
Empirical Software Engineering, 9, 197–210, 2004.

# 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Open-Source Change Logs

KAI CHEN kai.chen@vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

STEPHEN R. SCHACH srs@vuse.vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

LIGUO YU liguo.yu@vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

JEFF OFFUTT ofut@ise.gmu.edu

Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030

GILLIAN Z. HELLER gheller@efs.mq.edu.au

Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia

Editor: Audris Mockus

Abstract. A recent editorial in Empirical Software Engineering suggested that open-source software

projects offer a great deal of data that can be used for experimentation. These data not only include

source code, but also artifacts such as defect reports and update logs. A common type of update log that

experimenters may wish to investigate is the ChangeLog, which lists changes and the reasons for which

they were made. ChangeLog files are created to support the development of software rather than for the

needs of researchers, so questions need to be asked about the limitations of using them to support

research. This paper presents evidence that the ChangeLog files provided at three open-source web sites

were incomplete. We examined at least three ChangeLog files for each of three different open-source

software products, namely, GNUJSP, GCC-gþþ, and Jikes. We developed a method for counting

changes that ensures that, as far as possible, each individual ChangeLog entry is treated as a single

change. For each ChangeLog file, we compared the actual changes in the source code to the entries in

the ChangeLog file and discovered significant omissions. For example, using our change-counting

method, only 35 of the 93 changes in version 1.11 of Jikes appear in the ChangeLog file—that is, over

62% of the changes were not recorded there. The percentage of omissions we found ranged from 3.7 to

78.6%. These are significant omissions that should be taken into account when using ChangeLog files

for research. Before using ChangeLog files as a basis for research into the development and

maintenance of open-source software, experimenters should carefully check for omissions and

inaccuracies.

Keywords: Open-source software, change log, GNUJSP, GCC-gþþ, Jikes.

1. Introduction

The success of open-source software is having a growing impact on the software
industry. Many open-source software products, such as Linux (SourceForge, 2002)
and the Apache Web server (Welcome, 2002), now have a significant share of their



respective software markets. Leading software companies, including IBM (2002) and
Sun (JavaOne, 2002), have begun to embrace the open-source model, and are
actively taking part in the development of open-source software products.
Empirical software engineers tend to be enthusiastic about open-source software.

It has traditionally been hard for software engineering researchers to obtain source
code to use as experimental data. Many software companies believe that the
company will lose some of its competitive advantage if it were to divulge information
about the software development process used by that company, let alone the source
code itself. Software companies use intellectual property laws to keep their source
code secret; only the binary code is typically sold in the marketplace. Software
companies provide information publicly about their software almost exclusively for
the purpose of boosting sales, whereas the data needed for software engineering
research are kept strictly private. And even when companies are willing to give data
to researchers, the data provided are almost always out of date. In addition,
companies often impose restrictive stipulations on what can or cannot be done with
the data. Also, some software companies are concerned that letting outsiders know
that they find and fix software faults will cause customers to have less confidence in
their products.
The appearance of open-source software is changing all of these factors. A recent

editorial in Empirical Software Engineering stated (Harrison, 2001):

As empirical software engineers, we should embrace this development [open-
source software]. Suddenly one of the greatest obstacles in the way of empirical
software engineering has been cleared! Not only is source code available, but also
defect reports, update logs, etc. For a change, we can now focus on the analysis
rather than the data collection.

As empirical software engineers, we found this suggestion intriguing and hope
to use open-source software artifacts in our research. However, it has to be noted
that open source software artifacts are not created for the benefits of researchers,
but to support the software development process. Thus we started by asking the
question: ‘‘How useful are the data for research purposes?’’ Of course, this is a
multi-faceted question that could be answered in terms of any of the available
artifacts. One of the easiest types of artifacts to study is that of ‘‘update logs,’’
thus we chose to start there. Update logs happen to come in several forms, most
commonly CVS log entries and change log files. Programmers tend to deposit files
into CVS after making large numbers of changes (dozens and sometimes even
hundreds) and comments are often rather sparse. To get a complete picture of the
changes, an investigator would need to undertake a detailed study of the
differences between the two versions of the source code. Change log files, on the
other hand, are typically used to document changes at a more detailed level,
including reasons why the changes were made. Thus, we believed that investigators
are likely to focus on change-log files as being easier to process, particularly in
terms of obtaining semantic information, and we decided to begin our
investigation there.

