

Implicit theories of “good leadership” in
the open-source community

version 0.1.7

Master Thesis in Economy and Business Administration

By Gianluca Bosco

Department of Manufacturing, Engineering and Management
Technical University of Denmark
Supervised by Assistant Professor Kasper Edwards
Kgs. Lyngby
May 2004

Implicit theories of “good leadership” in the open-source community

- 2 -

Implicit theories of “good leadership” in the open-source community

Master Thesis in Economy and Business Administration

May 2004

This Master Thesis has been developed by Gianluca Bosco while hosted as a guest student by the

Technical University of Denmark at the Department of Manufacturing, Engineering and

Management.

Any comments or additional information regarding this paper are welcome. The raw data collected

for this thesis is available on request to anyone interested in performing further analysis. If you

think this paper is interesting or you plan to use it as a reference, I would be very happy to know

about that.

© Copyright, 2004 Gianluca Bosco

email address: g.bosco@bitache.net

website: http://www.bitache.net/gbosco

Keywords: Free Software; Open Source Software; Leadership; Implicit Theories;

Implicit theories of “good leadership” in the open-source community

- 3 -

Acknowledgments

I would like to thank Kasper Edwards for inviting me at the Denmark Technical University and

supporting me in pursuing my ideas concerning this thesis. Without his help and guidance, this

work would not have been possible.

My appreciation goes to Poul-Henning Kamp of the FreeBSD project, and Kenneth Rohde

Christiansen of the GNOME project, for kindly introducing me to the topic of leadership in the

open-source environment.

I would like to thank all the open-source developers who accepted to participate in the

questionnaires set up for this thesis, and for the interest they have shown.

A great “thank you” goes to my family, for fulfilling all my wishes.

At last but not least, I thank Anja, to whom I am mostly indebt. I will never forget the hours she

spent keeping me company during the writing of this thesis.

Implicit theories of “good leadership” in the open-source community

- 4 -

Dedicated to my grandparents Lia and Bruno.

Implicit theories of “good leadership” in the open-source community

- 5 -

Table of Contents

ACKNOWLEDGMENTS.. 3
INTRODUCTION .. 7
PART I: EXISTING KNOWLEDGE ... 8
1 BRIEF OVERVIEW ON OPEN-SOURCE SOFTWARE .. 9

1.1 WHAT IS “OPEN-SOURCE” SOFTWARE? ... 9
1.2 THE SIZE OF THE OPEN-SOURCE PHENOMENON ... 11
1.3 WHO PRODUCES THE SOFTWARE AND HOW?... 11
1.4 WHY INDIVIDUALS ENGAGE IN OPEN-SOURCE SOFTWARE DEVELOPMENT? .. 13
1.5 PROJECT OWNERS AS PROJECT LEADERS IN THE OPEN-SOURCE COMMUNITY .. 15
1.6 MAINTAINERS AS SECONDARY PROJECT LEADERS .. 16
1.7 PROJECT LEADER’S TASKS.. 17
1.8 SHARED LEADERSHIP IN THE OPEN-SOURCE COMMUNITY... 19

2 APPROACHING THE CONCEPT OF “GOOD LEADERSHIP” IN THE OPEN-SOURCE
COMMUNITY.. 21

2.1 THE MANY DEFINITIONS AND PERSPECTIVES ON LEADERSHIP... 21
2.2 LEADERSHIP IS IN THE EYES OF THE BEHOLDER .. 21
2.3 FOLLOWERS OF A LEADER OR LEADER OF THE FOLLOWERS? AN EGG-CHICKEN PROBLEM.............................. 22
2.4 DO LEADERS EXIST INTO THOSE COMMUNITIES OF VOLUNTEERS? .. 24
2.5 WHY IS IT IMPORTANT TO KNOW WHAT A “GOOD PROJECT LEADER” IS? .. 25
2.6 A THEORY FOR UNDERSTANDING PERCEPTIONS OF “GOOD LEADERSHIP”: TRAITS AND BEHAVIORS................ 26

3 COGNITIVE CATEGORIZATION AND LEADERSHIP PERCEPTIONS ... 28
3.1 OVERCOMING MEMORY LIMITATIONS THROUGH KNOWLEDGE STRUCTURES .. 28
3.2 PERSON CATEGORIZATION.. 28
3.3 CATEGORIZATION OCCURS THROUGH PROTOTYPES.. 30
3.4 PRINCIPLES GOVERNING THE CREATION OF PROTOTYPES ... 31
3.5 THE FUZZY NATURE OF PROTOTYPES.. 31
3.6 EFFECTS OF ATTRIBUTES PROTOTYPICALITY ON ITEMS RECALL ORDER .. 32
3.7 THE THEORY OF LEADERSHIP PERCEPTION (1982) .. 33
3.8 RELATION BETWEEN PERSONALITY TRAITS AND OBSERVED BEHAVIORS .. 35
3.9 INFERENTIAL PROCESSES AND LEADERSHIP PERCEPTIONS .. 36
3.10 RECONSTRUCTIVE MODELS OF LEADERSHIP PROTOTYPES (2001) ... 37
3.11 CONTEXTUAL CONSTRAINTS ON PROTOTYPE GENERATION... 38
3.12 EXTERNAL CONSTRAINTS: CULTURE, TASK, LEADER QUALITIES... 38
3.13 INTERNAL CONSTRAINTS: AFFECT, SELF-SCHEMAS AND LEVEL OF IDENTIFICATION 39

PART II: RESEARCH OBJECTIVE AND ANALYSIS .. 41
4 RESEARCH OBJECTIVE AND STRUCTURE ... 42

4.1 PRELIMINARY INTERVIEWS BEHIND THE DEFINITION OF THE RESEARCH OBJECTIVE 42
4.2 RESEARCH OBJECTIVE .. 42
4.3 THEORETICAL MODEL... 43
4.4 RESEARCH STRUCTURE... 43

5 IDENTIFICATION OF THE PROTOTYPE CONTENT .. 44
5.1 WHAT IS A “PROTOTYPE CONTENT”? .. 44
5.2 METHOD USED TO DETERMINE THE PROTOTYPE CONTENT.. 44
5.3 LAUNCHING THE QUESTIONNAIRE .. 44
5.4 CLASSIFICATION OF THE COLLECTED ITEMS ... 45
5.5 RESULTS OF THE CLASSIFICATION PROCESS.. 47

