
34

Toward Collaborative Open-Source Technology Transfer

 Jean-Michel Dalle Guillaume Rousseau
 IMRI-Dauphine, Univ. Paris 6 & Agoranov INRIA

jean-michel.dalle@upmc.fr guillaume.rousseau@inria.fr

Abstract1

We analyze several occurrences of open-source
technology transfer where research tools or prototypes
developed in academic environments are transferred to
private actors to be exploited economically. We enlight
common characteristics which lead us to suggest that
academic duality is a general consequence of the
academic design of research tools and prototypes, and
that the associated high transfer costs could be reduced
first by implementing dual versioning using a dual
licensing scheme, by associating a new academic public
license with a traditional technology transfer one, and
second through the transparent and shared maintenance
of products built according to a dual architecture, as it
would be precisely allowed by a dedicated collaborative
development platform such as LibreSource.

1. Position of the problem

Software is an increasingly common output of
academic research. Computer science theories and ideas
are widely tested and implemented as software
prototypes. Even more generally, software has become a
common research tool in all disciplines, for calculus,
simulation and many other tasks associated with academic
life. To speak only of the most famous of the latter

1 We would like to acknowledge how much our work has benefited from
various discussions with other participants in the �‘LibreSource�’ RNTL
grant, whose support is also most gratefully acknowledged: among them,
we would notably like to thank Vincent Finet, Laure Muselli and Olivier
Rhein. Other discussions with Paul A. David, Rishab A. Ghosh, Gérard
Giraudon, Jesus Gonzales y Baharona, Nicolas Jullien and Laurent Kott
have also been very helpful in shaping our views. This paper draws
significantly from a previous one [3] which was presented at EPIP2
Conference in Maastricht, The Netherlands: most surprisingly, there was
a slogan written there, on the wall of the room in which this conference
was organized and the paper presented, that was said to date back to the
Princes of Oranje, and which read �“Je maintiendrai�”. This sentence in
French translates into �“I shall maintain�”: surprised as he was, it certainly
helped one of us (JMD) understand that maintenance was key, and that
organizing it via a collaborative platform could be crucial for open-
source technology transfer.

category, it is now well-know that academics at CERN in
Geneva were largely responsible for the invention of the
World Wide Web, first as a research tool. But then an
important issue arises about how software developed in
academic communities is or could be made accessible to a
larger public, when of course relevant: and it would
indeed be relevant for numerous software technologies
that could be usefully exploited in the context of
economic products and processes. To put it differently,
the importance of the technology transfer issue for
software research tools and prototypes is increasing
rapidly.

Technology transfer issues have been studied for years
in economics and other disciplines, and it is not our
purpose here to assess the various results that this
literature has brought, nor to discuss the hypotheses that
have been suggested, and sometimes discarded, about
how to improve the transfer of technologies from public-
funded research to private actors and markets. It would
certainly be fruitful to do so, but we would like to inquire
here the issue of software technology transfer according
to a different perspective: the reason for this is the rapid
surge of a new and fashionable mode of technology
transfer for software, namely, open-source technology
transfer.

Building upon the success of open-source software, for
which Linux has become a paradigm, software developed
in academia is now increasingly made accessible in an
open-source way: not only because what could be called
�“GPL-publishing�”, by researchers on their homepages,
but also because of more developed attempts of open-
sourcing software initiated by higher education and
research institutions. Indeed, the initial idea of this study
comes from the fact that, in the context of our work as
researchers in the economics and management of
software and innovation, we suddenly found ourselves
coming across more and more numerous examples of
academic software developed in open-source mode, many
of which relatively recent, some of which older than we
would have expected2.

2 See [2, 17, 21] for early intuitions about this.

35

In any case, academia now appears as a second major
source of open-source software after independent
developer communities3: a source about which we do not
know much yet, and about which we would certainly like
to know more to properly assess the consequences of the
current wave and perhaps tsunami of open-source
academic software research tools and prototypes. This is
the basic rationale of this work, which we hope will be
followed by others as such studies appear to be rapidly
needed by research policy makers, among whose
preoccupations stands notably the current disarray of
traditional technology transfer offices for which open-
source software is still a new and puzzling phenomenon,
apparently associated only to non-profit mechanisms �– an
erroneous conception which we will try to correct below
�– whereas these institutions have most of the time been
created to foster the commercial exploitation of
technologies developed in labs, be it by contractual
research, licensing, or start-up creation. Open-source
cases are on most of their desks now, but they do not
know how to handle them according to this new mode of
technology transfer4.