198 CHEN ET AL.



The ChangeLog is a file in which software engineers can record detailed
information about changes to the software. Not every open-source project maintains
a ChangeLog file, but it is available at some open-source software web sites.
However, we were concerned about the accuracy of ChangeLog records.
Specifically, we wished to determine whether the records in a ChangeLog file are
complete and correct enough to be used as a basis for research into open-source
software.
To evaluate this question, we decided to study specific open-source software

products. We selected the ChangeLog files of three open-source software products,
GNUJSP (2002), GCC-gþþ (GCC Home Page, 2002), and Jikes (IBM, 2002). For
each product, we examined the ChangeLog files appertaining to at least three
versions, and checked the actual changes in the source code itself against the entries
in each ChangeLog file. Section 2 discusses change logs. There are many ways to
count and evaluate changes, so the method we used is described in detail in Section 3.
Sections 4, 5, and 6, respectively, describe the ChangeLog files for GNUJSP, GCC-
gþþ, and Jikes that we analyzed. Our conclusions appear in Section 7.

2. Change Logs

A change log is a file in which software engineers can record changes between
consecutive versions of a software product. Change logs are useful for both
development and maintenance. The GNU coding standards (2002) give the following
explanation for why we need change logs:

You can think of the change log as a conceptual ‘‘undo list’’ which explains how
earlier versions were different from the current version. People can see the current
version; they don’t need the change log to tell them what is in it. What they want
from a change log is a clear explanation of how the earlier version differed.

A change log is a maintenance record over the life of the software product. A good
change log includes every change without exception, detailed information about the
reason for making each change, the location at which the change was made, the
name of the person who made the change, contact information for that person, and
the date on which that change was made. From the viewpoint of empirical software
engineering, a complete and correct change log can be a valuable source of data for
research on software maintenance.
The Free Software Foundation’s GNU project gives clear requirements for the

change log, including stylistic standards, as one component of the overall software
documentation. The GNU project also explicitly states why it is important to have
good change logs (GNU Coding Standards, 2002):

Keep a change log to describe all the changes made to program source files. The
purpose of this is so that people investigating bugs in the future will know about
the changes that might have introduced the bug. Often a new bug can be found by

OPEN-SOURCE CHANGE LOGS 199



looking at what was recently changed. More importantly, change logs can help
you eliminate conceptual inconsistencies between different parts of a program, by
giving you a history of how the conflicting concepts arose and who they came
from.

Open-source software projects provide a wide variety of resources from which
information regarding changes can be deduced. The most obvious is the source code
itself. Tools like diff can determine precisely what changes were made between one
version and the next. This kind of information can also be obtained from version
control tools such as CVS (Domain Home Page, 2002; Mockus et al., 2000, 2002).
CVS relies on diff but records multiple changes that are grouped and allows
annotations to be entered about the changes. However, unless every change has been
annotated, it is often hard to discern the reason for a change. Furthermore, multiple
changes are often checked into CVS at the same time and it can be hard to decide if
they represent one or several changes. Mailing list archives could contain that
information, as could fault tracking tools such as Bugzilla (2002) and GNATS
(2002), but it is hard to extract the information and even harder to relate the
comments to changes in the source code. When using diff, we treated changes that
appeared to have a close relationship with each other as a single change. Although
this is somewhat subjective, our belief is that it is less error-prone than solely relying
on CVS.
If there is a change log, however, then there is no need to laboriously attempt to

deduce what changes were made and the reason for each change; that is precisely the
information that is recorded in a change log. A number of open-source web sites
maintain a change log in a file called ChangeLog, which is thus an appealing source
of information for researchers who are investigating changes. For this reason, we
considered it important to investigate the completeness of ChangeLog files.