6 IDENTIFICATION OF THE PROTOTYPE STRUCTURE ... 49
6.1 WHAT IS A “PROTOTYPE STRUCTURE” AND WHY IS IT WORTH INVESTIGATING? ... 49
6.2 THE PRINCIPLE BEHIND THE RATING-BASED QUESTIONNAIRE... 50
6.3 LEADERS’ CLASSIFICATION ACCORDINGLY TO THE RESPONDENTS’ LEVEL OF SATISFACTION......................... 50
6.4 SELECTING THE ATTRIBUTES AND BEHAVIORS TO BUILD THE QUESTIONNAIRE... 51

Implicit theories of “good leadership” in the open-source community

- 6 -

6.5 LAUNCHING THE QUESTIONNAIRE .. 52
6.6 PERFORMING FACTOR ANALYSIS ON THE DATA .. 52
6.7 IDENTIFICATION OF THE BEHAVIORS MAKING UP EACH FACTOR ... 55

7 DISCUSSION .. 59
7.1 THE INTERPRETATION OF THE FACTORS.. 59
7.2 THE RELATION BETWEEN FACTORS... 60
7.3 THE CAPACITY OF THE THREE FACTORS TO DESCRIBE A “GOOD PROJECT LEADER” .. 61

8 CONCLUSIONS ... 63
APPENDIX A – PRELIMINARY INTERVIEW QUESTIONS .. 65
APPENDIX B – FIRST OPEN-ENDED QUESTIONNAIRE .. 67
APPENDIX C – LIST OF THE EXTRACTED BEHAVIORAL CLASSES .. 70
APPENDIX D – LIST OF THE RAW ITEMS AND RELATED BEHAVIORAL CLASSIFICATION 72
APPENDIX E – RATING-BASED QUESTIONNAIRE... 82
APPENDIX F – OPEN-SOURCE PROJECTS INVITED TO THE RATING-BASED QUESTIONNAIRE. 87
APPENDIX G – UNROTATED FACTOR MATRIX... 88
REFERENCES ... 89

Implicit theories of “good leadership” in the open-source community

- 7 -

Introduction

This thesis investigates the topic of leadership in the online communties of unpaid contributors who

develop “open-source” software like the Linux kernel and the Apache web server. Such

communities have lately been the focus of different studies. However, little research has been

conducted on leadership in such environment. This thesis provides a contribution to this topic,

focusing on the expectations contributors hold towards an open-source project leader. Specifically,

the aim of this work is to identify the main factors describing the open-source contributors’ personal

believes concerning the characteristics of a “good project leader”.

The paper is divided into two parts: 1) Existing knowledge, 2) Research objective and analysis.

Part 1 presents only existing knowledge. The first chapter contains background information on

open-source software and the social-technical phenomenon behind its development. Understanding

what open-source software is, why it is produced, and the customs of the community behind its

development, is important to frame the discussion on leadership. Chapter 2 introduces the approach

used to investigate the topic of “good leadership” in the open-source environment, and states why it

is worth being studied. Chapter 3 reports an in depth description of the theoretical model chosen for

this paper.

Part 2 contains all that is new, and is the result of the collection of empirical data and application of

statistical analysis. Chapter 4 reports the early observations that inspired the aim of this thesis, the

research objective and the steps undertaken to achieve it. Chapter 5 and 6 present both different

stages of data collection and analysis. Chapter 7 and 8 present respectively a discussion of the

analysis and conclusions.

Implicit theories of “good leadership” in the open-source community

- 8 -

Part I: Existing knowledge

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 9 -

1 Brief overview on open-source software
This chapter provides background information on open-source software and the social-technical phenomenon behind its development. Specifically,

this chapter will present:

• What “open-source” software is.

• Who produces it, and why.

• What are the customs regulating the leadership dynamics in the open-source community.

• Some existing interpretations of the role of an “open-source project leader”.

1.1 What is “open-source” software?

Computer software is what makes human beings able to interact with a computer. There are

different types of software, providing different functionalities depending on the users’ needs. Some

software are used to type documents; others are used for entertainment purposes (e.g. videogames);

still some others carry out even more critical functions, like managing bank transactions or

controlling a little “Mars rover”.

Software is created by writing a sequence of human-readable instructions, called “source code” (or

simply “code”). In order to be used, the source code must be translated into a computer-readable

sequence, the “binary”. While the binary permits the usage of the software, access to the source

code allows its modification.

The source code represents the value of a software. The source code of an application is like the

recipe for the Coca-cola1. Anyone with the recipe of Coca-cola at hand would be able to mix it in

the kitchen sink; anyone with access to the source code behind an application, would be able to

appropriate the knowledge behind it. By no surprise, firms involved in the development of software

treat the source code as a trade secret to protect.

Software usually comes with a license. The license defines the terms of use for the software, and

states what the final user may do and may not do with the software in itself. A software license

typically regulates the user’s right to modify and redistribute it. Companies involved in the

production of software make sure that their applications come with a specific type of license, to

protect their investments. A traditional software license, usually addressed as “proprietary license”,

poses restrictions over the user’s right to copy the software or to modify and redistribute it. Limiting

users’ ability to modify or redistribute the application is a way to limit appropriation of the

1 I borrowed the “Coca-cola” analogy from the Ph.D. thesis of Kasper Edwards. See Edwards (2003).

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 10 -

investments returns. Hence, software covered by proprietary licenses is distributed only in its binary

form, and no source code is provided to the user.

Software with this type of license is called “proprietary software”. The Microsoft “End-user license

agreement” (EULA) is a proprietary license that accompanies e.g. “Microsoft Windows XP” hence

a proprietary product.

Alternative to proprietary software is “open-source” software. This software is characterized by a

different category of license called “open-source” license. The “Open-Source Initiative” (OSI)2

defines the conditions3 to be met by a license schema to be classified as open-source. It basically

states that an open-source license must protect an unconditional right of any party to copy, modify

and redistribute the software. In order to make it possible for the user to modify the software access

to the source code must be provided. Hence, open-source software is distributed along with its

source code.

The OSI maintains a list of licenses approved as “open-source”. Among them two types of licenses

schemas deserve particular attention: the “General Public License” (GPL) and the BSD license.

Both the GPL and BSD license provide access to the source code, but while the GPL requires

derivative works to be redistributed under the same GPL license, the BSD does not. This means that

while software with a BSD license might legally be turned proprietary, GPL’ed software might not.

It becomes clear that an open-source license provides weak protection to the creator’s intellectual

property rights over the source code. If protection to intellectual property rights is weak, who would

want to develop such software and why? We will see how the production of this software is

typically carried out by online communities of volunteers often expecting no monetary reward at

all.

