights not only into the

workings of OS/FS communities, but also into their interaction with organizations engaged in

proprietary and “closed mode” software production. It seeks to articulate the interdependences

among distinct sub-components of the resource allocation system, and to absorb and integrate

empirical findings about micro-level mobilization and allocation of individual developer efforts

both among projects, and within projects. Stochastic simulation of such social interaction systems

is a powerful tool for identifying critical structural relationships and parameters that affect the

emergent properties of the macro system. Among the latter properties, the global performance of

represents a promising line for future research, but it is a line of inquiry quite different from the one we are pursuing
here.
15 It will be seen that the probablistic allocational “rules” derive from a set of distinct community “norms,” and it will
be quite straightforward within the structure of the model to allow for heterogeneity in the responsiveness to peer-
influence in this respect, by providing for inter-individual differences in weighting within the rule-set. This may be
done either probabilistically, or by creating a variety of distinct “types” of agents and specifying their relative
frequencies in the population from which “contributions” are drawn. For the purposes of the basic model presented
here, we have made a bold simplification by specifying that all potential contributors respond uniformly to a
common set of allocational rules.

13

the OS/FS mode in matching the functional distribution and characteristics of the software

systems produced to the evolving needs of users in the economy at large, obviously is an issue of

importance for our analysis to tackle.

It is our expectation that in this way it will be feasible to analyze some among the

problematic tensions that may arise been the performance of a mode of production guided

primarily by the internal value systems of the participating producers, and that of a system in

which the reward structure is tightly coupled by managerial direction to external signals deriving

from the satisfaction of end-users’ wants. Where the producers are the end-users, of course, the

scope for conflicts of that kind will be greatly circumscribed, as enthusiasts for of “user-directed

innovation” have pointed out.16 But, the latter solution is likely to serve the goal of customisation

only by sacrificing some of the efficiencies that derive from producer specialization and division

of labour. The analysis developed in this paper is intended to permit investigations of this classic

“trade-off” in the sphere of software production.

Behavioral foundations for C-mode production of software

An important point of departure for our work is provided by a penetrating discussion of

the operative norms of knowledge production within OS/FS communities, which appears in Eric

Raymond’s less widely cited essay, “Homesteading the Noosphere” (Raymond, 1999, pp. 65-

111).17 Within the “noosphere” – the “space” of ideas, according to Raymond -- software

developers allocate their efforts according to the relative intensity of the reputation rewards that

the community attaches to different code-writing “tasks.” The core of Raymond’s insights is a

variant of the collegiate reputational reward system articulated by sociological studies of open

science communities: the greater the significance that peers would attach to the project, to the

16 See von Hippel (2001), Franke and von Hippel (2002), on the development of “user toolkits for innovation,” which
are specific to a given production system and product or service type, but, within those constraints, enable producers
to transfer user need-related aspects of product or service design to the users themselves.
17 Although Raymond is an astute participant-observer of these OS/FS communities, and his sociological
generalizations have the virtue of inherent plausibility, it should be noted that these propositions have yet to be
validated by independent empirical tests. Such tests will be provided by analysis of systematic survey or interviews
with representative samples of OS/FS community participants, and notably the FLOSS survey and its us counterpart
“FLOSS-US” currently undertaken at Stanford University.
 See: http://siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US_announcement.htm

14

agent’s role, and the greater is the extent or technical criticality of his or her contribution, the

greater is the “reward” that can be anticipated.

Caricaturing Raymond’s more nuanced discussion,18 we stipulate that (a)launching a new

project is usually more rewarding than contributing to an existing one, especially when several

contributions have already been made; (b) early releases typically are more rewarding than later

versions of project code; (c) there are some rewarding projects within large software system that

are systematically accorded more “importance” than others. One way to express this is to say that

there is a hierarchy “peer regard,” or reputational significance, attached to the constituents

elements of a family of projects, such that contributing to the Linux Kernel is deemed a

(potentially) more rewarding activity than providing Linux implementation of an existing and

widely used applications program, and the latter dominates writing an obscure driver for a newly-

marketed printer. To this list we would append an another hypothesized “rule”: (d) within each

discrete project, analogously, there is hierarchy of peer-regard that corresponds with (and

possibly reflects) differences in the structure of meso-level technical dependences among the

“modules” or integral “packages” that constitute that project.19 In other words, we postulate that

there is lexicographic ordering of rewards based upon a discrete, technically-based “tree-like”

structure formed by the successive addition of project components. Lastly, for present purposes is

can be assumed that (e) new projects are created in relation to existing ones, so that always is

18 See the five, more nuanced “norms” discussed by Raymond (1999: pp.94-97), in a section headed “How Fine a
Gift?” We do not enter either here into the related, by distinct discussion that Raymond (1998b, 1999) provides of the
important OS/FS community norms regarding recognition and public acknowledgement of “authorship.” It is
evident, however, that the reputational reward structure must rest upon recognition of “moral possession” of the
discrete contributions made to the evolving body of code, just as the reward system of open science communities
rests upon citation of scientist’s published findings. See, e.g., Dasgupta and David (1994) for an economic recasting
of the sociological observations of Robert K. Merton (1973) in this regard. Nor do we follow Raymond (1999: pp.
80-82) in accepting the characterization of the “hacker milieu” as “a Gift Culture,” for essentially the same reasons as
those which led Dasgupta and David (1987, 1994) to reject that characterization of “open science” communities.
Alusions to potlach cermonies among the Kwakiutl of the Pacific Northwest, like references to Mauss on “the Spirit
of the Gift” add nothing to an understanding of the nature of the incentives and social mores operating in OS/FS
communities, beyond the obvious point that they do not conform to the usual notions of the conduct of agents in a
commercial exchange economy.
19 In the world of open-source software projects, and, indeed, in systematic programming everywhere, production is
organized around the building of modules, or packages of code that have a minimal level of “integrity.” Files in these
packages are linked to, i.e., “call”, and/or are “called by” other packages. The package therefore may be
conceptualized as situated in a network of “dependency relationships” formed by these links. The intensity of the
latter connections can be quantified, for example, in terms of the absolute or relative number of packages that the
files forming a module calls (depends upon) and the number of packages that they support (call upon them). As it is
feasible to use heuristics in code extraction algorithms to identify which is the supporting, and which the dependent

15

possible to add a new module in relation to an existing one, to which it adds a new functionality.