As a further consequence, we will not consider here
under which conditions open-source technology transfer
could be more efficient than other modes. Considering
how fast the open-source technology transfer wave is
progressing, we have rather adopted here a more
pragmatic approach, and we will try to determine using
various case studies the major characteristics of open-
source technology transfer, and from then on the
conditions under which open-source technology transfer
could be made more efficient. As a matter of fact,
answers to these questions are relevant for future
comparisons with other modes, and could also first of all
provide a rationale to try to stop, or not to stop the current
wave, or perhaps to try to reorient it in some particular
way. In this context, we will start by briefly presenting
case studies, and then our main findings for which we
will try to provide interpretations, on the basis on which
we will finally propose a more general framework for
open-source technology transfer5.

3 Although general results about open-source software mostly apply:
[10] provides a synthetic view. See also [11, 13, 14, 16, 20] about
motivations and [6, 7] about competition issues.
4 These issues are now crucial in France for INRIA, RNTL, CNRS,
CEA, ANVAR and for several major universities, to name but a few
major actors. We have had various occasions to verify that there were
also emerging rapidly in several other countries, as in the UK for the
EPSRC or in the US for the NSF.
5 As should already be clear to the reader, the line of inquiry we have
selected implies that our conclusions will for now stand only as
conjectures, that is mainly as hypotheses for further and more
quantitative research. This team is of course committed to contributing
to this task, but a major motivation for this early release �– applying to
ourselves what other research on open-source development [5] has
taught us �–, is that we believe that much can to be gained by disclosing

2. Case Studies

We will now briefly present some of the cases studied
in the context of the LibreSource project, and which all
concern open-source software developed in academia. For
now, and since it is an on-going work, we apologize for
designating them only with initials: we would notably like
to preserve their anonymity until complete conclusions
have been reached and disclosed to all relevant parties6.

- Technology A is a CAD tool for integrated
circuit design at a very advanced stage of development. It
has now reached wide recognition in its field, and is
widely used in the academic community worldwide.
However, it is not used by private companies, which
prefer proprietary solutions and which have developed in-
house plug-in libraries adapted to their own specific
circuit elements. However, Technology A is modular and
globally interoperable with these proprietary solutions.
Technology is essentially a research tool, and is
considered to have been a key element to grant the team
that developed it with a high academic standard, and to
allow it to receive around 1 M�€ per year in contractual
research from industrial partners, which was notably used
to pay for an engineer who maintained Technology A and
supplied user support. Technology A�’s licensing scheme
was initially unclear, but it was later released under the
GPL. 3 start-ups at least have been created in connexion
with technology A, each of which has received VC
funding. Two of them market circuits developed using
technology A, i.e. research results obtained using A as a
research tool, and the last one markets an improved
closed and proprietary version of one of A�’s components,
also compatible with proprietary solutions.

- Technology S is a tool for calculus and
simulation at a very advanced stage of development. It is
not completely modular, although dedicated toolboxes
exist and are suited to specific needs. It is a direct
competitor of a proprietary software solution that is in a
monopoly situation, which benefits from a much greater
number of specialized toolboxes, and with which it is not
interoperable although S initially forked from the last
open-source version of this other technology before it was
closed and turned into a commercial product. S is released
under a sui generis licence that grants the team which
develops technology A with very strict control over
contributions, and which does not guarantee explicit
recognition for contributors. S is itself challenged by
another open-source solution released under the GPL, and
which is interoperable with their common proprietary
competitor. A consortium of commercial users, mostly

results, here on open-source technology transfer, early enough so that
they can motivate further inquiries and further research.
6 A more complete description will be included in the final LibreSource
report (forthcoming in 2004).

36

big companies, has recently been set up, operated by one
of the research institutions from which S originates,
whose members pay an annual fee in exchange for
premium services, and notably to see their suggestions for
further development taken into proper account by the
academic development team. In this context, technology
S�’s licensing scheme is about to evolve, though the
eventual choice is not completely determined yet,
possibly toward a dual GPL �– LGPL scheme with LGPL
rights being granted to members of the consortium. At
least one start-up is a member of this consortium and
plays the role a specialized integrator for technology S: a
similar company exists in Germany but does not seem to
be part of the consortium at least for now, contrary to a
non-specialized company dedicated to open-source
solutions but which is willing to develop a similar
business.

