
The ramp-up challenge in open-source software projects

Davor Čubranić
Department of Computer Science
University of British Columbia

201-2366 Main Mall Vancouver, BC Canada V6T 2B9
E-mail: cubranic@cs.ubc.ca

1 Introduction

In a world where, thanks to technology, work is at the
same time becoming globalized and more fragmented, it is
no wonder that software engineering in the age of the Inter-
net should face the same two challenges. This is especially
true in the case of open-source software engineering: an of-
ten extreme example of globalization, open-source develop-
ment teams allow virtually anyone with Internet access to
participate in a project. A team of dozen or so members can
easily be spread across five or six countries and a couple of
continents [6].
On the other hand, the process of globalization results

also in the fragmentation of the development team. Com-
munication in geographically dispersed teams gets increas-
ingly difficult as face-to-face contact becomes rare or im-
possible: it is not uncommon for members of open-source
software projects never to have met their collaborators in
person; similarly, two developers working in North Amer-
ica and Europe might have only an hour of overlap in their
workinghours. As a result, developers have to resort to tech-
nology to bridge both distance and time. Even worse, the
dynamics of OSS development can be very fluid, a sort of
organized chaos: team membership can change overnight,
time commitments vary depending on members’ other obli-
gations (most of the time they hold a regular job or work
on a degree and volunteer on the OSS project), as do their
interests—given the mostly volunteer basis, it is almost im-
possible to make someone do work in which he or she is not
interested.
OSS projects have with time evolved organization that

is particularly suited to operate under such conditions. It
is characterized by pronounced modularity of the system,
where each module is “owned” by at most a few developers.
Owners typically have absolute control over their modules
and the final word on what contributions get accepted (as a
well-known example, Linus Torvalds has veto power over
what goes into the Linux kernel—anything else becomes a
loadable kernel module). This small group of module own-

ers and other most respected and active developers forms
the core of the development team, and typically its mem-
bers are the only ones with write permissions to the code
repository, thus controlling what is “the” system. The core
group changes slowly—unlike the larger pool of contribu-
tors who send in bug reports, enhancement requests, and
code patches—and functions as a sort of meritocracy: fre-
quent and valuable contributors increase in stature until they
become members of the core group; once inside, they’re ex-
pected to remain active or they may risk losing their status
and corresponding privileges.

2 The ramp-up problem

While this type of team organization has proven itself
quite adept at maintaining the control over the development
in the face of ever-changing and often unpredictable circum-
stances, under such conditions it is arguably much more dif-
ficult for an engineer to join a project (and gain understand-
ing of the software system) at an advanced stage. In tradi-
tional software development, new members of the team are
commonly mentored by more experienced colleagues [10].
This support network is largely missing in the case of vir-
tual teams because the communication is more costly and
there are no lightweight channels available for quick infor-
mation exchange. To make the matters even worse, in open
source software development it is less likely that the expe-
rienced programmers will have the time or resources for the
type of one-on-one relationship required when mentoring
new project members [2, 10]. Furthermore, there is far less
incentive to do so, because they hardly be obligated to do so
if they are volunteeringon the project, nor do they feel much
of a bond with somebody they have never met or heard of.
Without the “oral tradition” onwhich to fall back, the two

sources that remain available to an engineer seeking to un-
derstand the software are the code and the documentation.
Documentation, in practice, is notorious for often being out
of date. Attempting to understand a system by reading its
source code is tedious, error-prone, and time-consuming.

1



More importantly, it becomes impractical as the code base
gets large.
Tools that analyze the code to present an engineer with a

view of the system which can aid in the process of program
understanding have been a topic of research for a number of
years now, of course, although they have still not become
widely accepted in practice. What I believe deserves further
consideration, however, is how to complement them by us-
ing another source of information that has been largely over-
looked so far: archived communication among the develop-
ers.

3 Developers’ communication as a documen-
tation artifact

In the course of their work, developers exchange large
amounts of informationwith their peers, and channeling this
information to those who may benefit from it although they
were not the original participants in the conversation is an
attractive proposition.
For example, Miura, Kaiya, and Saeki [9] present a

method for building the structure of specification documents
that used utterances in requirements elicitation meetings.
In their method, analysts develop the specification docu-
ments whose structure reflects the structure of the meeting
activities. The claimed benefits are specification documents
that are more complete, include design rationale, and use
inquiry-answer cycles from the meetings to make the spec-
ification easier to understand. Experiments they conducted
showed that readers using specification documents created
using this method had to jump around the document a lot
less to find the required information than did the readers who
used the originals, although they also cautioned that is pos-
sible that the said structure might be more suitable for new-
comers to the system.
Raison d’Etre [4] system also uses video, but to provide

and organize the informal history and rationale that teams
create and share in the course of theirwork. It is a design his-
tory application that provides access to a database of video
clips containing stories and personal perspectives of team
members. The database is created by recording interviews
with the team members at various times through the course
of the project and then manually dividing and categorizing
them into clips dealing with a single topic. Furthermore,
it also includes transcripts of the video clips, searchable by
keyword and content.
With increasing amounts of communication going

through computer-mediated channels such as email or
discussion groups, developers’ communication becomes
yet another electronic artifact that can be analyzed in a
variety of ways (e.g., Dutoit and Bruegge’s communica-
tion metrics [5] that can be used to gain insight into the
development process and identify potential problems).