The contribution made by initiating this new module (being located one level higher in the tree)

will be accorded less significance than its counterparts on the structure’s lower branches.

Thus, model postulates that the effort-allocation decisions of agent’s working in C-mode

are influenced (inter alia) by their perceptions concerning the positioning of the project’s

packages in a hierarchy of peer-regard; and, further, stipulates that the latter hierarchy is related

to the structure of the technical interdependences among the modules.

For present purposes it is not really necessary to specify whether dependent or supporting

relationships weigh receive the relatively greater weight in this “calculus of regard.” Still, we will

proceed on the supposition that modules that are more intensely implicated by links with other

packages that include “supportive”connections reasonably are regarded as “germinal” or “stem”

sub-routines20 and therefore may be depicted as occupying positions towards the base of the tree-

like architecture of the software project. Assuming that files contributed to the code of the more

generic among the modules, such as the kernel or the memory manager of an operating system

(e.g., Linux) would be called relatively more frequently by other modules, this might accord them

greater “criticality”; or it might convey greater notice to the individual contributor that that which

would apply in the case of contributions made to modules having more specialized functions, and

whose files were “called” by relatively few other packages. 21

files, the postulated hierarchy of dependence has an “objective reality” that opens the way for empirical investigation
of the conjectured correspondence with perceived hierarchies of “peer-regard.”
20 We have sought here to avoid using “root” to designate the germinal modules, because importing that term from
from the arboral metaphor may be confusing for programmers: we are told by one informant that in “Unix-speak” the
system administrator is called “root”, and the top of the file structure, likewise, is “root.” Our hypothesized
“dependency tree” might also be in some extent related to the more familiar directory tree structure, but this
correlation is likely to very imperfect.
21 The matter may be illuminated by empirical research that is presently underway to measure the relative frequency
of signed and unsigned code across the modules or packages of the Linux Kernel, and to examine whether that
frequency measure is correlated with indexes of relative dependency among those packages. (This inquiry is being
carried out by Rishab Ghosh in collaboration with Paul David, as part of the Stanford/SIEPR “LICKS” Sub-Project.
See: <siepr.stanford.edu/programs/OpenSoftware_David/Licks4b_prop.htm >.) There may be some confounding
influences that would similarly impute greater relative importance packages that has particularly intense connections
of a supporting form with others. One among them could arise in the ontogeny of the typical computer program. It is
true that the files of a programs can be naturally arranged in a hierarchy of dependent links, as functions “calls” sub-
functions, which call still other sub-sub-functions. Processes also can be hierarchically arranged so that they appear
to spawn sub-processes, etc. On the latter view, it may be the case that -- simply as a consequence of their situation
in the temporal sequence of the project’s evolution, the initiators of development work (who on other grounds are
likely to be accorded greater regard) begin by writing code for modules whose files will spawn (i.e.,support) many
other packages. For others who subsequently contribute to further debugging and refinement of the code in those

16

For the present purposes, Raymond’s rules be restated as holding that: (1) there is more

“peer regard” to be gained by a contribution made to a new package than by the improvement of

existing packages; (2) in any given package, early and radically innovative contributions are more

rewarded than later and incremental ones; (3) the lower level and the more generic a package, the

more easily a contribution will be noticed, and therefore the more attractive a target it will be for

developers. Inasmuch as “contributions” also are acknowledged by Raymond as correcting “bugs

of omission”, each such contribution – or “fix” – is a patch for a “bug”, be it a simple bug, an

improvement, or even a seminal contribution to a new package. Therefore every contribution is

associated with a variable expected payoff that depends on its nature and “location”22.

The decision-problem for developers is then to choose which “bug” or “problem” will

occupy their attention during any finite work interval. We find here another instance of the classic

“problem of problem choice” in science, which the philosopher Charles S. Pierce (1879) was the

first to formalise as a microeconomic decision problem. But we need not go back to the static

utility calculus of Pierce. Instead, we can draw upon the graph-theoretic model that more has

recently been suggested by Carayol and Dalle’s (2000) analysis of the way that the successive

choices of research agendas by individual scientists can aggregate into collective dynamic

patterns of knowledge accumulation. The latter modelling approach is a quite suitable point of

departure, precisely because of the resemblance between the reputation game that Raymond

(1999) suggests is played by open-source software developers and behavior of open science

researchers in response to collegiate reputational reward systems, as described by Dasgupta and

David (1994). Although we treat agents’ “problem-choices” as being made independently in a

decentralised process, they are nonetheless influenced by the context that has been formed by the

previous effort-allocating decision of the ensemble of researchers. That context can be

represented as the state of the knowledge structure accumulated, in a geological manner, by the

“deposition” of past research efforts among a variety of “sites” in the evolving research space –

‘the noosphere’ of Raymond’s metaphor of a “settlement” or “homesteading” process.

modules, the influential consideration may be less a matter of the packages’ technical criticality than its offer of
greater propinquity (in the code) with the project’s “the initiators.”

22 Note that here we neglect, for the moment, the possibility that bugs can become more attractive “targets” because
they’ve existed for long and have thus drawn the attention of the community of developers, and also more specific
peer assessments of the “quality” of patches.