- Technology J is a J2EE compliant application
server at a very advanced stage of development. It has for
the last 3 years become part of a consortium supported by
several major companies, and which regroups technology
J together with a set of other components dedicated to
related functionalities. The consortium is here also, as for
S, a contract between users and the research institution
from which the technology originates, according to which
an annual fee is paid in exchange for premium services
and notably inclusion of their expressed needs in
upcoming versions. Most of the components regrouped in
this consortium along with J are licensed under the GPL,
including J, and the consortium plays a coordination role
among them to try to foster interoperability and
convergence. Numerous individuals, both academics and
employees of various companies using J, and also several
start-ups, are members of this consortium, together with a
major systems integrator, which has partly embraced an
open-source strategy, and for which technology J
constitutes a key middleware component. The
consortium�’s web site is basically a repository for all
these components, and has recently started to host yet
another well-known middleware component.

- Technology X is a desktop grid solution at a
relatively early stage of development. It has been
developed in the context of a successful PhD thesis and
was from the beginning released under the GPL, although
this licensing scheme does not seem to reflect a proper
decision of the university under the auspices of which it
has been developed. Technology X is in the process of
rapidly achieving a wide recognition and installed
academic worldwide. Several potential commercial users
have already approached the team that maintains it and
plans to continue to develop it with relatively pressing
needs, and this team is therefore currently involved in
several start-up projects. The business model of these
start-ups is not completely determined yet, between a
specialized integrator which would answer clients�’ needs

in the context of contracts which could otherwise have
been directly passed through the university as research
contracts, and a more ambitious component strategy
which would be more competitive worldwide with other
desktop grid solutions.

- Finally, we would also like to add to this least
another well-known example of open-source technology
in the process of being transferred to commercial uses,
namely the Globus technology for grid computing,
denoted here as G for coherence reasons, as it has been
studied recently in [9] and to which we would like to
directly refer the reader.

3. Preliminary Findings

(i) Maintenance and governance. Academic labs
and research institutions are generally willing to retain at
least partial control over software maintenance and
development using appropriate licensing schemes (S, G),
or by creating consortia that they themselves more or less
control (S, J), or simply by continuing to invest in the
development and act as maintainers of the technology (all
including A & X). The existence of consortia basically
tends to balance pure academic leadership and to shift
part of the authority to steering committees where both
academics and users are represented. Consortia also seem
to increase the number of non-academic users, sometimes
although on a purely individual basis (J).

(ii) Licensing. Very different licensing strategies
have been and are being explored, and no general solution
has emerged yet. However, viral licensing is now present
is all projects we have studied. In this context, and this is
clearly related to maintenance and governance issues
mentioned above, we have found several examples of
legal control over contributions brought by a
centralization of rights in the licensing schemes: rights on
contributions are to be given to the maintainer�’s
institution, contrary to pure GPL licensing which as a
consequence does not prevent forking �– although
commitment strategies of academic research teams seem
to play a counterbalancing role and are generally held to
prevent it. The possible existence of software patents held
by contributors can also be taken into account so that it is
guaranteed that they will not be harmful to the maintainer
and to the users of the technology. In addition, we have
also found evidence of the desire of some contributors at
least to be rewarded for their contributions and notably
granted, although we have found no BSD-like clause.
How licensing schemes could be designed both to allow
for commercial exploitation and to correspond to the
strategy of research teams is a major concern for several
projects.

(iii) Commercial partners and start-ups. Major
companies (A, S, J, G) and start-ups (all) are present in
most cases. As for major companies, they can be either

37

users (A, S, J) or systems integrators (J, G), and will deal
with academic teams through one-to-one contracting (A
and probably G) or through consortium agreements (S, J).
As for start-ups, it is unclear whether their prevalence is
an artefact due typically to the fact that IT technologies
have been especially prone to start-ups creation during
the recent years. However, we would like to conjecture
here that access to open-source technologies, which are
also more visible from outside academic communities and
acquire more rapidly a larger, at least academic, installed
base, is by construction associated with lower barriers to
entry: as a consequence, open-source technologies born in
academia are more suitable to be marketed by newly
created specialized integrators, i.e. are specially prone to
start-up creation. More, labs can here also be more
attracted by partners whose bargaining power is relatively
limited, meaning that the deals will be more in their
advantage and that they will retain more control.

(iv) Maintenance costs. In all cases, there is a more
or less pressing need of academic players to find a way to
finance maintenance costs, since higher education and
research institutions experience difficulties in justifying
long-term financial commitment of development work.
These maintenance costs are sometimes paid for by
contractual research attracted by the academic reputation
that the team has earned notably due to its achievements
in developing a powerful technology and obtaining good
research results and academic leadership in its field (A
specially and in some extent all others). Consortia partly
play a similar role, but extend it by increasing the
bargaining power of private actors i.e. by linking a fee
paid by commercial entities to more influence on future
developments.