3. Method

There are many ways to evaluate ChangeLog entries. We decided to compare actual
differences in the source code with entries in the ChangeLog file. We used lxr, the
Linux cross-referencing tool (SourceForge, 2002), to determine the precise
differences between two successive software versions. We then compared these
differences with the records in the ChangeLog file to check the completeness of the
ChangeLog file. Although some subjectivity is inevitable, we tried to limit this
subjectivity as much as possible, as discussed below.
Descriptive statistics of three open-source software products, GNUJSP (2002),

GCC-gþþ (GCC Home Page, 2002), and Jikes (IBM, 2002), are shown in Table 1.
Although GNUJSP and GCC-gþþ are both GNU products, the former is small
whereas the latter is medium-sized. Jikes is another medium-sized open-source
product, which is supported by IBM. Also, GNUJSP is written in Java, GCC-gþþ is
written in C, whereas Jikes is written in Cþþ. These products were chosen to be
diverse in terms of size and language. We were not able to consider other attributes

200 CHEN ET AL.



such as number of contributors, age of the product, and amount of external support
for the project in this study.
We categorized each change between successive versions as a corrective change, an

enhancement (Schach, 2002), a code rearrangement, or a comments change. A
corrective change is intended to fix a fault in the source code. Enhancement includes
changes to improve the effectiveness of the product (including new features and
efficiency) and to adapt the product for a different operating environment. A code
rearrangement change modifies the sequence of the source code statements with no
change in functionality (as judged by the evaluator). Any type of change to a
comment, including a correction, was classified as a comments change.
In order to measure the completeness of the ChangeLog data, we checked

whether or not each change in the source code was recorded in the ChangeLog file.
We categorized each change and computed the percentage of omissions in each
category. Also, the total number of changes in the source code and total number of
changes in the ChangeLog file were computed to give an overall picture of the
completeness of the ChangeLog file in question.
Counting the number of changes was not always straightforward. The changes fell

into two groups, namely, changes for which there was an entry in the ChangeLog

file, and changes that we discovered by applying lxr to the source code itself. This
presented two kinds of difficulties. The first was detecting changes in ChangeLog

files and the second was detecting changes from differences in versions (lxr).
Whereas using the lxr diffs (or alternatively CVS logs) can ensure that every
change was detected, the comments in CVS often do not provide enough information
to analyze. In general, each entry in the ChangeLog file was treated as a single
change. Sometimes, however, a single ChangeLog entry appeared to correspond to
more than one change. For example, item 35 in the ChangeLog file for GCC–gþþ
version 3.01 reads:

‘‘35* class.c (dfs_accumulate_vtbl_inits): Just point to the

base we’re sharing a ctor vtable with. Merge code for cases 1

and 2.

(binfo_ctor_vtable): New fn.

(build_vtt_inits, dfs_build_secondary_vptr_vtt_inits):

Use it’’

After carefully studying the source code, we concluded that this constituted three
separate changes.

Table 1. Summary of projects investigated.

Name Language Size Description

GNUJSP Java Small Implementation of Sun’s Java Server pages

GCC-gþþ C Medium Compiler for Cþþ
Jikes Cþþ Medium A Java compiler that supports dependency analysis for

incremental builds

OPEN-SOURCE CHANGE LOGS 201



Another, almost opposing issue is when multiple entries are made to solve one
problem or introduce one feature. Whereas it would be possible to try to categorize
these as one ‘‘transaction-level’’ change, it is often impossible to discern the
difference between multiple changes logged at the same time from a single change
with multiple parts without being fully cognizant of the programmer’s thinking and
intent.
Where there was neither a ChangeLog entry nor any comments in the source

code to explain why a change was made, we again studied the source code. Changes
that appeared to have a close relationship with each other were treated as a single
change.
There are other ways of counting changes, such as the number of changed files, the