Moreover, such computer-mediated communication can
easily be stored on-line and turned into a form of organiza-
tional memory, accessible by developers wanting to know
whether a problem on which they are working—or a related
one—has already been discussed or even solved.
The SAGA project [3], for example, included a system

called Notesfile within its software development environ-
ment, which offered functionality similar to Usenet news:
a distributed, networked collection of notes. Notes were
categorized by topic, and each note in a topic had a title
(subject) and could have an associated sequence of replies.
Notesfile supported “technical discussions, product reviews,
hardware and software bugs and fixes, agendas and min-
utes, grievances, design and specification documents, lists
of work to be done, appointments, news and mail.”
Similarly, Lindstaedt’s GIMME system [7] captured all

mail sent to a specific group alias and adds it to the informa-
tion space accessible via the Internet. GIMME also helped
the group organize, share, and retrieve stored conversations
by automatically categorizing them according to the subject
line and offering retrieval mechanisms that ranged from a
simple reverse chronological listing through free-form text
queries using the Latent Semantic Indexing algorithm to re-
lated message delivery. In addition, users could manually
create, rearrange, or delete categories and reorganize the
mail among the categories, which allowed the memory to
evolve as the application domain’s conventions and vocab-
ulary and group’s understanding of it changed over time.
While this may not sound like much more than a mail-

ing list archiver on steroids, GIMME’s most interesting
appplication—described by Lindstaedt and Schneider in
[8]—is integration with FOCUS, a tool for explanation and
discussion of software prototypes. FOCUS captures pro-
totype demonstrations and explanatory code walkthroughs;
the resulting information hyperstructure of execution paths
through the code, screen recordings and demonstrator’s spo-
ken and typed explanations can be used by other develop-
ers to evaluate and reuse the prototype or its portions. The
audience can also engage in a sort of electronic dialogue
with the demonstrator, and the questions they ask can lead
to better explanations focussed on real issues. GIMME adds
to FOCUS—originally geared to short- and medium-term
collaboration—thestorage, organization, and retrieval capa-
bilities necessary to secure the information over longer pe-
riods of time and grow it into a group memory.

4 Open-source software applications

I believe these kind of approaches to enriching the docu-
mentation and aiding in program understanding can be even
more useful for open source software, where virtually all of
the communication is conducted throughpublic forums such
as newsgroups, mailing lists, and issue tracking systems like

2



Bugzilla. While these forums are already archived most of
the time, finding useful and relevant information in the hun-
dreds of threads and messages is extremely difficult. In my
research, I am looking into methods for timely and useful
presentation of such information for the purpose of aiding
program understanding.

References

[1] M. E. Atwood, B. Burns, D. Gairing, A. Girgensohn, A. Lee,
T. Turner, S. Alteras-Webb, and B. Zimmermann. Facilitat-
ing communication in software development. In Proceed-
ings of DIS’95 Symposium on Designing Interactive Sys-
tems: Processes, Practices, Methods, & Techniques, pages
65–73, Ann Arbor, MI, USA, 1995.

[2] L.M. Berlin. Beyond programunderstanding: A look at pro-
gramming expertise in industry. In Empirical Studies of Pro-
grammers: Fifth Workshop, Papers, pages 6–25, 1993.

[3] R. H. Campbell and P. A. Kirslis. The SAGA project: A sys-
tem for software development. In P. Henderson, editor, Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development En-
vironments, pages 73–80, Pittsburgh, PA, 23–25 Apr. 1984.

[4] J. M. Carroll, S. R. Alpert, J. Karat, M. V. Deusen, andM. B.
Rosson. Raison d’etre: Capturing design history and ra-
tionale in multimedia narratives. In Proceedings of ACM
CHI’94 Conference on Human Factors in Computing Sys-
tems, volume 1, pages 192–197, 1994. Color plates on page
478.

[5] A. H. Dutoit and B. Bruegge. Communication metrics for
software development. IEEE Transactions on Software En-
gineering, 24(8):615–628, Aug. 1998.

[6] R. T. Fielding. Shared leadership in the Apache project.
Communications of the ACM, 42(4):42–43, Apr. 1999.

[7] S. N. Lindstaedt. Towards organizational learning: Growing
group memories in the workplace. In Proceedings of ACM
CHI 96 Conference on Human Factors in Computing Sys-
tems, volume 2 ofDoctoral Consortium, pages53–54, 1996.

[8] S. N. Lindstaedt andK. Schneider. Bridging the gap between
face-to-face communication and long-term collaboration. In
GROUP’97: International Conferenceon SupportingGroup
Work, pages 331–340, 1997.

[9] N. Miura, H. Kaiya, and M. Saeki. Building the structure
of specification documents from utterances of requirements
elicitation meetings. In Proceedings of the 1995 Asia Pa-
cific Software Engineering Conference (APSEC ’95), pages
64–73, Brisbane, Australia, 6–9 Dec. 1995. IEEE Computer
Society Press.

[10] S. E. Sim and R. C. Holt. The ramp-up problem in soft-
ware projects: A case study of how software immigrants nat-
uralize. In Proceedingsof the 20th International Conference
on Software Engineering, pages 361–370,Kyoto, Japan, 19–
25 Apr. 1998. IEEE Computer Society Press / ACM Press.

3