17

A simulation model of OS/FS C-Mode Production

 To recapitulate the foregoing exposition, our approach conceptualizes the macro-level

outcomes of the software production process carried on by an OS/FS community as a being

qualitatively oriented by the interplay of successive individual effort-allocating decisions taken

members of a population of developers whose expected behaviors are governed by “norms” or

“rules” of the sort described by Raymond.23 The allocation mechanism, however, is probabilistic

rather than deterministic – thereby allowing for the intervention of other influences affecting

individual behavior. So far as we are aware, there exist no simple analytical solutions

characterising limiting distributions for the knowledge structures that will result from dynamic

non-market processes of this kind. That is why we propose to study software production in the

open-source mode by numerical methods, using a dynamic stochastic (random-graph) model.

In this initial exploratory model, briefly described, at any given moment a particular

OS/FS development “agent” must choose how to allocate a fixed level of development effort --

typically contributing new functionalities, correcting bugs, etc. -- to one or another among the

alternative “packages” or modular sub-systems of a particular project. The alternative actions

available at every such choice-point also include launching a new module within the project.24

Agents’ actions are probabilistic and conditioned on comparisons of the expected non-pecuniary

23 We are fully aware of the limits of modelling exercises such as this one. Clearly, it cannot not replicate the world,
nor should it attempt to do so. Rather, it may clarify and give insights about the phenomena under examination.
Abstracting from the complexity of the actual processes, by means of agent-based models, provides the framework
for an interactive program that proceeds abductively – working back and forth interatively between analytical
deductions informed by empirical findings, and empirical tests of theoretical propositions. (See Dalle, David and
Steinmueller, 2002, for a concrete elaboration of the role played by the stochastical stimulation modelling activity in
this larger research program.) Eliciting comments for participant observes in OS/FS projects, especially when it
marshals empirical evidence for criticisms of particular abstractions embedded in the simulation structure is there for
a vital part of our procedure. It is both a means of improving the usefulness of the simulation experiments performed
with the model, and a means of enriching the body of systematic information about processes and structural features
of OS/FS organization that experts regard as being especially important. We have made several conscious
simplifications in the “reduced-form” formulation presented below, which we flag in the footnotes, and comment
upon in the conclusion. But we may also have unknowingly suppressed or distorted other relevant features, and
therefore strongly encourage comments on the specifications of the model.
24 And, in later elaborations of the basic model, launching an entirely different project.

18

or other rewards associated with each project, given specifications about the distribution of their

potential effort endowments.25

We consider that open-source developers have different effort endowments, evaluated in

thousands of lines of code (KLOC26), and normalized according to individual productivities. The

shape of the distribution of effort endowments, strictly speaking, cannot be inferred immediately

from the (skewed) empirical distribution of the identified contributions measured in lines of code,

but one can surmise that the former distribution also is left-skewed – on the basis of the relative

sizes of the “high-activity” and “low-activity” segments of the developer population found by

various surveys, and notably the FLOSS survey. This feature is in line with the most recent

surveys, which have stressed that most open-source contributors engage in this activity on a part-

time, unpaid basis.27 The effort endowment of individuals at each moment in time is therefore

given here by an exponential distribution, i.e. smaller efforts will be available for allocation with

higher probability. Namely, the density of probability of efforts, denoted by α, is:

 ()1 ln 1 pα
δ

= − − , (1.1)

where []0;1p ∈ and δ is a constant. A straightforward calculation will show that here 1α
δ

= ,

where . stands for the means.

Effort endowments measure how many KLOC a given hacker can either add or delete in

the existing code, as a common measure of changes of source code in computer science is indeed

not only with lines added, but also with lines deleted to account better for the reality of

development work, ‘bug’ correction, and code improvement: therefore it is simply here a question

of spending developer time, i.e. writing lines of code, on a given project i.e. module.

25 In the simplest formulations of the model, agents’ endowments are treated as “fixed-effects” and are obtained as
random draws from a stationary distribution. More complex schemes envisage endogenously determined and serially
correlated code-ing capacities, with allowance for experience based learning effects at the agent level.
26 “KLOC” is a common measure for such issues in computer science: another implementable unit measurement is
the KBOC, which is a more natural metric the data that can be generated by the use of code-extraction algorthims.
Function-points provide yet another dimension in which to assess micro-level development contributions, and it
therefore may eventually be feasible to treat developer outputs as being vector-valued.
27 We allow that there may be a small number of participants who are supported, in some cases by commercial
employers, to participate in open-source projects on a full time basis.

19

Figure 1. The upwards-evolving tree: a figurative representation of a software system
growth process

20

Figure 2. Typical simulation of a software project growth process

1.97

0.68

0.89

0.02

2.21

1.03

0.89 0.39

0.81 0.08 0.42

2.33

1.03

0.89 0.39 0.29

0.81 1.13 0.66

0.29

0.54

2.41

1.21

0.93

0.92

1.22

0.15

0.29

1.41 1.6

0.23 0.52

1.47

0.59

0.2

1.02

0.2

0.04

0.06 0.13

0.48

0.87

0.15 0.78

0.26

1.32

0.2

0.37 0.76

21

Then, as we have argued above, we consider that all the modules, taken together, are

organized as in a tree which grows as new contributions are added, and which can grow in

various ways depending on which part of it (low or high level modules, notably) developers will

select. To simulate the growth of this tree and the creation of new modules, we simply attach a

virtual (potential) new node (module, package) to each existing one, at a lower level and starting

with version number 0: each virtual module represents an opportunity to launch a new project

which can be selected by a developer, and become a real module with a non-zero version number.

Figure 1 gives a symbolic representation of the growth process (represented bottom-up) and of

the creation of new modules where dashed lines and circles stand for virtual nodes (potential new

software packages). Figure 2 present an example of a software tree whose growth (again

represented bottom-up) was generated by the stochastic simulation model.