2 As the homepage reports at http://www.opensource.org : “Open-Source Initiative is a non-profit corporation dedicated
to managing and promoting the Open Source Definition for the good of the community specifically through the OSI
Certified Open Source Software certification mark and program.”
3 The conditions are listed into the “Open-Source Definition” (see http://www.opensource.org/docs/definition.php)

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 11 -

1.2 The size of the open-source phenomenon

It would be uninteresting to investigate how those open-source software are produced and why, if

open-source was a small and isolated instance. Thus, it is worth to have a look at the size of this

phenomenon.

SourceForge.net which provides free hosting / infrastructural services for open-source projects,

maintains a counter of hosted projects and registered users. The main page of SourceForge.net by

the 18 February 2004 reports 76.168 hosted projects and 793.653 registered users. Even though we

cannot expect the SourceForge counter to be exhaustive of the real number of open-source projects

around the Net, it still suggests that open-source might not be an isolated case, but the outcome of

some conditions that tend to reproduce themselves on the Net.

“Open-source” becomes even more interesting if we think that almost the 70%4 of the web servers

around the Internet are running an open-source application named “Apache”, available for free

download (and modification) at http://www.apache.org. The Linux kernel in another sparkling

open-source example, likely to be known also by those that are not very knowledgeable about

computers. This software, which attracts not only the interests of regular users but also financial

resources of big companies5, has been developed through the efforts of more than 3,000 developers

and a countless other contributors distributed over 90 countries on five continents6. Other famous

examples are Sendmail which delivers the majority of the emails through Internet, and BIND, the

standard solutions for Internet name resolution7. Other examples of open-source applications (that

will be cited throughout this work) are the FreeBSD operating system, the PERL programming

language and the GNOME desktop environment.

1.3 Who produces the software and how?

The most interesting aspect of the development of open-source software is that it relies on virtual

online communities of unpaid volunteers. Those communities of volunteers gather around software

projects organized on the Internet and contribute to their development by implementing new

4 Netcraft web survey accessed the 18 Feb. 2004. http://news.netcraft.com/archives/web_server_survey.html
5 As an example, IBM, HP, SUN, Compaq, SAP [...]. See the “Berlecon Research GmbH - FLOSS report - part 2:
Firms’ open-source activities, July 2002.” Available at http://www.infonomics.nl/FLOSS/report
6 Data taken from “The Essence of the Distributed Work: The case of the Linux Kernel” by Jae Yun Moon & Lee
Sproull (2000); available at http://www.firstmonday.org/issues/issue5_11/moon/index.html
7 BIND (Berkley Internet Name Daemon) is a DNS server: its purpose is to convert human-readable Internet addresses
like into numerical ones understandable by a computer.

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 12 -

features, resolving problems, or simply testing the product. A large number of the participants

contribute for free, without expecting any economic reward at all. A survey8 conducted during 2002

reported that only the 15.7% of the respondents were directly paid to develop open-source software.

The reader can imagine that there are as many contributors’ communities as the number of existing

open-source projects. Each community spins around a software project and its infrastructure - a

project web page and mailing lists. The project web page contains either the links for newcomers

interested solely in downloading and using the software and the necessary information for those

interested in contributing actively to the development.

The development process of an open-source software can be described in the following manner:

anyone can download the software along with the sources from the dedicated web page and freely

use it. Since the source code is available, the same user might extend the software characteristics or

simply fix bugs9, provided he has the required programming skills. When the new characteristic (or

fix) is developed, it is usually posted back to the community in the appropriate mailing list, to be

integrated in the next software release. Once emailed to the mailing list, any subscriber can review

the contribution and point out problems or enhancements if any!

It should be noted that there is a central figure called “project leader” or “maintainer” who is in

charge for accepting, reviewing and integrating new features or fixes into the main source code.

Once the project leader has reviewed and accepted the contribution, it is eventually integrated and

delivered to the large public of users in the next software version.

Each user/developer can choose on which project area to contribute and how much effort to

dedicate to it. The majority of the contributors work on the project a few hours a week, even though

some others are much more involved. Almost the 70%10 of the open-source contributors do not

spend more than 10 hours a week in developing open code. Not all software users have the

necessary skills to implement their own features or fix bugs; still, they can contribute by engaging

in alternative activities, like translating documentation, testing the software and reporting bugs.

Project participation is fluid, since contributors are not bound by any employment relation. Anyone

is welcome to join, choose on which area to work and what feature or fix to develop. Even though,

8 See the “Berlecon Research GmbH - FLOSS report - part 4: Survey of Developers, June 2002.” Available at
http://www.infonomics.nl/FLOSS/report
9 A software bug is an “error, flaw, mistake or fault in a computer program which prevents it from working correctly.”
(taken from http://www.wikipedia.com under the voice “computer bug”)
10 See note 3

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 13 -

open-source developers may contribute different projects simultaneously, the majority limit their

activity into one or two projects at a time (29% and 27% respectively) 11.

1.4 Why individuals engage in open-source software development?

Production of software is a complex task, it requires knowledge of programming and a deep

understanding of the problem, which the program is intended to solve. In addition, software

development is time consuming, time that could have been used to generate an income. This aspect

makes researchers wonder why people with programming skills would engage in open-source

software production without seeking any protection for their intellectual contribution.

What emerges from the motivational studies carried out in the open-source environment is a

complex system of forces. These motivational forces have been classified into intrinsic and extrinsic

motivational drives.

Intrinsic motivation has been defined as the “doing of an activity for its inherent satisfactions rather

than for some separable consequence. When intrinsically motivated, a person is moved to act for the

fun or challenge entailed rather than because of external prods, pressures or rewards.” (Ryan and

Deci, 2000). The fun or the sense of creativity in engaging in a certain activity (in this case, coding)

is at the heart of intrinsic motivation (Deci and Ryan, 1985). Central to Deci and Ryan’s discussion

of intrinsic motivation, is the inborn need of certain persons for feeling competent and self-

determining in interacting in their environment.