number of CVS check-ins, or the number of CVS modifications to individual files.
The goal of our work was to count omissions in change logs, so we designed a
counting mechanism that, as far as possible, would allow us to treat each change-log
entry as a single change, thereby simplifying the counting process. In contrast, had
we decided to count, say, the number of changed files, we would have had to study
each change-log entry in detail to determine which files were referenced in that
change log, and then decide whether each such reference was made within the
context of change.
In a further effort to control subjectivity, we performed each classification twice

and computed the cross-rater reliability. Two different researchers (from the
authors, Chen and Yu) independently categorized each set of changes. The
evaluations were compared using Cohen’s Kappa test (Cohen, 1960). Cohen’s
Kappa coefficient k (Cohen, 1960) is an index of cross-rater reliability. That is, k is a
measure of the extent to which two raters agree. Let PO denote the proportion of
ratings on which the two raters agree, and Pe denote extent of agreement expected by
chance, that is, the expected proportion of ratings that agree, assuming the raters are
statistically independent. Then k is defined as

k ¼ PO � Pe

1� Pe

That is, k is the ratio of the observed excess over chance agreement to the maximum
possible excess over chance agreement. We used the Kappa threshold values
computed by El Emam (1998); these values appear in Table 2.

Table 2. Threshold values for Cohen’s

Kappa statistic (El Emam, 1998).

Kappa value Strength of agreement

< 0.45 Poor (bottom 25%)

0.45–0.62 Moderate (bottom 50%)

0.63–0.78 Substantial (top 50%)

> 0.78 Excellent (top 25%)

202 CHEN ET AL.



4. Change Log for GNUJSP

GNUJSP is distributed under the terms of the GNU General Public License (2001).
It is a free implementation of Sun’s Java Server Pages. At the time our research
was conducted, the home page of GNUJSP contained 13 versions of the source
code. The earliest version on the web was 0.9.0, which was published on August 27,
1998. The latest version we found on the web was 1.0.1, which was published on
October 5, 2000. Most of the source code is written in Java. To simplify the
analysis, only .java source code files were considered. There are four .java files
in version 0.9.0, totaling 938 lines of source code. The results of our analysis on
four versions are shown in Table 3. The columns each refer to a new version of
GNUJSP, for example, the first column represents changes from version 0.9.1 to
0.9.2. Only one change was recorded between versions 0.9.2 and 0.9.3, so these data
were omitted.
The number of changes in each separate category is relatively small, so we discuss

only the overall percentage of changes. In version 0.9.2, 11 of the 14 changes (78.6%)
were omitted. In version 0.9.4, however, only 1 of the 13 changes (7.7%) was omitted
from the ChangeLog file. Versions 0.9.5 and 0.9.6 have omission rates of 3 out of 9
(33.3%) and 6 out of 31 (19.4%), respectively. Overall, 31.3% of the changes (21 out
of 67) were omitted from the GNUJSP ChangeLog files.
Two different evaluators categorized the changes separately and the result is

shown in Table 4. The Kappa value is 0.91 for GNUJSP. As shown in Table 2, this
means that the strength of the agreement is considered excellent.

Table 3. Change-log analysis for GNUJSP.