Figure 3. An OS/FS Agent-Generated Software System

We further consider that, for each module, its version number is a good proxy to account

for its performance, and that this version number increases non-linearly with the sum of total

KLOC added and deleted, here denoted by x, according to:

 () ()log 1dv x x d µ= + , (1.2)

1.23

1.15

0.8

0.71

1.71

0.92

0.73

2.99 1.87

0.66

1

1.14

1.41

0.88

2.22

1.3

1.57 1.07

0.98

1.37

0.81

0.94

3.02

0.59

1.5

3.2 1.79

0.74

1.26

1.1
1

2.48

0.62

0.87

4.12

1.2

0.98

1.37

1.32

0.96

22

where µ is a characteristic exponent and d is the distance of the module to the germinal or stem

module of the project tree. Further, without loss of generality, we choose the normalization that

sets the distance of the stem module itself to be 1. As 1d ≥ , the specification given by equation

(1.2) further implies that it is easier to improve versions for low level modules than for those at

higher levels.28 Figure 3 then represents a typical example of a single tree, where, as in Figure 2

above, numbers associated with each module precisely account for versions.

Then, developers allocate their individual effort endowments at every (random) moment

in order to maximise the expected reputation-benefit that it will bring, considering each possible

“bug” that is available to be corrected – or each new project to be founded (“bug of omission”)29.

We suppose that the cumulative expected30 reward (private value) for each existing and potential

new project is a function of the version number, and therefore an increasing function of the

cumulative efforts measured in KLOC, but also that initial contributions are evaluated as

rewarding as long as there are above a given threshold.

 () ()d dr x v x d λ−= (1.3)

() ()0d dr x whenever v x vθ= ≤ (1.4)

Here vθ stands a release “threshold” below which no reward is therefore gained by

developers: this threshold accounts for the existence of a norm according to which releasing early

is more or less encouraged in OS/FS communities31. Namely, it can be rewarding to release

28 We consider here more or less continuous “release policies” i.e. any improvement in any given module is released
as soon as it is contributed. No contribution gets rejected, and accepted contributions are not piled up waiting for a
later release. Furthermore, modules are released independently – there is no coordination between the release of
several modules, as it is more or less the case when they are grouped into a distribution which gets released regularly,
at release dates decided by whoever is in charge of maintaining it. In this first step of our modelling exercise,
continuous release stands as an abstraction of Raymond’s and others’ “release frequently” rule.
29 To simplify the allocation problem for the purposes of modelling, we consider that a randomly drawn developer,
with an associated endowment of effort, makes a commitment to work on a particular “bug” exclusively until that
endowment is exhausted. Each “bug” can be assigned an “size,” representing the cumulative among of effort that is
sufficient to achieve a recognizable “fix” and the model can be formulated in a full information version (allowing
developer’s to take the “problem size” into account in their allocation decisions), or an incomplete information
version (in which developers only know the broad “problem size range”), and so cannot see how close to the
“solution level” is the cumulative effort that has already been devoted to the bug in question.
30 This reward is of course actually conditioned by the fact that the project will attract subsequent developers.
31 This parameter characterizes another aspect of “release policy” norms within the community, as for the “release
frequently” rule (see above, note 27).

23

projects before they are functioning – developers can get “credits” for quite early releases – as it

is assumed to be socially efficient because it is a way to attract other developers: an assumption

which we will analyse below, and to which we will in fact try to give a better analytical ground.

Note also that in equation (1.3) the reward depends on the height of the project in the

software tree – the lower the package, the higher the expected reward, according to a power law

of characteristic exponent 0λ ≥ 32, according to the behavioral foundations of OS/FS community

norms as we have abstracted them.

Each existing and potential project is thus associated with an expected payoff depending

on its location in the software tree, its current level of improvement (possibly 0) and on individual

efforts. More precisely, the expected payoff which corresponds for any given developer to

spending its (entire) effort endowment α working on (existing) module m, located at distance d

from the root, and whose current level of improvement is x, is:

 () () ()d dm r x r xρ α= + − (1.5)

We suppose that each developer computes the expected rewards associated with each of

the nodes according to this last formula and his/her own effort endowment, but also taking into

account the rewards associated with the launching of new projects. According to the growth

algorithm described above, there is simply one possible new activity -- which would correspond

to the creation of a new module -- for each existing package in the global project tree.

Numerically, this is strictly analogous to computing the expected reward of “virtual” nodes

located as a “son” of each existing node, whose distance to the root module is therefore the

distance of the “parent” node plus 1, and whose version and total KLOC are initially 0. Then the

expected reward associated with launching a new project as a “son” of node m with effort α is

given by:

 () ()1dm rρ α+′ = (1.6)

We translate these payoffs into a stochastic “discrete choice” function, considering further

that there are non-observable levels of heterogeneity among developers, but that their choice will

on average be driven by these expected payoffs. Then:

24

() ()

() ()
1() 1 ()

number of modules number of modules

i root module i virtual son to the root module

m
P chosen module module m

i i

ρ

ρ ρ
= =

= =
′+∑ ∑

 (1.7)

Our goal then is to examine what pattern of code generation emerges from this system,

and how sensitive its morphology (software-tree forms) is to parameter variation, i.e., to

variations of the rewards given by the value system of the OS/FS-hacker's ethos, and simply to

the demography of the population of hackers. The obvious trade-offs of interest are those between

intensive effort being allocated to the elaboration of a few “leaves,” i.e. modules, which may be

supposed to be highly reliable and fully elaborated software systems whose functions in each case

are nonetheless quite specific, and the formation of an “dense canopy” containing a number and

diversity of “leaves” that, typically, will be less fully developed and less thoroughly “de-bugged”.

 We therefore focus on social utility measurements according to the basic ideas that:

(1) Low level modules are more valuable than high level ones simply because of

the range of other modules and applications that eventually can be built upon

them;

(2) A greater diversity of functionalities (breadth of the tree at the lower layers) is

more immediately valuable because it provides software solutions to fit a

wider array of user needs;

(3) Users value greater reliability, or the absence of bugs, which is likely to

increase as more work is done on the code, leading to a higher number of

releases. Releases that carry higher version numbers are likely to be regarded

as ‘better’ in this respect33.