Lindenberg (2001) points out another aspect of the intrinsic motivation. People can act on the basis

of a principle. From the author’s point of view, behavior may be triggered by the feeling that one

must follow a particular rule, or norm of principle. Lindenberg argues that this kind of obligation-

based behavior (i.e. to act appropriately) stems from a process of socialization. Hence, the level of

social identification with a community can trigger a behavior consistent with the norms of the

group. Lakhani and Wolf (2003) note that, in the open-source environment there is a strong sense of

identification with the community; in the authors’ words “the existence of canonical texts like “The

New Hacker Dictionary” (Raymond, 1996), “The Cathedral and the Bazaar” (Raymond, 1999) and

11 See the “Berlecon Research GmbH - FLOSS report - part 4: Survey of Developers, June 2002.” Available at
http://www.infonomics.nl/FLOSS/report

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 14 -

the “General Public License” (Stallman, 1999) have created a shared meaning of the individual and

collective identities of hackers’12 culture and responsibilities of membership within it”.

On the other side, some contributors participate to open-source projects to indirectly satisfy their

own needs. The core concept behind extrinsic motivation is to engage on certain activities to

provide indirect satisfaction to the needs. Someone considering his job solely as a source of income

necessary to buy food, pay the rent and enjoy summer holidays, is extrinsically motivated;

“working” it’s just a medium to satisfy one’s needs. Consistently, Lerner and Tirole (2002) explain

contributors’ decision to participate in terms of a rational economical calculus - hackers contribute

to open-source development as long as the net value between benefits and costs is positive.

Costs implied in developing open-source software are definable in terms of lost income deriving

from freely revealing code and not employing time in an alternative and profitable manner. But

what are the benefits arising from participating in open-source development? Some participants get

paid for their contribution by companies whose business rely on open-source software. Other

contributors are moved by career concerns: contributing open code is a good way to render visible

their programming skills, and increase the opportunity to find a good job in the future (Holmström,

1999). Still others are moved by the desire to learn and improve their coding skills, from the

community interaction.

The need for a feature (both in a work and non-work environment) is another important aspect that

sustains participation. Studies conducted on the sources of innovation field show that some users

have a strong incentive to personally develop solutions to their own needs and freely reveal their

innovations (Von Hippel, 2002). In this case, the need for a particular software functionality and

the existence of “sticky” information13 govern the personal development of new software features;

Von Hippel (2002) notes that contributors may choose to free reveal their innovations if benefits

stemming from free revealing (i.e. those discussed above) are higher relative to those obtainable

through protection of intellectual property.

12 According to first definition encountered in the “Online Jargon File, version 4.4.7” accessed the 24 Feb. 2004, an
hacker is “a person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as
opposed to most users, who prefer to learn only the minimum necessary [..]”. “The Jargon File” is available at
http://www.catb.org/~esr/jargon/index.html
13 Information regarding user needs and the context of usage, which is costly to transfer to an external manufacturer
(Von Hippel, 1994)

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 15 -

The question remaining is: how much each motivational drive presented counts in explaining why

hackers engage in the development of open-source software? Lakhani and Wolf (2003),

administered a questionnaire to 637 open-source contributors involved in 287 different open-source

projects, and asked them to select up to three statements that best described their motivation to

participate to their “focal” open-source project.

Survey results give evidence to both intrinsic and extrinsic elements. Considering the extrinsic

motivational drives, the 58% of the respondents stated to contribute to satisfy the need for certain

software functionalities. The 41.8% deemed as important the opportunity to improve their

programming skills.

Intrinsic motivation has considerable importance as well: 44.9% agreed with the statement ”Project

code is stimulating to write”. For the 28.6% of the respondents, an important motivator was the

sense of obligation to give something back to the community.

1.5 Project owners as project leaders in the open-source community

A specific type of software license scheme is classified as “open-source” if it matches the

conditions contained in the “Open-Source Definition” cited in section 1.1. The core of the “Open-

Source Definition” is that anyone must have the right to access and modify the software source

code14. This means that anyone with enough interest and skills can duplicate the sources, modify

them, and redistribute them over again under another software name. It has been noted by Raymond

(1999) that in reality such “forking”15 rarely exists. The open-source culture has “an elaborate but

largely unadmitted set of ownership customs, which regulates who can modify the software, the

circumstances under which it can be modified, and (especially) who has the right to redistribute

modified versions back to the community” (Raymond, 1999).

Raymond (1999) notes that, these customs identify a sort of software “ownership” made by a set of

exclusive rights and obligations over the project. This system of exclusive rights typically consists

in deciding what new features to integrate in the next release of the software; redistribute the code

to the community; empower maintainers of certain areas of code; step down and “pass the baton” to

the next volunteer. Typically, the project owner is addressed as the “project leader”.

14 See “Open-Source Definition” ver 1.9, points 2 and 3, at http://www.opensource.org/docs/definition.php
15 “An open-source project “forks” when it splits up into two or more fractions, often trying to accomplish the same
goals.” (Edwards, 2000).

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 16 -

Now the question remaining is how it is possible to acquire project ownership. The typical ways are

to create a piece of software, acquire it or publicly take over the project when the owner disappears

(Raymond, 1999).

Create a project is the first way to acquire its ownership. Regarding this aspect, Raymond

recognizes interesting similarities with the Anglo-American common law theory of land tenure. In

the Lockean theory of property, anyone can homestead a piece of never-owned land and acquire its

property putting his work in it; in the same way, anyone can acquire ownership of a piece of

software by creating it or making substantial contributions.

The “transfer of title” is an alternative way to acquire ownership over a piece of code; a project

owner that has decided to step down for any reason, has the exclusive right (and obligation) to “pass

the baton” to the next volunteer interested in acquiring its ownership.

A project can loose its owner, or just be abandoned. Again, anyone can take over the project

improving and defending it. In this case hackers’ customs requires the potential new owner to

contact the previous one and/or give public notice of his intentions on relevant places (newsgroups

or mailing lists).

1.6 Maintainers as secondary project leaders

As already stated a project leader has the exclusive right to empower “maintainers of certain areas

of code”. A maintainer is a contributor that has the responsibility over a sub-portion of the code

(e.g. a module). As an example, the CREDITS16 file of the Linux 2.4.0 kernel reports 375

maintainers of particular sub-parts of code!

A maintainer enjoys a certain level of autonomy over the code he maintains. He has the capacity to

decide what new features or fixes to accept and integrate in the subsystem he has responsibility for;

he has control over the implementation of the interfaces with the rest of the project (Raymond,

1999). Still, major decisions involving the project as a whole, are the responsibility of the main

project leader.

16 The “CREDITS” is a text file that typically comes with the source code, in the software package available for
download. This file contains acknowledgments to those who participate to the project, along with a description of their
contribution.