(v) Markets. Various market conditions characterize
each of the technology we have studied: it can be
characterized by a de facto standard (S), by a limited
number of proprietary solutions (A) probably on the way
to de facto standardization (J), or by a rapidly evolving
competition (X) where the technology can be dominant
(G). In the case of S, a previous technology transfer had
been attempted, in traditional closed and proprietary
mode, which did not meet success. Actually, these market
conditions, and the characteristics of software markets,
have most probably played a role in driving most of the
technologies to an open-source technology transfer
strategy, compared to a direct transfer of the technology
in a non open-source mode (A, S, J at least). Due to
market dynamics provoked by network effects and
externalities, the real chances of a technology, specially
when it is not among the early entrants but a latecomer
and when it is not supported by considerable investments,
to gain a fair share in a direct proprietary competition
against other proprietary software producers are relatively
low and hazardous. It is particularly so as soon as a de
facto standard has already emerged from a former

standard race (S, probably soon J), or an equivalent
market structure with very high barriers to entry (A). In
this respect, a technology born in academia can be a late
comer for at least two different reasons: first, because it
was developed in a pure academic context for years
before the opportunity of commercial exploitation was
really explored (J), or because a first and attempt has
failed and a new one is launched several years later in
completely different market conditions (S); and second,
because this technology has often been created as a
research tool, i.e. for the research team which develops it
and the academic community to have access to an open-
source, easy-to-use, and quasi-free research tool, and
therefore to avoid having to pay for expensive proprietary
solutions whose sources are in most cases unavailable,
even on a monetary basis, which renders academic work
considerably more difficult, if not unfeasible (A).
Whatever the reason �– sometimes both could apply �–
proprietary technology transfer strategies would appear
rather quixotic when it would be so, and the technology
might experience a better diffusion trajectory and reach a
larger installed base and a better global outcome
(considering also the reputation reward for the research
team), according to an open-source and even a software
generics strategy, i.e. in playing the role of a software
generic in its particular market. In parallel, supplementary
indirect technology transfer strategies can be
implemented and include selling components
interoperable with the solutions that dominate the market,
or exploiting of research results obtained by using the
technology as a research tool (A). In this context, more
recent technologies (X) are wondering whether they
should immediately adopt a software generics strategy or
if they have entered the market early enough to have
other opportunities, i.e. if the tipping point of the standard
race in their market is not too close they could for
instance adopt strategies like the one that G has selected
i.e. trying to play the role of an open-source de facto
standard which most proprietary software producers now
implement.

(vi) Academic installed base. In most cases, these
technologies are widely used in the academic world for
teaching and research, and their academic installed base is
much bigger than their commercial installed base. This is
clearly due to the openness of their sources and to their
being accessible for free. There is at least one major limit
for this (S notably), which concerns interoperability with
dominant proprietary solutions: the basic issue faced by
higher education institution when they use an open-source
alternative technology for teaching, is that students would
have to learn later different procedures if it is not
interoperable enough with the solutions which dominate
the market, which significantly reduces their
employability when it is so.

38

(vii) Modularity and design. Most technologies have
some degree of modularity [1, 15], but still relatively
imperfect. They are often said to be modular, but we have
not been able to really obtain evidence of the extent in
which modularity had concretely been achieved in their
design, while in some cases it is even not completely clear
whether modularity is implemented in the current version
of the code or if plans exist to improve it in future
versions. Other puzzling design characteristics include for
instance the non-interoperability of S for instance, which
harms its competitive power both against the existing
proprietary standard and against its open-source
competitor, even in the academic institutions in this last
case. Clearly, imperfectly modular design has to do with
the fact that modularity was less of a rule when the older
technologies were designed. But we would also like to
conjecture that design by academic teams also reflects the
context and objectives according to which these
technologies were initially conceived, namely, to serve as
research tools or as research prototypes, without a proper
taking into account of other and notably commercial
considerations which could have pleaded for a more
modular design and also for other kinds of specifications
such as interoperability. Academic design, as we suggest
to denote this phenomenon, is indeed a good candidate to
explain some of the difficulties in technology transfer
attempts, as the technology is not well adapted ex ante to
commercial users�’ needs, and the necessary investments
to modify its design are thus all the more difficult to
finance that initial design decisions are path-dependent.
What we are basically suggesting is that technologies
created in academia, often as research tools and
sometimes as research prototypes, are simply initially
designed in an academic way without taking into account
other considerations, and that this design can render
technology transfer more difficult i.e. more costly for any
commercial entity which would be willing to attempt it.