We capture these ideas according to the following simple34 “social utility” function:

32 This expected cumulative reward function could also vary depending on the quality of the code, i.e. of its ability to
attract early developers or late debuggers, or to grant more reward to all of them.
33 This formulation treats all bugs symmetrically regardless of where they occur in the code. This is so because the
version number of a module that is close to the root is counted the same way as the version of a module that is far
from the root. Yet, bugs in low level modules are likely to cause problems for users of many applications than is the
case for high level modules that are bug-ridden. This complication could readily be handled by reformulating the
social utility measure.
34 In the future, we might be willing to implement a better differentiation between “functionality” and “reliability”,
with the idea also that users might typically value both aspects differently from developers.

25

 ()()
()

1 1
modules

d
m

u v m d
ν ξ− = + −  ∑ (1.8)

Where []0;1ν ∈ and 0ξ ≥ are characteristic exponents.

Emergent Properties

Preliminary results35 tend to stress the social utility of developer community “norms” that

accord significantly greater reputational rewards for adding, and contributing to the releases of

low level modules. Figure 4 presents the typical evolution of social utility with λ (efficiencies are

averaged over 10 simulation runs, while other parameters remain similar i.e.

3 0.5 0.5 2δ µ ν ξ= = = =)36.

0,5 1 1,5 2 2,5 3

λ

So
ci

al
 U

til
ity

Figure 4

35 This is based upon a static ex post evaluation of the resulting tree form, and it is evident that the results may be
altered by considering the dynamics and applying social time discount rates to applications that only become
available for end users at considerably later dates. In other words, the social efficiency of the reward structure that
allocates developers’ efforts will depend upon the temporal distribution, as well as relative extent to which OS/FS-
generated code meets the needs of final users rather than the needs/goals of the agents who choose to work on these
projects.
36 This result holds for various other values of these parameters, although more complete simulations are needed to
assess the range of its validity. To exclude a potential artifact, note that this result also holds if new nodes are created
at the same distance from the root as their ‘parent’ node (instead of their parent node’s distance plus one).

26

Further, our preliminary explorations of the model suggest that policies of releasing code

“early” tend to generate tree-shapes that have higher social utility scores. Then, Figure 5 gives the

evolution of social utility depending on vθ (here, utilities are averaged over simply 5 simulation

runs, while 3 0.5 0.5 2 2δ µ ν ξ λ= = = = =)37.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Release Threshold

So
ci

al
 U

til
ity

Figure 5

The intuitively plausible interpretation of this last finding is that early releases create

bases for further development, and are especially important in the case of low level modules as

they add larger increments to social utility. The reputational reward structure posited in the model

encourages this “roundabout” process of development by inducing individual efforts to share the

recognition for contributing to code, and notably to low level code. Figure 6 brings some rather

conclusive evidence in favor of this explanation by displaying the number of modules at “level

2”, i.e. at distance 1 from the kernel (“geminal” or “stem”) module.

37 This result holds for various other values of these parameters, although more complete simulations are needed to
fully assess the range of its validity.

27

0
2
4
6
8

10
12
14
16
18
20

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Release Threshold

N
um

be
r o

f M
od

ul
es

 a
t L

ev
el

 2

Figure 6

To go one step further, we suggest that early releases of low level modules could be

considered as seminal, according to an expression often used to characterize important and initial

scientific contributions (articles), meaning that these contributions, however limited, create

subsequent and sufficient opportunities for other developers to earn reward by building on them.

This points to the functional significance of one of the strategic rules – “release early”

and “treat your users as co-developers” – that E.S. Raymond has put forward for open-source

development, in the classic exposition, ‘The Cathedral and the Bazaar’. As Raymond himself puts

it:

[Treating your users38 as co-developers] The power of this effect is easy to
underestimate …. In fact, I think Linus [Torvalds]’s cleverest and most
consequential hack was not the construction of the Linux kernel itself, but rather
his invention of the Linux development model. When I expressed this opinion in
his presence once, he smiled and quietly repeated something he has often said:

38 The fact that these co-developers are users essentially guarantees that they provide solutions to existing and
relevant problems: this is related to von Hippel’s analysis of OSS as “user-innovation”, but also to another of
Raymond’s observations, according to which only contributions are useful in open-source development, as opposed
to people showing up and proposing to “do something”. Furthermore, this is close from the “given enough eyeballs,
all bugs are shallow” rule, and from one of the key reasons why open-source development (Linus’s Law) appears to
violate Brooks’ Law: “Adding more programmers to a late project makes it later.”, and although the citation we have
put in front of this paper tends to proved that, in a later work, Fred Brooks had the intuition that software productivity
could actually be improved if software was grown instead of built. Here, the “release early” and “attract users-co-
developers” rules stand as necessary conditions for this property to hold because they make the set of existing
problems explicit to all those who might be able not only to encounter them, as users, but still more importantly so to
solve them, as co-developers, while be rewarded in doing so and increasing also the author of the seminal
contribution’s final reward.

28

“I’m basically a very lazy person who likes to get credit for things other people
actually do.”

By this, we can understand the mechanism for eliciting seminal contributions, i.e., of early

release and attraction of co-developers, to operate in the following way: rewarding early release,

and allowing others to build upon it, does not simply create a sufficiently rewarding opportunity

for potential co-developers to be attracted, but also brings extra reward to the individual who has

disclosed a seminal work. Here, at least for low level modules, interdependent expected rewards

are such that they create incentives for what Raymond (1999: p. 27) calls “loosely-coupled

collaborations enabled by the Internet” – that is to say, for cooperation in a positive-sum game,

positive both for the players and for social efficiency In a sense, and at a meta-level, Linus

Torvalds’s seminal contribution was not only the kernel, but a new method of software

development, which was indeed new and different from the more classical methods which had

previously been supported by the FSF for most GNU tools (ibidem, pp. 27 & 29). Once again:

Linus (Torvalds) is not (or at least, not yet) an innovative genius of design in the
way that, say, Richard Stallman or James Gosling (of NeWS and Java) are.
Rather, Linus seems to me to be a genius of engineering and implementation,
with ….a true knack for finding the minimum-effort path from point A to point
B. … Linus was keeping his hackers/users constantly stimulated and rewarded –
stimulated by the prospect of having an ego-satisfying piece of the action,
rewarded by the sight of constant (even daily) improvement in their work.