Weighted

mean

Version investigated 0.9.2 0.9.4 0.9.5 0.9.6

Previous version 0.9.1 0.9.3 0.9.4 0.9.5

No. of changes in the source code 14 13 9 31

No. of changes in the change log 3 12 6 25

Overall percentage of change omissions 78.6% 7.7% 33.3% 19.4% 31.3%

No. of corrective changes in the source code 2 1 7 7

No. of corrective changes in the change log 0 1 5 2

Percentage of corrective change omissions 100.0% 0.0% 28.6% 71.4% 52.9%

No. of enhancement changes in the source code 4 12 1 14

No. of enhancement changes in the change log 3 11 0 14

Percentage of enhancement change omissions 25.0% 8.3% 100.0% 0.0% 9.7%

No. of code rearrangements in the source code 4 0 0 5

No. of code rearrangements in the change log 0 0 0 4

Percentage of code rearrangement omissions 100.0% — — 20.0% 55.6%

No. of comments changes in the source code 4 0 1 5

No. of comments changes in the change log 0 0 1 5

Percentage of comments change omissions 100.0% — 0.0% 0.0% 40.0%

No. of comments that cannot be located 1 0 1 2

OPEN-SOURCE CHANGE LOGS 203



5. Change Log for GCC-gþþ

GCC is one of the most successful GNU projects. The term ‘‘GCC’’ was initially an
acronym for ‘‘GNU C Compiler.’’ After its success as a compiler for C, GCC was
extended to other languages, including Cþþ, Objective C, Fortran, Java, and Ada.
The meaning of GCC was then changed to ‘‘GNU Compiler Collection.’’ GCC-gþþ
is the compiler for Cþþ in that collection. On the GNUWeb site (GCC-gþþ Source
Code, 2002), we found the source code for 10 versions of GCC-gþþ, from version
2.95 (July 13, 1999) through version 3.1 (May 15, 2002). Most of the source code was
written in C so, for simplicity, we analyzed only the C source files in the GCC
directory. Also, we did not examine the other directory, libstdcþþ-v3, which contains
the GNU Standard Cþþ Library. In version 3.0, there are 36 C source code files in
the GCC directory, including both .c and .h files, totaling 97,333 lines of code.
The results of our analysis are shown in Table 5. Overall, only 10.8% of the

changes (10 out of 93) were omitted from the ChangeLog file. The percentage of
omissions decreased from 11.6% for version 3.01 to only 3.7% for version 3.03.
(Similarly, we also observed an improvement with time in the Jikes project, as
described in the next section.)
As before, two different evaluators categorized the changes independently and the

result is shown in Table 6. The Kappa value is 0.86; again, the strength of agreement
is excellent.

6. Change Log for Jikes

Jikes, an IBM-supported open-source software product, is a command-line compiler
for Java, available under IBM’s Public License (developerWorks, undated). The
strength of Jikes over its peers is its ability to perform dependency analysis, thereby
supporting incremental builds within Java source code. We examined changes to the
source code but not to non-source files such as configuration and make files. To
ensure that the data are comparable, we considered ChangeLog entries relating to
only the source code as well.
Most of the source code is written in Cþþ. At the time we performed this

research, the source code for 15 versions of Jikes (versions 1.1 through 1.15) could be

Table 4. Cross-rater reliability analysis for GNUJSP.

Evaluator 1

Evaluator 2 Corrective Enhancement Rearrangement Comment Total

Corrective 16 1 0 1 18

Enhancement 1 30 1 0 32

Rearrangement 0 0 8 0 8

Comment 0 0 0 9 9

Total 17 31 9 10 67

204 CHEN ET AL.



downloaded from the Jikes homepage (IBM, 2002). The first version was published
on January 25, 2001, and the latest version on May 5, 2001. In version 1.10, there are
74 Cþþ source code files. This figure includes both .cpp and .h files, totaling
92,233 lines of code (as counted by lxr).
The results of our analysis are shown in Table 7. As previously mentioned, the

number of omissions decreased with time, from 62.4% in version 1.11 to 11.0% in
version 1.15. Overall, the omission percentage was 24.5% (176 out of 719) for the
three versions we examined. With regard to the four types of changes we measured,
the percentage of comments changes that were omitted was 86.8% for version 1.11
(33 out of 38), 93.6% for version 1.13 (73 out of 78), but only 10.2% (15 out of 147)
for version 1.15. One hundred percent of the code rearrangement changes were

Table 6. Cross-rater reliability analysis for GCC-gþþ.

Evaluator 1

Evaluator 2 Corrective Enhancement Rearrangement Comment Total

Corrective 53 4 1 2 60

Enhancement 0 23 0 0 23

Rearrangement 0 0 3 0 3

Comment 0 0 0 7 7

Total 53 27 4 9 93

Table 5. Change-log analysis for GCC-gþþ.