Another way to put it is to say that academic design
significantly increases transfer costs and therefore the
investments private actors have to make, including
sustained contractual relations with the initial designers of
the technology so as to benefit as much as possible from
their skills and from the tacit and uncodified knowledge
they possess, to create marketable products and processes.
This phenomenon actually has a name in economics,
although it does not usually apply to academic but to
military technologies: it is called duality and characterizes
the fact that military specifications imply characteristics �–
or design decisions in a more modern terminology �–
which do not correspond to civilian uses, hence creating a
high transfer cost for so-called dual technologies . Here,
transfer costs between academic and commercial use are
probably be more limited but still exist and stand as a
logical explanation for weak commercial use.

Academic duality is a consequence of academic
design: most technologies born in labs are created as
research tools without any commercial strategy and are
designed according to academic standards, and this
applies also in a large extent to others research prototypes
as the main motivation of scientists is to design them so
as to earn reputation from their peers, therefore in line
with specifications chosen independently by researchers
according to the preferences of the academic community.
A further consequence now is that contract research
between academic and commercial partners can then be
interpreted, at least in some cases, as reflecting an
opportunity cost: the opportunity cost for the lab of
adopting this or that design characteristic instead of the
�‘academic one�’. Interested commercial partners can pay
for these opportunity costs on a direct contractual basis,
but this rationale is even more clearly reflected by their
willingness to engage financially into consortia and to
receive in exchange extra bargaining power on design
decisions. However, they can most probably not afford
these costs when it comes to modifying older design
decisions7.

4. Reducing and organizing academic duality

Academic design and academic duality tends to
characterize software, and probably most scientific
artefacts8, both research tools and prototypes, which
creates structural technology transfer costs. Clearly then,
ignoring academic duality in the design of technology
transfer mechanisms would probably lead to repeatedly
unsuccessful strategies. In this respect, we would like to
suggest here a modest and tentative proposal for open-
source technology transfers: an open-source proposal
indeed, which we hope will attract criticism and further
contributions. Central in this proposal is the notion of
organized and reduced duality, and it aims at structurally
reducing technology transfer costs. The basic rationale is
the following:

4.1. Reducing academic duality for research tools
and prototypes

It could first be possible to optimize the early design
of prototypes, while completely respecting academic
motivations. As soon as some of the characteristics of
spontaneous or emerging academic design are not
specified by the academic context, they should be

7 At least not in a consortium where others would also benefit i.e. if they
would not be able to appropriate returns sufficiently: a traditional public
good dilemma, which exclusive rights can solve.
8 This corresponds indeed completely to other personal experiences that
both of us have acquired in various technology transfer offices and
science-based incubators.

39

specified so as to reduce the future cost of technology
transfer if such an opportunity would occur. This is
especially important when choices made implicitly by
researchers are particularly relevant for commercial
exploitation, such as interoperability and standardization
issues (see above).

We believe that technology transfer offices within
higher education and research institutions should have a
policy about how to contribute in this respect: in any case,
the earlier the better, to the limit that academic
technologies are initially developed voluntarily by
researchers in the context of their research projects
without basically reporting to their host institutions.
However, as soon as funding is sought by and allowed to
research projects that involve prototyping or development
of research tool, it could be easier to ask typically for an
explicit design9.

It would be in the interest of researchers as it could
allow them to attract more interesting and rewarding
research contracts in the future. As a matter of fact,
former research contracts and contacts with private actors
could play a significant role in providing researchers with
information that they do not possess about relevant
characteristics for commercial design, and could
sometimes even result in early research contracts for
which industrial partners would pay to cover the
opportunity costs which correspond to design changes
compared to spontaneous academic design, without
influencing otherwise academic strategies.

Such a method for reducing academic duality is crucial
for software, because design decisions such as
interoperability are of special importance, and because
software technologies need less capital investment to be
developed and are often necessary and expected by peers
to validate research work, which implies that software
prototypes are often developed by researchers in
academic contexts. However, it would clearly apply in
other disciplines too, as soon as they engage in creating
research tools, be they software or not, or in developing
various prototypes.

4.2. Organizing academic duality: dual versioning
and dual licensing

Complementarily to the former way of reducing
academic duality, dual versioning could be a further
method of organizing it and of reducing technology
transfer costs. The basic idea is to allow for the
coexistence of both an academic version and a

9 A very interesting policy in this respect has been implemented by
INRIA, which has a dedicated crew of developers who are assigned to
academic projects on a fixed-term basis but who also remain under the
supervision and depend upon the authority of the technology transfer
office.

commercial version, but to organize this coexistence in an
efficient way: namely, reconciling versioning both in the
economic sense (i.e. segmenting between markets with
different products) and in the software engineering sense
(allowing for different versions properly speaking). A
way to do this is to open-source technology transfer and
to use a double licensing scheme similar to those that are
now been implemented by various open-source vendors10.