The price to be paid for implementing such an early release scheme is of course that the

higher number of modules being created come at the sacrifice lower level versions that might

have been produced with equivalent levels of efforts. Figure 7 presents the evolution of the

version of the kernel, of the average version of level 2 modules, and of the average version of the

modules over the entire software tree depending on the release threshold vθ (same parameter

values, still averaged over 5 simulation runs).

29

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Release Threshold

Ve
rs

io
n Kernel

Level 2
Entire Tree

Figure 7

Conclusion, and To-Do List

Although there are clearly many things to be improved in this very preliminary attempt to

model the workings of OS/FS communities, we hope that we might have brought some

preliminary evidence about what kind of insights such a tool might provide to observers and

practitioners of OS/FS. And, as it has provided a rationale for “early release” policies, we have

opted for an early release of our work on this topic: in a sense, one should look at all the footnotes

in the former sections not only as disclaimers about the preliminary nature of our attempts, but

also as opportunities for improvement and for co-development of our model. Although we

certainly “commit” to do part of this job, we are also convinced that, considering the complexity

of OS/FS communities, we need to harness significant effort to develop a proper model of OS/FS

communities.

In this respect, and standing as a temporary conclusion, let us briefly summarize for now

at least part of the “to-do” list of features that should be added to the model:

(i) Microbehaviors. Clearly, the behavior of developers (contributors) thus far is

caricatured as myopic and, more seriously, still lacks several important dynamic

dimensions. Learning is missing, for instance: as a matter of fact, acquiring the skills

to debug a particular module, or to add new functionalities to it, is not costless. But

30

the model does not make allowance for these “start-up” costs, which would affect

decisions to shift attention to a new package of code in the project. Secondly, instead

of choosing how to apply their currently available “flow” development inputs (“code-

writing time, in efficiency units) among alternative “modules,” developers might

consider “aggregating” their efforts by working “off-line”over of longer interval.

Intertemporal investment strategies of this sort would permit individuals to make a

larger, and possibly more significant contribution to a module, and thereby garner

greater peer-recognition and rewards.39 Thirdly, and perhaps most obviously, the

model in its presently simplified form abstracts entirely from behavioral

heterogeneities. The latter could derive from the variety of motivations affecting the

effort that developers are willing to devote to the community project, or to differences

in preferences for writing code, as distinct from engaging in newsgroup discussions

with other contributors. But, as we have modelled effort in efficiency units (KBOCs

per period), differences in innate or acquired skill among contributors also would

contribute to generating a (changing) distribution of input capacities in the developer

population. The convolution of that distribution with the distribution of motivational

intensities would then have to be considered by the simulation model when a

“potential developer” is drawn at random from the population, for inter-individual

differences in the extent of the (effective) “endowment” would influence the

(simulated) pattern of micro-behaviors.

(ii) Release policies, can be viewed as reflecting the governance structure of a project and

therefore treated as a “pre-determined” variable, or “fixed effect” that potentially

distinguishes one project from another.40 Such policies can be viewed as a factor

influencing the distribution of developer efforts among different OS/FS projects, and

thereby affecting their relative advance toward “maturity.” But, as differences among

the operating rules followed by maintainers of different modules within a complex

39 What makes this an interesting strategic decision to model is the risk that while working “off line,” so to speak, for
an extended period, and not submitting increments of code in more continuous flow, someone else might submit a
discrete contribution that would have the same functional attributes, thereby preempting the investment’s chance of
being accepted. The perceived hazard rates for “credit losses” of that sort might be modelled as rise as more
developers gain familiarity with a given module, or others technically related to it.
40 Such policies can be treated as applying uniformly across all the modules of a project, or as defining a pre-
specified range of release intervals defined either in temporal terms, or in terms of incremental code.

31

project would create de facto local policy variations release rules, this too can be

incorporated by the model among the set of conditions affecting the internal allocation

of developers’ contributions. Global release policies, affecting by how accessible the

project’s code is to users through one or more, for-profit and non-profit

“distributions”of its code, constitutes yet another important aspect of performance.

This may affect both perceived reliability, market adoption, and so feed back to

influence the project’s success in mobilizing supporting resources both within the

developer community and from external sources.

(iii) Willingness to contribute to different projects. As has been noted, developers might

have variable effort endowments, depending for instance on the global shape of a

project, or on other variables such as its market share, release policies, licensing

schemes, etc. This will affect choices among different projects. But the positioning the

of projects in the “software systems product space,” and in particular their relationship

to projects that are at work on product substitutes, is another aspect of the dynamics of

resource allocation in the developer community at large. It will therefore important to

extend the model in this direction, by defining the dimensions of the “product space”;

only when “categories can be represented” will it become possible to simulate the

effects of what Raymond (1999) describes as “category killers” – project trees, in our

metaphor, that block the sunlight and absorb the nutrients in the area around them,

preventing other project-trees from establishing themselves there

(iv) Users. End-users have not really been implemented yet in the model, save for the fact

that developers are assumed to be also users in that they know what the bugs (actual

ones, and bugs of omission) are! Users are likely, as a group, to have different

preferences from developers, for instance, being disposed to grant more weight to

reliability rather than to the range of functionalities embedded in a single program.

Furthermore, some developers (some communities?) may be more strongly motivated

than others to work on “popular” projects, that is, by projects which are able to attract

users from the general, in expert population by fulfilling their working requirement,

affording network compatibilities with co-workers, being properly distributed.41

41 Indeed, there may we some developers who would be quite insensible to those motivations, even shun projects of
that kind, believing that commercial software vendors would cater to those needs, and that they would serve the

32

Again, it would be appropriate for the model to represent such considerations and, by

allowing for alternative distributions of developer attitudes, investigate their potential

impacts upon the pattern of OS/FS project development.