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 17 -

Contributors acquire maintainership of a project subsystem making substantial and continuing

investment of time in it. The two typical paths to become a maintainer are to take responsibility for

a certain part of the project or to take the role of the “lord high fixer”, characterizing and fixing

many bugs (Raymond, 1999). As the same author notes, hackers like to say that “authority follows

responsibility”. In this sense open-source projects work like meritocracies, in which “authority”

stems from level of participation and competence: as Kenneth Rohde Christiansen, GNOME

developer, puts it “the more you do, the more you have to say” (Interview with Kenneth Rohde

Christiansen, 8 Oct. 2003).

The maintainer figure is pretty similar to the one of the project leader, but while the project leader

has a wider span of authority to include the whole project maintainers’ competence is focused on a

particular subsystem.

1.7 Project leader’s tasks

Lerner and Tirole (2002) provided an early discussion of a project leader’s tasks, observing three

different successful open-source projects (Apache, Perl and Sendmail). Even though leadership is

not the main focus of their paper, they have given a very interesting contribution to the subject,

identifying four general leader activities that might account for the success of an open-source

project.

The tasks identified by Lerner and Tirole are: to provide a vision; divide the project into smaller and

well-defined tasks (modules); attract programmers and keep the project together.

According to Lerner and Tirole (2002), “a project leader provides a vision by assembling a critical

mass of code to which the community can react. Enough work must be done to show that the

project is doable and has merit”. They observe that the three cases they presented, all were posing

challenging programming problems as premises that the projects were not at a “dead end”.

A project leader should not do all the work by himself, but leave challenging problems to the others

- this is as much important as providing a vision (Lerner and Tirole, 2002). The intrinsic aspects of

the motivational forces behind the open-source development (i.e. fun, sense for creativity) require

the leader to not engage or control all the challenging coding activities.

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 18 -

The third task for a project leader is to divide the project into smaller and well-defined tasks, which

individuals can tackle independently. Dividing the project into smaller modules lowers the need for

coordination.

Finally, leadership must keep the project together by preventing it from forking. A project “forking”

occurs when it splits up into two or different parts, often trying to accomplish the same goals

(Edwards, 2000). Even though there are some natural forces that prevent a project from forking like

the loss of economies of scale due to the creation of smaller communities, still some other factors

might encourage this phenomenon. Lerner and Tirole (2002) note that contributors “may have

conflicting interests as to the evolution of the technology” and that “ego concerns may prevent one

faction to admit that another approach is more promising”.

A key factor in lowering the probability of forking becomes trust in leadership. In the authors’

words, “contributors must believe that there leader’s objectives are sufficiently congruent with

theirs and not polluted by ego-driven, commercial or political biases”.

The Lerner and Tirole’s contribution implicitly poses emphasis on the role of the leader as an

explanation for the success of an open-source project. However, these observations have been

criticized by Edwards (2000).

Edwards maintains that it is not the project leader who provides a vision, but the very same

“assembling of critical code”. In his words a “co-developer can examine and use the source code

and become inspired to develop a new vision”. Hence, it is not the leader the locus of the vision, but

the very same contributor who can imagine all the evolutionary paths his fantasy allows!

Edwards’ critic is subtle but very important. Recognizing that the vision does not stem from the

leader, but from the software itself – push for an alternative understanding of open-source

leadership; given that a project leader has little impact on the co-developers’ vision – Edwards

prefers to address the same role with a different label: project maintainer17.

17 The term “maintainer” as used in this context by Edwards, does not identify “responsibility over a sub-portion of the
code” (see section 1.6). Edwards simply substitutes the term “project leader” with “project maintainer”, to emphasize
his alternative understanding of leadership with respect to Lerner and Tirole. However, the labels “project leader” and
“project maintainer” are used somewhat interchangeably by hackers, to indicate project ownership.

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 19 -

At the same time, Edwards does not refuse to recognize the importance of a leader in an open-

source project; on the contrary, he provides three different reasons that accounts for leader

centrality (Edwards, 2001). The first reason is linked to the fact that 1) a software author retains

property rights over the software name 2) the software name is like a “brand name” associated with

a system of qualities and an existing user base. A leader accepting to integrate contributors’ new

features under his software name, provides them with a way to seize on both the software image and

the existing user base.

In addition, a project leader provides a coordination service to the participants of the project; he

makes sure that contributors working on the development of the same functionality are in contact

with each other and hopefully collaborate; he makes sure that the development goes smoothly and

tries to ease up tensions between disagreeing developers.

Being a maintainer is also a matter of working out the necessary practicalities, among which:

helping new users getting started in the use of the software, organizing software files in a logical

structure, answering users’ questions and maintain the project homepage and mailing lists.

1.8 Shared leadership in the open-source community

The previous section implicitly stated that ownership rights over a software can be held only by a

single person. Project leaders as single owners surrounded by a group of maintainers are typically

addressed as “benevolent dictators” (Raymond, 1999). The label “benevolent dictator” comes from

the fact that, a project leader is expected to consult with maintainers before going ahead with key

decisions. Again, hackers’ customs can explain why a project leader is expected to rule through

consensus: maintainers, with their work and dedication acquire ownership for the module they have

responsibility for.

Actually, the “benevolent dictator” leadership arrangement does not depict the whole picture in the

open-source environment, since some projects are owned by a group. In these cases, the exclusive

rights of a project founder are exerted by a team through different organizational arrangements.

The Apache project is managed by a small group, which exerts the typical ownership rights

previously described. This group is made up by co-developers each voting for each relevant

Implicit theories of “good leadership” in the open-source community
Brief overview on open-source software

 - 20 -

decisions concerning the direction of the project. The voting process is based on a minimal quorum

consensus and is supported by a specific mailing list (Fielding, 1999).

It is interesting to see how the decision process is carried out in the Apache project. Each developer

can vote on any issue concerning the project, by sending an email containing a “+1” (yes) or a “-1”

(no). For code changes, three positive votes a no vetoes are required before the change is allowed to

go into the main source. For other type of decisions, three “+1” and an overall positive majority is

required. Anyone on the mailing list can vote, but only the votes casted by the Apache Group are

considered binding (Fielding, 1999).

In the FreeBSD project, the “FreeBSD core team” is responsible for deciding the overall direction

and goals. This “board of directors” promotes active contributors to committers18, assigns people to

well-defined “hats”19 and is the final arbiter of decisions involving which way the project should be

heading. Besides the core team there are other groups of individuals who are responsible for taking

care of certain designated areas. Among those, the “Release Engineering Team” responsible for

setting release deadlines and controlling the release process.