The academic version of technology T should be
licensed under a viral license, which almost completely
prevents any commercial use since it implies that any
piece of software incorporating T should be under the
same license, i.e. it would necessarily be open and could
not be integrated with closed proprietary components: this
licensing scheme therefore creates a credible threat, as
soon as it is enforceable, which forces any private entity
willing to sell closed software incorporating T to ask for
another license which would typically include royalties
and similar clauses11. There would therefore coexist an
academic version which could typically be used as a
research tool by any interested researcher in the world,
and commercial versions while private actors would
develop by integrating T with complementary proprietary
module which would typically make T more efficient for
commercial users, a typical such module of course having
for instance to do with efficient user interface.

A corollary is then that to successfully implement this
scheme, rights have necessarily to be centralized i.e.
given to an institution which is able to a) re-license them,
notably to interested commercial partners b) represent a
really credible threat for counterfeiters �– remember that T
is widely accessible in its open-source academic version �–
: the latter is actually done by the FSF for numerous free
software projects as it has been spontaneously granted
rights by many contributors, but the FSF could on the
contrary not involve in the former i.e. re-license any of
these projects because it does not possess all the rights.
As a consequence, the viral license will in this context,
contrary to other dual licensing schemes, not be GPL-like
but rather QPL-like (a license created and used for
technology Qt) or GTPL-like (a license created and used

10 About dual licensing, see e.g. [19, 22]. In shaping our views, we have
also benefited from several discussions during the eScience workshop
held in Oxford on May 2nd 2003, notably with Paul A. David, Rishab A.
Ghosh and Tony Hey, after which [12] has suggested a different dual
licensing scheme for publicly funded research, which would combine the
GPL and a commercial licence, but which we fear would however
unfortunately not be appropriate to academic technology transfers, as it
would not technically speaking comply with the necessary centralization
of rights and would not correspond either to the motivations of academic
scientists for maintenance and for citations.
11 If relevant, exclusive rights could be granted, notably to start-ups, to
allow them to raise private funding and to invest more in the
development of an efficient commercial version, provided of course a
regular assessment is made of the extent of the exploitation they make of
the technology with a return clause if exploitation falls below a given
threshold, as is usually the case now for technology transfer.

40

for grid technology Globus) as both of these licenses have
implemented clauses that guarantee the centralization of
rights, even when rights owners would have filed patents.

However, as soon as there is a crucial and pressing
need to adopt a non-standard license, it might be useful to
account also for several other features of open-source
technology transfers as they have been presented above.
The specifications of a new academic public license
(APL) could then include: (i) A BSD-like clause that
would guarantees that contributors would be explicitly
credited, and would therefore account for the motivations
of scientists in a similar way as the GPL corresponds to
the motivations of independent developers: in the
academic world, these motivations specially have indeed
to do with citations, and committing to credit
contributions would attract more academic contributors;
and (ii) a clause that would clearly specify applicable law
and courts: all projects to which the academic public
license would apply would then point to only one court,
which would help this court to develop appropriate skills
in such new, specialized and delicate matters.

In this last respect, we would like to suggest that
French law could have, in some extent, an interesting and
distinctive feature here, as it does not rely on copyright
but on �‘droits d�’auteur�’: on �‘author rights�’ (authoright?).
Among those rights that authors possess are �“moral
rights�”, which are specifically instituted by law as
completely inalienable, meaning that they cannot be sold
or abandoned, whatever way. As a consequence, granting
all of their �‘other�’ rights to a third party which would
centralize them to re-license them according to a dual
licensing scheme could then be counterbalanced for
developers according to French Law by their retaining of
their moral rights, and therefore by their being able to
forbid exploitation under certain circumstances which
would be strictly contrary to their motivations. This idea
would certainly need further legal inquiries, but if it was
so it would allow to re-implement simply in a dual
licensing context the exact kind of �‘credible commitment�’
mechanism [24] that we had suggested crucial to explain
the success and sustainability of GPL�’d �‘Libre�’ software
[7].