(v) Sponsorship, and more generally symbiotic relationships with commercial entities of

various kind (ancillary service companies, editors of complementary commercial

application packages, even proprietary software vendors, etc.), can influence OS/FS

development by adding and directing efforts. This can take a variety of forms, ranging

from commercial distribution of OS/FS-based products to hiring prominent developers

and letting them contribute freely to selected open-source projects. The interaction

with complementary enterprises in the software systems and services sector, therefore,

will have to be modelled along with the direct competition between the underlying

OS/FS code and the products of commercial vendors of proprietary software and

bundled services.

(vi) Authority and Hierarchies: In a sense, the reputation rewards associated with

contributing to the development of a project are only obtained if the developers

submitted “patches” are accepted by the module or project maintainer. Rather than

treating the latter’s decisions as following simple “gate-keeping” (and “bit-keeping’)

rules that are neutral in regard to the identities and characteristics of the individual

contributors, it may be important to model the acceptance rate as variable and

“discriminating” on the basis the contributing individuals’ “experience” or “track-

records.” This would enable the model to capture some features of the process of

“legitimate peripheral participation” through which developers are recruited. Modules

towards the upper levels in the tree, having fewer modules calling them, might be

represented as requiring less experience for a given likelihood of acceptance.

Comparative neophytes to the OS/FS community (“Newbies”) thus would have

incentives to start new modules or contribute to existing ones at those levels, but over

needs of “minority” users. Survey information may be used to reach some inferences about the distribution of such
OS/FS community attitude regarding different categories of software, which in turn could be introduced as a
dimension of inter-project diversity.

33

time, with the accumulation of a track record of successful submissions, would tend to

migrate to lower branches of new trees.42

 All of the foregoing complicating features of the resource allocation within and among

OS/FS development projects are more or less interdependent, and this list is not exhaustive.

There is therefore a great deal of challenging model-building work still to be done still, and

still further empirical research must be devoted to obtain sensible parameterizations of the

simulation structure. But we maintain that this effort is worth undertaking because we are

convinced that OS/FS research activity, be it in computer science, economics or other social

sciences, is now proliferating rapidly in empirical and theoretical directions, and some

integrative tools are needed to better assess the findings and their implications. Empirical

research of several kinds, about the nature of the involvement of developers in projects and

their motivations, about the ecology of OS/FS projects as typically observed in SourceForge-

like environments, about the commercial ecology and economy which now accompanies all

successful OS/FS projects, not only should only be confronted with the model and its

findings, but it should also orient further modelling advances.

 As it is essential for theorists to engage in an continuing dialog with empirical

researchers, agent-based simulation modelling would appear to provide at least part of the

necessary language for conducting such exchanges. It is therefore to be hoped that by exploring

this approach it will prove possible eventually to bring social science research on the free and

open source model of software development to bear in a reliably informative way upon issues of

public and private policy for a sector of the global economy that manifestly is rapidly growing in

importance.

42 The complex interplay of factors of learning and trust, and the ways that they may shape path dependent career
trajectories of members of the OS/FS developer communities, have be carefully discussed in recent work by Mateos-
Garcia and Steinmueller (2003).

34

References

Benkler, Yoachi, 2002. “Coase’s Penguin, or, Linux and The Nature of the Firm,” Version 04.3
(August), forthcoming in Yale Law Journal, 112 (Winter 2002-2003).

Bessen, James (2001) “Open Source Software: Free Provision of Complex Public Goods.”
Research on Innovation. Paper. [Available at:
<www.researchoninnovation.org/opensrc.pdf>.]

Carayol, Nicolas and Jean-Michel Dalle, 2000. “Science wells: Modelling the ‘problem of
problem choice’ within scientific communities”, 5th WEHIA Conference, Marseille, June.

Dalle, Jean-Michel and Nicolas Jullien, 2000. “NT vs. Linux, or some explorations into the
economics of free software,” In: Application of simulation to social sciences, G. Ballot
and G. Weisbuch, eds. Paris, France: Hermès, pp. 399-416.

Dalle, Jean-Michel and Nicolas Jullien, 2003. “ ‘Libre’ software : turning fads into institutions?”,
Research Policy, vol. 32, No. 1, pp. 1-11.

Dasgupta, Partha and Paul A. David, "Information Disclosure and the Economics of Science and
Technology" , Ch. 16 in Arrow and the Ascent of Modern Economic Theory, (G. Feiwel,
ed.), New York: New York University Press, 1987, pp. 519-542.

Dasgupta, Partha and Paul A. David, 1994. “Toward a new economics of science”, Research
Policy, vol. 23, no. 5, pp. 487-521.

David, Paul A., 1985. “Clio and the economics of QWERTY”, American Economic Review
(Papers and Proceedings) 75: 332-337.

David, Paul A., 1998a. "Reputation and Agency in the Historical Emergence of the Institutions of
‘Open Science’," Center for Economic Policy Research, Publication No. 261, Stanford
University, (revised March 1994), further revised :December.

David, Paul A., 1998b. “Common Agency Contracting and the Emergence of ‘Open Science’
Institutions,”American Economic Review, 88(2), May.

David, Paul A., 1998c. “Communication Norms and the Collective Cognitive Performance of
‘Invisible Colleges’,” in Creation and the Transfer of Knowledge: Institutions and Incentives, G.Barba
Navaretti et.al., eds., Berlin, Heidelberg, New York: Springer-Verlag.

David, Paul A., 2001a. “Path dependence, its critics and the quest for ‘historical economics’,” in
Evolution and Path Dependence in Economic Ideas: Past and Present, eds. P. Garrouste
and S. Ioannidies. Cheltenham, Glos.: Edward Elgar, 2001.

David, Paul A., 2001b. “The Political Economy of Public Science,” in The Regulation of Science
and Technology, Helen Lawton Smith, ed., London: Palgrave.