Weighted mean

Version investigated 3.01 3.02 3.03

Previous version 3.0 3.01 3.02

No. of changes in the source code 43 23 27

No. of changes in the change log 38 19 26

Overall percentage of change omissions 11.6% 17.4% 3.7% 10.8%

No. of corrective changes in the source code 25 14 14

No. of corrective changes in the change log 22 13 14

Percentage of corrective change omissions 12.0% 7.1% 0.0% 7.5%

No. of enhancement changes in the source code 11 6 10

No. of enhancement changes in the change log 10 5 10

Percentage of enhancement change omissions 9.1% 16.7% 0.0% 7.4%

No. of code rearrangements in the source code 3 1 0

No. of code rearrangements in the change log 3 1 0

Percentage of code rearrangement omissions 0.0% 0.0% — 0.0%

No. of comments changes in the source code 4 2 3

No. of comments changes in the change log 3 0 2

Percentage of comments change omissions 25.0% 100.0% 33.3% 44.4%

No. of comments that cannot be located 2 2 0

OPEN-SOURCE CHANGE LOGS 205



overlooked in versions 1.11 and 1.15, but the numbers of such changes were
relatively small (one and nine, respectively).
As before, two different evaluators categorized the changes independently. The

result is shown in Table 8. The Kappa value is 0.88; once more this reflects, as shown
in Table 2, that the agreement between the evaluators is excellent.

7. Analysis and Conclusions

This paper has made two contributions. The first is a methodology to extract, count,
and classify changes from ChangeLog files and released versions. The second is the
presentation of data that show that ChangeLog files are incomplete for research
purposes.

Table 7. Change-log analysis for Jikes.

Weighted mean

Version investigated 1.11 1.13 1.15

Previous version 1.10 1.12 1.14

No. of changes in the source code 93 281 345

No. of changes in the change log 35 201 307

Overall percentage of change omissions 62.4% 28.5 11.0% 24.5%

No. of corrective changes in the source code 27 30 67

No. of corrective changes in the change log 14 28 63

Percentage of corrective change omissions 48.1% 6.7% 6.0% 15.3%

No. of enhancement changes in the source code 27 171 122

No. of enhancement changes in the change log 16 167 112

Percentage of enhancement change omissions 40.7% 2.3% 8.2% 7.8%

No. of code rearrangements in the source code 1 2 9

No. of code rearrangements in the change log 0 1 0

Percentage of code rearrangement omissions 100.0% 50.0% 100.0% 91.7%

No. of comments changes in the source code 38 78 147

No. of comments changes in the change log 5 5 132

Percentage of comments change omissions 86.8 93.6 10.2% 46.0%

No. of comments that cannot be located 1 5 10

Table 8. Cross-rater reliability analysis for Jikes.

Evaluator 1

Evaluator 2 Corrective Enhancement Rearrangement Comment Total

Corrective 99 24 1 0 124

Enhancement 22 293 0 0 315

Rearrangement 2 1 11 0 14

Comment 1 2 0 263 266

Total 124 320 12 263 719

206 CHEN ET AL.



Using our methodology, we detected omission percentages of between 3.7%
(version 3.03 of GCC-gþþ) and 78.6% (version 0.9.2 of GNUJSP) in the
ChangeLog files we examined. Averaging the overall weighted means (i.e., the
numbers in the last column of the fifth row of Tables 3, 5, and 7), we found that the
overall average percentage omission was 22.2%. Even the lowest figure of 3.7% can
introduce errors into empirical studies, and 22.2% is at least disturbing for an
average percentage error.
In addition to checking the completeness of the ChangeLog files, we also checked

the correctness of each ChangeLog entry. It was our determination that almost all
the entries were correct, although correctness may not be good enough if the data are
not complete. At the very least, the researchers must be aware of the limitation.
It should be noted that ChangeLog files (and other open source artifacts) were