In the FreeBSD project, direct modification to the source code is granted to a large group of

individuals called “committers”. By the 1st Dec. 2002, 275 committers were listed in the CVS log

(Saers, 2003). These are usually the most active developers who can integrate their own code or the

code submitted by the developers who do not have this privilege (Saers, 2003).

All these examples identify leadership arrangements different from the one of a single project leader

surrounded by a pool of maintainers. However, it is not rare to find the same pattern of single

ownership previously described, even into those projects in which leadership is formally shared. As

an example, in the FreeBSD project portions of the source code are managed by a maintainer. Saers

(2003) describes the role of the maintainers in the FreeBSD project, in the following manner:

“Maintainership means that that person is responsible for what is allowed to go into that area of the

code and has the final say should disagreements over the code occur. This involves proactive work

aimed at stimulating contributions and reactive work in reviewing commits” (Saers, 2003, par. 2.1.4

“Maintainership”)

18 A committer is a developer endowed with the privilege to directly modify the main source code, as hosted in an
online repository.
19 Synonymous of “role”

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 21 -

2 Approaching the concept of “good leadership” in the open-source

community
This chapter outlines:

• The approach used to investigate the topic of “good leadership” in the open-source community.

• The reason why it is important to know what “open-source good leadership” is.

2.1 The many definitions and perspectives on leadership

As Yukl (2002) states, “the term leadership is a word taken from the common vocabulary and

incorporated into the technical vocabulary of a scientific discipline, without being precisely

redefined”. The lack of a precise redefinition has created a sort of ambiguity of the meaning of the

term, typically used as a synonymous of authority, power, administration, control and supervision

(Yukl, 2002). The academics involved in the organizational studies field define the phenomenon in

different ways accordingly to the aspect that most interest them; as Stogdill (Bass, 1990) notes

“There are many different definitions of leadership as there are persons who have attempted to

define the concept”.

Still, it is possible to identify a common pattern between the proposed definitions of leadership;

most of them maintain that leadership is a process in which one person exerts influence over other

people to guide, structure, facilitate activities and relationships in a group or organization (Yukl,

2002).

It is very important to recognize the variety of definitions and perspectives on leadership since they

reflect deep disagreement about the identification of leaders and the leadership processes.

2.2 Leadership is in the eyes of the beholder

It has been noted that although researchers may disagree on what leadership is, the general public

seems to have less problems with this term. As Offermann, Kennedy and Wirtz (1994) put it,

“individuals possess their own naïve, implicit theories of leadership, and are readily to determine

their boundaries and characteristics”.

Implicit theories held by an individual are generally defined as “personal believes” guiding the

understanding and interpretation of a certain phenomenon. Even though, implicit theories are not

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 22 -

supported by any scientific validation, they have been shown to govern subsequent behavioral

expressions of an individual when interacting with his environment (Kelly, 1963).

Sternberg (1985) has investigated the implicit theories held by people, about the concepts of

intelligence, creativity and wisdom. His results indicate that individuals have well-defined personal

understanding of these three constructs and that they use them in their ratings of both themselves

and others.

Actually, it is not unusual for these implicit theories to vary considerably from the definitions held

by academics. Sternberg (1985) notes that the definition of “intelligence” held by the general public

does not match the scientific notion of the term; having “goals” is deemed by the public to be

characteristic of an intelligent person, whereas this attribute is not included by academic definitions.

Individuals have implicit theories of leadership as well. Research in this field has been carried out

by Lord, Foti and Phillips (1982). Lord et al. (1984) have demonstrated that people have a personal

conception of the characteristic of a leader, in terms of a set of personality traits and behaviors.

According to their theory, leaders emerge in a group depending on their match to a prototype held

by the followers.

The work of Lord et al (1982) focuses heavily on the perceptual process of the observer.

Accordingly, this section is labeled “leadership is in the eye of the beholder” – to emphasize the

importance of the very same followers in the emergence of leaders.

As we will see in the next sections, this is the approach I selected to investigate the topic of “good

leadership” in the open-source environment; But why should we bother with the personal believes

held by contributors, in understanding what leadership is in the open-source environment?

2.3 Followers of a leader or leader of the followers? An egg-chicken problem

Let us temporarily put a definition on the concept of leadership, for sake of clarity. Kutz and Kahn

(1978) defined it as an “influence increment over and above the mechanical compliance with the

routine directives of the organization”. Even though I will NOT use this definition throughout my

work, this statement is useful to explain why I have chosen a contributor’s point of view to

understand what “good leadership” is in the open-source environment.

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 23 -

If leadership consists of an “influence increment over and above a mechanical compliance”, what

makes this influence possible? And whatever this “key-for-leadership” is, does it reside in the

leader figure in itself, or in the followers?

Early studies intended leadership as something stemming strictly from the leader. The focus of the

leadership process was the figure of the leader, who the leader was and what the leader did. The

best examples summarizing this point of view are the personality and behavioral studies aimed to

identify the characteristics of leaders20; these studies compared leaders and non-leaders on

personality traits and behaviors but failed to establish any strong relationship between these

variables and leadership. Among the many inadequacies of this type of approach, there is the lack of

generalizability of the results across situations or even within the same situation (Gibb, 1954).

Hence, researchers started to recognize the importance of the very same followers and associated

contexts, in explaining how leadership works. Hollander and Julian (1969) suggested that leadership

was to be investigated also in the followers, and not only in the leaders. As Smith and Foti

interpreted the contribution of Hollander and Julian – “individuals emerge as group leaders by

fitting the shared conceptions of followers” (Smith and Foti, 1998).

Meindl (1993) criticizes approaches to leadership strictly connected to the figure of the leader, and

calls for a “reinvention of leadership from a radical social-psychological point of view”. In his

contribution, he noticed that current leadership studies, approach leadership in terms of a process

that the leader ultimately controls. Even though “mutual influence processes between leaders and

followers are recognized, leadership is mostly conceptualized as something [...] to be performed by

the leader. [..] It is dispensed to, and used on, followers to influence and control them” (Meindl,

1993).

Meindl, alternatively considers leadership as an experience followers undergo. Without this

experience (as the authors says: “without being in state of leadership”) followership does not exists.

Therefore, he proposes a more follower-centered approach to understand why and how leaders

emerge.

20 See Bass (1990) chapter 4 – “Traits of leadership: 1904 – 47”

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 24 -

2.4 Do leaders exist into those communities of volunteers?

There is a question we should pose to ourselves before wondering what “good leadership” is in the

open-source environment: do leaders exist into those communities involved in the production of

free software? Is their role recognized and accepted, by the community?