The design of such an academic license would also
have the supplementary benefit of being in line with the
astute suggestion [9] that modularity and standardization
should be developed for technology transfer contracting.
Indeed, the rights of the academic public license itself
could be given to a relevant international institution,
which would have the duty to maintain it in an open-
source way so as to adapt it to new and unexpected events
and situations as they would inevitably occur, and which
would make this institution a good candidate to suggest
generic clauses for the other commercial part of the
licensing scheme we are describing here. And it could
also be granted all the rights of some projects at least, but

in this case several academic and semi-academic
institutions would also have direct incentives to play a
centralizing role for this or that project. By the way, a
commitment from these institutions to use a fair share of
whatever revenues they would get from open-source
technology transfers to finance new and further
developments, and also new research projects, would
certainly play a major role in attracting more projects and
could also be instrumental in implementing a credible
commitment mechanism between academic communities,
their representative institutions, and private actors. These
representative institutions could then easily be
foundations, though higher education institutions could
also directly play this role: on the contrary, it is highly
probable that commercial entities or even consortia
including commercial partners would not be able to
guarantee an appropriate governance structure and a
credible enough commitment to such an organized
versioning �– the risk being that both versions could
converge to a single one to the detriment of the academic
version.

4.3. Organizing academic duality with a
dedicated collaborative platform

Still, this is most probably not enough, as we have
seen that maintenance and governance were specially
relevant issues for open-source software technology
transfer. We would like to suggest that the use of a
dedicated and well-adapted collaborative development
platform could considerably help here, in providing a
joint framework in which all kinds of consortia could
work and be implemented, while at the same time
basically reducing maintenance costs.

First, different partners could maintain different
modules separately. To put it differently, software could
be designed to fit as best as possible with a dual
architecture which could in itself reduce and organize
academic duality: some modules would be academically
maintained, while others would be commercially
maintained. Organizing duality according to such a
division of innovative labor, and shared maintenance,
would indeed correspond well to two different incentive
and motivation systems: one associated with reputation
and peer-review [8], which would focus more on
algorithmic aspects and lower layer issues, and the other
one with profit and the size of the market with a special
emphasis on graphic user interfaces and similar
functionalities [23]. Indeed, contributions to the academic
components could even play a role similar to citations for
academics and these modules would in a sense truly
become software journals.

Such an architecture would obviously reduce
technology transfer costs, and would fit also well with
dual licensing, but organizing correctly such an improved

41

division of innovative labor needs an appropriate
environment: all the more so when there are numerous
partners, and when, as is always the case, perfect dual
architectures do not exist, and there are interdependencies
between modules which imply that teams still have
interactions with each other�’s work, that shared
maintenance extends within modules, therefore
generating transfer costs and potential conflicts, which
only an appropriate governance structure which would
combine authority and leadership with transparency
could help to solve efficiently. Indeed, transparency, i.e.
an easy monitoring of decisions by all relevant parties, is
all the more necessary here as the centralization of rights
reduces the risk of forking, and hence puts less pressure
on the quality of decisions taken by authorities.

A simple way to implement all of this is to host
development on a well-adapted collaborative
development platform, which would also make decisions
both visible and challengeable. Such a platform should be
more distributed that CVS not only to simply make
development more efficient, but also to accommodate
concurrent development by several non-profit and for-
profit entities with different time horizons and workloads.
More, it should be able to implement efficient user right
management, including intellectual property right
management, via an efficient tracking of author
contributions. And it should be able to provide efficient
conflict resolution procedures, notably for the file system.

LibreSource is precisely being designed and developed
as a distributed collaborative development platform to
manage large collaborative academic and industrial
software development projects involving academic and
industrial resources. LibreSource possesses all the
standard tools of a collaborative development platform,
such as a project and user administration module, a Web
interface, a bug tracking system, a forum, a wikki, etc.
LibreSource also allows a high level of integration within
network infrastructures (full compatibility with main
firewalls), user environments (client side applications run
through JavaWebStart), hosting services (Windows and
Linux are supported, and LibreSource is fully based on
J2EE-compliant technologies). In addition, LibreSource
incorporates functionalities of flexible synchronization
�“DataFlow�” using synchronization networks, a workflow
engine �“Bonita�” allowing the implementation of complex
specialised processes, and high-level synchronization and
conflict resolution procedures [18].

5. Conclusion

We have tried to suggest here that, if academic duality
is largely inevitable in technology transfer situations, due
to academic design, therefore contributing to increase
technology transfer costs, it could be reduced and
organized. Combined together, we believe that the

suggestions presented above could integrate into a new
framework which would significantly reduce and
organize academic duality, and which would fit well with
the various observations we have made about open-source
technology transfer situations: about maintenance;
licensing schemes; contracting with commercial partners,
notably to support maintenance costs; market conditions;
academic installed bases; and, last but not least,
modularity and design issues for research tools and
research prototypes. Needless to say, this framework does
not solve all issues, notably those which have to do with
its practical implementation in various market conditions,
and thus with the need for different commercial partners
and for suitable contractual arrangements: all of which
will have to be practically dealt with in every specific
situation by technology transfer office professionals.
Finally, we would like to stress that, as they have been
presented here, these ideas are mainly specific to
software: however, we believe that similar suggestions
could be made in other technology transfer situations, as
for instance for biotech databases and for educational
resources [4].