not created for research purposes, but rather to support software development by
easing tasks like maintenance and testing. It could certainly be argued that it is not
fair for researchers to expect so much. It is undoubtedly true that, if investigators
want to use ChangeLog files for experimental purposes, they must be extremely
careful because of the incompleteness.
Our data are based on three open-source software products, thus the question of

whether they are ‘‘typical’’ of open-source products is a threat to external validity.
Although we are not aware of any way to determine whether an open-source product
is typical, we have no reason to expect these products to be atypical. However, if this
threat introduces a bias, it would be in the positive direction, i.e., we could have just
happened to have stumbled across ChangeLog files that are better than others. The
somewhat negative nature of our results indicating that ChangeLog files are not
always complete serve as an existence ‘‘proof’’ that incomplete ChangeLog files
exist, therefore the threat to external validity is reduced.
Based on our data, we suggest that before a log can be used as a basis for

research, either it should be shown that the log in question is complete and correct,
or it should be augmented with more complete sources of data such as CVS logs. In
the case of a ChangeLog file, the only way to do this is by downloading the
corresponding source code (or examining the version control files, if available) and
checking that every change appears in the ChangeLog file and is correctly
described. In the light of the large variability we observed in omission percentages
from version to version within each project, this check has to be done for the
ChangeLog file of every version of a given product. In view of this problem,
particularly when coupled with the fact that complete data can be deduced from
other sources of information (source code or version control files), it is our opinion
that using the ChangeLog files alone can introduce internal threats to the validity
of many experiments.
The omission percentages presented in this paper were computed using our

change-counting method, as presented in Section 3. Other change-counting methods
are possible (for example, the number of files changed) and generally result in
different values for the omission percentage. For example, suppose that, using our
change-counting method, the omission percentage for the change log for a specific
version of an open-source product is 56%. Suppose further that 40 files are changed,

OPEN-SOURCE CHANGE LOGS 207



but only 12 of them are referenced in the change log within the context of change.
Had we used the number of files changed as the change-counting method instead, the
omission percentage would have been 70%.
However, even though the value of the omission percentage varies depending on

the change-counting method used, our conclusions are not restricted to our own
change-counting method. On the contrary, our conclusions hold for any change-
counting method that reflects omissions in change logs.
This work examined the ChangeLog files of only three products. On the one

hand, the data were sufficient for showing that there are substantial omissions in
many ChangeLog files. On the other hand, the sample size is probably too small to
be able to make any sort of generalization regarding ChangeLog files. In particular,
it would be premature to put forward a mechanism to explain why the older GCC-
gþþ ChangeLog files exhibit fewer omissions than those of the other two products.
However, we are currently examining other open-source products. With a larger
sample, we will be able to put forward hypotheses to explain what we have observed,
and then test those hypotheses statistically.
The field of open-source software is still developing. Although ChangeLog files

may well serve the purposes for which they are intended (supporting software
development), researchers need to take great care when using them. If the results of
their experimentation depend on the ChangeLog files being complete, their results
may be called in question.

Acknowledgments

This work was sponsored in part by the National Science Foundation under grant
number CCR-0097056.

References

Bugzilla Project Home Page. October 2, 2002. www.mozilla.org/projects/bugzilla.

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educ. Psych. Meas. 20: 37–46.

developerWorks Open Source. [undated]. oss.software.ibm.com/developerworks/oss/license10.html.

Domain Home Page. 2002. www.cvshome.org.

El Emam, K. 1998. Benchmarking Kappa for Software Process Assessment Reliability Studies.

International Software Engineering Research Network Technical Report ISERN-98–02.

GCC Home Page—GNU Project—Free Software Foundation (FSF). May 29, 2002. www.gnu.org/

software/gcc.

(GCC-gþþ Source Code). May 15, 2002. ftp://ftp.gnu.org/pub/gnu/gcc.

GNATS—GNU Project—Free Software Foundation (FSF). November 9, 2002. www.gnu.org/software/

gnats.