There are good reasons to question the existence of leaders into those communities of volunteers, or

at least to question the willingness of an open-source participant to accept the presence of leaders.

As we have seen in the first chapter, the sense of self-determination and autonomy plays an

important role as an intrinsic motivator. Poul-Henning Kamp underlines that when he was part of

the FreeBSD core team back in 1992-2000, much of the discussion focused on whether there should

have been leadership for the project (interview with Poul-Henning Kamp, 10 Oct. 2003); as a

reason for these discussions, he speculates that FreeBSD was seen as a sort of “boss-free heaven

where people could relax”, away from their work environment; as he summarizes the thoughts of

the participants “we are just all minding our own little bits, and nobody can tell us what to do”

(email from Poul-Henning Kamp, 22 Feb. 2004).

Kasper Edwards notes that the term “leader” is used in an improper manner, when addressing an

open-source project; in his article Edwards states that “the term "leader" seems a poor choice, since

in the open source community most people are working for free. No leader in an open source

project has the equivalent power of a leader in a private or public company. These real leaders

possess the power to discharge people or in other ways affect the employee’s situation.” (Edwards,

2000).

Again, the problem resides in the meaning we attach to the term “leadership” and use to investigate

such phenomenon.

My assumption for the current work is that leaders in the open-source community exist, to the

extent to which the label “leader” is used (or at least, understood) by a generic contributor. The

“leader” I am referring to is the project owner/project leader described by Raymond (1999). The

real problem is NOT to question the existence of leaders in the open-source environment, but to

uncover the shared meaning attached to it, by the community.

Hence, the leader I am addressing occupies an informal organizational position, in virtue of the

rights granted by the customs of the community. These rights are typically summarized by the

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 25 -

leader’s exclusive ability to redistribute modified version of a software back to the community (see

section 1.5).

2.5 Why is it important to know what a “good project leader” is?

It is reasonable to speculate that a style of leadership consistent with the expectations of those

volunteers contributing free code can have an effect on the productivity of a project. The need to

keep contributors satisfied with their project leaders is even more salient in an environment in

which participation is not regulated by any employment relationship.

Although hackers’ customs place a sort of “taboo” against forking, such phenomenon sometimes

occurs. Sometimes It happens that a “faction” of the community decides to follow an alternative

evolutionary path for the software; in such cases the original project splits up in two or more

branches, each one under different name. As the software splits in different and independent

fractions, also the community efforts do. A style of leadership not consistent with the expectations

of the community can account as a reason for a project fork; as an anonymous contributor

commented in participating in the online questionnaire set up for this work:

“The project [the anonymous contributor participates to] is led in a top-down, traditional (closed-

source) management style which does not fit free software projects. In the terms of the over hyped

'The Cathedral and the Bazaar'21 document, the project is a “Cathedral” but claims to be a “Bazaar”.

The words are there, but the actions are missing or misdirected. This has led to several forks of the

project, many disillusioned contributors and a lack of progress. I will fork the project as well. The

main reason for the fork is the unwillingness of the 'core developers' to accept the validity of outside

contributions. “(Anonymous).

As the same contributor notes, another consequence of an inconsistent style of leadership is the

lowering of the level of participation to the project;

“[bad leadership] ... has led to a total stop of external contributions, and also a more or less total

stop of progress in the project. Free software thrives in an open environment. A closed-minded,

hierarchical "honor-your-superiors'" environment work stifling and leads to fragmentation.”

(Anonymous)

21 “The Cathedral and the Bazaar” is a description-from-the field of the principles that drive a successful open-source
project, written by Eric Raymond (1999).

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 26 -

As another participant pointed out, “bad leadership” can account for “hurt, anger, confusion” and

hence the well-being of the community. Poul-Henning Kamp, reported in an interview situations in

which certain types of leadership can account for much of the unproductive discussions in the

mailing lists – and notes how those events could affect the spirit of the entire group (Interview with

Poul-Henning Kamp, 10 Oct. 2003).

Therefore, knowing the behavioral expectations held by contributors towards leaders has a practical

value: understanding these expectations is a first step towards analysis and training towards better

management practices, in the open-source environment.

2.6 A theory for understanding perceptions of “good leadership”: traits and behaviors

The current work will use a theoretical model developed by Lord, Foti and Phillips (1982) and

revised by Lord, Brown, Harvey and Hall (2001) on the implicit theories of leadership held by

individuals. Lord et. al (1982) used a cognitive approach to uncover how leaders are selected and

evaluated by individuals. According to their model, leadership is the outcome of a classification

process unconsciously carried out by a generic observer; a leader emerges over a group to the extent

to which he is categorized as such by the followers.

Leadership resides in the minds of the followers as a set of personality traits and attributes, called

prototype. Prototypes are abstractions of the human mind used to classify persons, and develop

consistent behavioral expectations towards them. Whenever a match between the perceived

personality of a person and a prototype occurs, a consistent process of classification follows. When

classified into a certain category, the behavior of the same person is interpreted accordingly and a

process of development of behavioral expectations occurs.

As an example, we all have an idea of what the personality traits of an extravert person are.

Typically, an “extravert” is described as someone very talkative, smiling, and outgoing. Whenever

we meet a new person showing these traits, it is likely that we unconsciously classify him as an

“extravert”. Accordingly, we develop some consistent behavioral expectations towards him: an

extravert is likely to be invited to the next party on Saturday, to make the evening more fun!

Implicit theories of “good leadership” in the open-source community
Approaching the concept of “good leadership” in the open-source community

 - 27 -

To better understand this process of classification and the subsequent development of behavioral

expectations, let us think about the feeling of surprise likely to arise whenever we discover that a “2

meters-tall guy, weighting 120 Kg” has a high-pitched voice. This is because we learned from

experience that the characteristics “2-meters-height"/"120-kg-weight” are more likely to be

associated with a deep voice, instead of a “high-pitched” one. If we think more about this process,

we may discover that observers infer traits and characteristics from clues, without really

experiencing them.

Accordingly, Lord et al. (1984) demonstrated that a prototype of a leader does exist in the mind of

the persons. A leader prototype is seen as dedicated, goal-oriented, informed, charismatic, decisive,

responsible, determined, intelligent and believable [...]22. Subsequent observations (Lord et al.

1984), showed that individuals matching more closely this prototype, were more likely to emerge as

group leaders.

Building on the model developed by Lord et al. (1982), this work will identify the main factors

representing the characteristics and behavior of the prototype of a “good project leader” hold by

open-source contributors.