6. References

[1] Baldwin C.Y., Clark K.B. (1997), Managing in an Age of
Modularity, Harvard Business Review, Sept.-Oct., pp. 84-93.

[2] Dalle J.-M. (2002), Open code : the sources of open-source
innovation, presentation at the NSF Workshop on « Advancing
the Agenda on Open-Source » held in Arlington, VA, January
28th, and to the DRUID Summer Conference on �“Industrial
Dynamics of the New and Old Economy �– who is embracing
whom?�”, Copenhagen-Elsinore, June 6-8.

[3] Dalle J.-M. (2003), Open-Source Technology Transfer,
presented at EPIP2 Conference, Maastricht, The Netherlands,
November 24-25th

[4] Dalle J.-M. (2004), Vers un modèle collaboratif en matière
d�’éducation, forthcoming in a book edited by Fondation pour un
Internet Nouvelle Génération (FING), (In French : Engligh
translation available from the author).

[5] Dalle J.-M, David P.A. (2003), The Allocation of Software
Development Resources in �‘Open Source�’ Production Mode,
SIEPR Policy paper No. 02-027, accessible at
http://siepr.stanford.edu/papers/pdf/02-27.html.

[6] Dalle J.-M., Jullien N. (2000), NT vs. Linux, or some
explorations into the economics of Free Software, in Ballot G.,
Weisbuch G. (eds), Application of simulation to social sciences,
Hermès, Paris, pp. 399-416.

[7] Dalle J.-M., Jullien N. (2003), �‘Libre�’ Software: turning fads
into institutions, Research Policy 32:1-11.

42

[8] Dasgupta P., David P.A. (1994), Towards a new economics
of science, Research Policy 23: 487-521.

[9] David P.A., Spence M. (2003), Towards institutional
infrastructures for e-Science: the scope of the challenge, Final
Report of the Oxford Internet Institute project on �‘The
Institutional Infrastructure of e-Science: The Scope of the
Issues�’.

[10] Feller J., Fitzgerald B. (2002), Understanding Open Source
Software Development, Addison Wesley, Boston, MA, USA.

[11] FLOSS (2002), Final Report, Part IV: Survey of
Developers, International Institute of Infonomics, University of
Maastricht & Berlecon Research GmbH, accessible at
http://www.infonomics.nl/FLOSS/report/Final4.htm.

[12] Ghosh R.A. (2003), Copyleft and dual licensing for
publicly funded software development, Draft version (1.0),
MERIT �– Institute of Infonomics, University of Maastricht.

[13] von Krogh G., Spaeth S. & Lakhani K.R. (2003),
Community, Joining, and Specialization in Open Source
Software Innovation, presented at HBS-MIT Sloan Free/Open
Source Software Conference, June.

[14] Lakhani K., von Hippel E. (2000), How Open Source
software works : �‘free�’ user-to-user assistance, MIT Sloan
School of Management WP #4117.

[15] Langlois R.N. (2002), Modularity in Technology and
Organization, Journal of Economic Behavior and Organization
49:19-37.

[16] Lerner J., Tirole J. (2002), Some simple economics of open
source, Journal of Industrial Economics 50:197-234.

[17] Marzouki M., Greiner A. (1999), Du rôle des financements
publics de recherche dans le développement du Libre. Étude de
cas : la chaîne de CAO Alliance, presentation to the 1rst �‘Autour
du Libre�’ Conference, Brest, January 25-27.

[18] Molli P., Oster G., Skaf-Molli H., Imine A. (2003), Using
the Transformation Approach to Build a Safe and Generic Data
Synchronizer, mimeo.

[19] Muselli L. (2003), Les stratégies de licences libres,
presented at conference �‘Autour du Libre�’, Paris, May.

[20] Raymond E.S. (1999), The Cathedral and the Bazaar,
O�’Reilly.

[21] Rousseau G. (2002), Valorisation des ressources humaines
et logicielles en relation avec les logiciels libres, presented at
the 2nd NME-NEL Workshop, INRIA, Rocquencourt.

[22] Välimäki M. (2003), Dual Licensing in Open Source
Software Industry, Systèmes d´Information et Management, 8.1:
63-75, 2003.

[23] Varian H.R. (1993), Economic Incentives in Software
Design, mimeo.

[24] Williamson O.E. (1996), The mechanisms of governance,
Oxford UP.