GNU Coding Standards—Table of Contents—GNU Project—Free Software Foundation (FSF). May 31,

2002. http://www.gnu.org/prep/standards_toc.html.

GNU General Public License Home Page—GNU Project—Free Software Foundation (FSF). July 15,

2001. www.gnu.org/licenses/gpl.html.

GNUJSP—A free Java Server Pages implementation. February 21, 2002. www.klomp.org/gnujsp.

208 CHEN ET AL.



Harrison, W. 2001. Editorial: Open source and empirical software engineering. Empirical Software

Engineering 6(3): 193–194.

IBM—developerWorks—Open Source Software – Jikes’ Home. April 21, 2002. oss.software.ibm.com/

developerworks/opensource/jikes.

JavaOne: Sun wades into open-source waters with Java. March 26, 2002. Infoworld, www.infoworld.com/

articles/hn/xml/02/03/26/020326hnjavasource.xml.

Mockus, A., Fielding, R. T., and Herbsleb, J. 2000. A case study of open source software development:

The Apache server. Proc. International Conf. on Software Engineering, pp. 263–272.

Mockus, A., Fielding, R. T., and Herbsleb, J. 2002. Two case studies of open source software

development: Apache and Mozilla. ACM Trans. on Software Engineering and Methodology 11: 309–346.

Schach, S. R. 2002. Object-Oriented and Classical Software Engineering, 5th edition. Boston MA: WCB/

McGraw-Hill.

SourceForge: Project Info—LXR Cross Referencer. 2002. sourceforge.net/projects/lxr.

Welcome!—The Apache Software Foundation. 2002. www.apache.org.

Kai Chen is a Ph.D. student in the Department of Electrical Engineering and Computer Science at

Vanderbilt University. He received his MS in Computer Science from Vanderbilt University. His current

research includes maintenance and development of open-source software, formal methods, modeling

language design, hybrid embedded system design, model verification and model-based integration of

embedded software.

Liguo Yu is a Ph.D. student in the Department of Electrical Engineering and Computer Science at

Vanderbilt University. His research topic concentrates on the maintainability of the Linux kernel and

open-source software development. Before working on Software Engineering, his research focused on

modeling and system identification, and fault detection and isolation of hybrid systems.

OPEN-SOURCE CHANGE LOGS 209



Stephen R. Schach is an Associate Professor in the Department of Electrical Engineering and Computer

Science at Vanderbilt University in Nashville, Tennessee. Steve is the author of over 115 refereed

publications. He has written 10 software engineering textbooks, including Object-Oriented and Classical

Software Engineering, Sixth Edition, published by WCB/McGraw-Hill in 2004. He consults internationally

on software engineering topics. Steve’s current research interests are empirical software engineering,

software maintenance, and open-source software engineering. He obtained his Ph.D. from the University

of Cape Town in South Africa.

Jeff Offutt is an Associate Professor of Information and Software Engineering at George Mason

University and holds part-time visiting positions at NIST and Skövde University. Jeff’s current research

interests include software testing, analysis and testing of web applications, software maintenance and

object-oriented program analysis. He has published over eighty refereed papers. Jeff was program chair for

ICECCS 2001 and is on the editorial boards for the IEEE Transactions on Software Engineering, the

Journal of Software Testing, Verification and Reliability, the Journal of Software and Systems Modeling and

the Software Quality Journal. Jeff’s Ph.D. is from the Georgia Institute of Technology. He previously held

a faculty position in the Department of Computer Science at Clemson University.

Gillian Z. Heller is an Associate Professor in the Department of Statistics at Macquarie University,

Sydney, Australia, where she has been for the last 10 years. Her B.Sc. (Hons) and Ph.D. degrees are in

Mathematical Statistics, from the University of Cape Town, South Africa, and her M.Sc. in Operations

Research is from the University of South Africa. Gillian’s research interests are in discrete distribution

theory, with applications in biostatistics.

210 CHEN ET AL.