35

David, Paul A., Seema Arora and W. Edward Steinmueller, 2001. “Economic Organization and
Viability of Open Source Software: A Proposal to The National Science Foundation,”
SIEPR, Stanford University, 22 January.

DiBona, Chris, Sam Ockman, and Mark Stone, 1999. “Introduction”, In: Open Sources: Voices
from the Open Source Revolution, C. DiBona, S. Ockman, and M. Stone, eds. Sebastopol,
Calif.: O'Reilly & Associates, pp. 1-17.

Franke, Nikolaus and Eric von Hippel, 2002. “Satisfying heterogeneous user needs via innovation
toolkits: the case of Apache security software,” MIT Sloan School of Management
Working Paper No. 4341-02, January.

Ghosh, Rishab Aiyer, 1998. “Cooking pot markets: an economic model for the trade in free goods
and services on the Internet,” First Monday, Vol. 3, No. 3 (March), [Available at :
<firstmonday.org/issues/issue3_3/ghosh/index.html>.]

Ghosh, Rishab Aiyer, Rudiger Glott, Bernhard Kreiger and Gregario Robles, 2002. The
Free/Libre and Open Source Software Developers Survey and Study—FLOSS Final
Report. June. [Available at: http://www.infonomics.nl/FLOSS/report/].

Harhoff, Dietmar, Henkel, J. and von Hippel, E. (2000) “Profiting from Voluntary Information
Spillovers: How Users Benefit by Freely Revealing their Innovations.” (July). [Available
at: <opensource.mit.edu/papers/evhippel-voluntaryinfospillover.pdf>].

Kelty, Christopher M. (2001) “Free Software/Free Science.” First Monday, December. [Available
at: <www.firstmonday.org/issues/issue6_12/kelty/index.html.]

Kogut, Bruce and Anca Metiu, 2001. “Open-Source software development and distributed
innovation,” Oxford Review of Economic Policy, Vol. 17, No. 2, pp. 248-264.

Krishnamurthy, Sandeep. (2002) “Cave or Community? An Empirical Examination of 100
Mature Open Source Projects.” University of Washington, Bothell. [Available at:
<faculty.washington.edu/sandeep>.]

Kuan, Jennifer, 2001. “Open Source Software as Consumer Integration into Production,”
[Available at: <papers.ssrn.com/paper.taf?abstract_id=259648>.

Kuwabara, Ko, 2000. “Linux: A Bazaar at the Edge of Chaos,” First Monday, Vol. 5, No. 3
(March). [Available at: <firstmonday.org/issues/issue5_3/kuwabara/index.html>.]

Lakhani, Karim and Eric von Hippel, 2000. “How Open Source software works: ‘free’ user-to-
user assistance,” MIT Sloan School of Management Working Paper No. 4117-00, May.
Forthcoming in Research Policy. [Available at:
<opensource.mit.edu/papers/lakhanivonhippelusersupport.pdf>.]

36

Lerner, Josh and Tirole, Jean. (2000) “The Simple Economics of Open Source.” National Bureau
of Economic Research (NBER) Working Paper 7600 (March). Available at:
<www.nber.org/papers/w7600>.

Mateos-Garcia, Juan and W. Edward Steinmueller, (2003).”The Open Source Way of Working:
A New Paradigm for the Division of Labour in Software Development?’, INK Open
Source Research Working Paper No. 1, SPRU-University of Sussex, Brighton, England.

Merton, Robert K. (1973). The Sociology of Science: Theoretical and Empirical Investigations.
Edited by Norman W. Storer. Chicago: University of Chicago Press.

Perens, Bruce, 1999. "The Open Source Definition," In: Open Sources: Voices from the Open
Source Revolution. Sebastopol, Calif.: O'Reilly & Associates, pp. 171-188.

Raymond, Eric S., 1998b. "Homesteading the Noosphere," First Monday, volume 3, number 10
(October), [Available at <firstmonday.org/issues/issue3_10/raymond/index.html> and at
<ww.tuxedo.org/~esr/writings/homesteading>.]

Raymond, Eric S., 1998a. "The Cathedral and the Bazaar," First Monday, volume 3, number 3
(March), [Available at: <firstmonday.org/issues/issue3_3/raymond/index.html>, and
<ww.tuxedo.org/~esr/writings/cathedral-bazaar>.]

Raymond, Eric S., 1999a. “A Response to Nikolai Bezroukov, ” First Monday, volume 4, number
11 (November). [Available at: <firstmonday.org/issues/issue4_11/raymond/index.html>.

Raymond, Eric S., 1999b, The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary., Revised and Expanded Edition, Sebastopol, Calif.: O'Reilly
& Associates.

Raymond, Eric S.,1999c. "The Magic Cauldron," in The Cathedral and the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary. Revised and Expanded Edition,
Sebastopol, Calif.: O'Reilly & Associates.

 Stallman, Richard, 1999. "The GNU Operating System and the Free Software Movement," In:
Open Sources: Voices from the Open Source Revolution, C. DiBona, S. Ockman, and M.
Stone, eds. Sebastopol, Calif.: O'Reilly & Associates, pp. 53-70.

von Hippel, Eric, 2001. “PERSPECTIVE: User toolkits for innovation,” Journal of Product
Innovation Management, vol. 18, pp. 247-257.

von Hippel, Eric. (2002) “Horizontal Innovation Networks – By and For Users.” MIT Sloan
School of Management (April). [Available at:
<opensource.mit.edu/papers/vonhippel3.pdf>.

Weber, Steven. (2000) “The Political Economy of Open Source Software.” BRIE Working Paper
140, E-conomy Project Working Paper 15 (June). [Available at:
<brie.berkeley.edu/~briewww/pubs/wp/wp140.pdf>.]

	27cvr.pdf
	The Allocation of Software
	Development Resources
	In
	‘Open Source’ Production Mode