22 The leader prototype identified by Lord et al. (1984) consists of 59 characteristics. Lord et al. (1984) demonstrated
that not all the characteristics have the same weight in the process of identification of leaders, carried out by a generic
observer. The sample of attributes presented here, is made up by only the first 9 characteristics that have been shown to
be most important in the selection of leaders.

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 28 -

3 Cognitive categorization and leadership perceptions
This chapter provides an overview on the cognitive dynamics governing the perceptions of leadership. Specifically, this chapter will explain:

• What are person categories, and what is their task.

• How person categorization occurs.

• The nature of the person prototypes used in the categorization process.

• The theory of leadership perceptions developed by Lord, Foti and Phillips (1982).

• The revision of the cited theory developed by Lord, Brown, Harvey and Hall (2001) which better accounts for the contextual constraints

affecting leadership perceptions.

3.1 Overcoming memory limitations through knowledge structures

The human mind can be described as an information processing system, which elaborates stimuli

coming from the external environment. Information about surrounding objects, persons or events

are inputs for such system; conversely, human behavior is the output of such processing.

This system is generally thought to consist of several components like memory and attentional

resources. Memory and attentional resources are scarce resources since they are not sufficient to

elaborate accurately each stimulus coming simultaneously from the environment. As an example,

unexperienced employees find it very difficult to type a letter and concurrently follow a discussion.

In order to overcome such processing limitations the human brain relies on “knowledge structures”.

The term “knowledge structures” is used to refer to cognitive schemas otherwise known as scripts,

categories, implicit theories, prototypes. Those structures are held in memory and allow people to

select, interpret, simplify and integrate environmental information. The utilization of such

knowledge structure lowers the need for attentional resources and permit and higher amount of

information to be processed at the same time.

3.2 Person categorization

As Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976) note “the world consists in a infinite

number of discriminably different stimuli”, placing high attentional demands for an observer.

Consequently, the same authors recognize that “one of the most basic functions of all organisms is

the cutting up of the environment into classifications by which nonidentical stimuli can be treated as

equivalent”. This process of classification, called by cognitive psychologists “categorization

process”, consists in grouping external stimuli into a category. By category is meant a group of

objects considered equivalent, which are identified by a label (Rosch, 1978). As an example, the

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 29 -

label “dining room chair” identifies a category of objects which share certain type of attributes e.g.

four legs, back, seat, [...].

As it has been noted by Cantor and Mischel (1979) humans tend to categorize not only common

objects but also people based on personality attributes, physical appearance, gender, race, social

occupation and general behaviors.

Categorization allows one to simplify and reduce a potentially overwhelming number of stimuli,

thus lowering the need for attentional resources; this process occurs selectively focusing attention

on certain aspects of a particular object or person, e.g. shape and functional attributes for objects,

personality traits and behaviors for persons. Once categorized under a common label, the observer

can predict specific features of any of the category members on the basis of general expectations

about the category.

As an example to understand what a persons category is and how the categorization process works,

let us think about a newsgroup “newbie”23. Every day someone is classified as “newbie” in a

newsgroup by other readers, in a public or private manner, in a conscious or unconscious way. This

classification is primed by a set of behaviors deemed by the observer as typical of a “newbie”. If we

observe what primes categorization into the category “newbie”, we may notice that such

classification occurs usually when someone:

- asks obvious questions in a newsgroup;

- uses an improper terminology to address a technical problem;

- uses a reverent tone in the firsts public postings;

- states himself to be a newbie;

- ..

- [place behaviors as you think they fit]

Once the person is classified as “newbie” subsequent behavior is interpreted accordingly to the

information for that category. As an example, an experienced reader answering to a newbie asking

for help in a technical newsgroup, is more likely to suggest very obvious alternatives on how to

solve the problem, since newbies are expected to be unexperienced and quickly get stuck by the

23 As the on-line version of the hacker Jargon File 4.4.7 states, a “newbie” is an “Usenet neophyte”, and thus indicates a
new joiner of a newsgroup.

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 30 -

smallest inconvenient. As an alternative example, someone perceived as an “experienced hacker” is

expected to provide good clues on how to resolve a complex coding problem.

These examples are meant to give a general idea on how the process of person categorization

occurs. Indeed, it must be noted that each reader can have his own implicit theory of how a newbie

behaves. These implicit theories are likely to vary considerably from the one I presented. Moreover,

to make things even more complicated, each behavior listed can account for different types of

person classification: someone “using an inappropriate terminology to address a technical problem”

can be classified as a “wannabee”24 instead, dependently on the context and on other behaviors

shown.

However, the aspects above will be addressed in the next sections. What matters now is how

categorization lowers the need for attentional resources, which occurs in two ways: 1) cutting down

the number of attributes necessary to be classified into a category 2) allowing the perceiver to

access systems of relevant information, learned through experience, to interpret and develop

behavioral expectations.

3.3 Categorization occurs through prototypes

In the precedent section, we have seen how categorization process lowers the need for attentional

resources. Basically, the observation of few meaningful behavioral “hints” coming from a person,

primes the inference of a system of relevant information. This system of information, retrieved from

memory, allows an observer to interpret accordingly the behavior of a person and develop a

consistent set of expectations.

Cognitive psychologists address these sets of “meaningful primes” as “prototypes”. A person

prototype is an abstraction of the human mind, which consists in a set of personality traits, personal

attributes and behaviors. Prototypes play an important role in the categorization process since they

are the “yardstick” by which a person is placed in a certain category; whenever a match between an

external stimulus and a prototype occurs, an accordingly categorization follows.

The question now is, “what makes a specific behavior or attribute “meaningful” in the process of

categorization?”

24 According to the on-line version of the hacker Jargon File ver 4.4.7 a “wannbee” is a “would-be hacker”.

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 31 -

3.4 Principles governing the creation of prototypes

In order to understand how prototypes are created, we need to know about two basic principles that

govern the categorization process. These principles, which explain what influences the content of a

prototype, are called the principle of the “World Perceived Structure” and the principle of the

“Cognitive Economy” (Rosch, 1978).

The first principle of categorization maintains that the world is not a set of equiprobable co-

occuring attributes. Indeed, there are certain environmental regularities around which categories

(and prototypes) are created. As Rosch exemplifies it “it is a fact that wings co-occur with feathers

more than with fur”. At the same time, we can say that, it is a fact that “using an improper

terminology, when asking technical advise in a newsgroup” co-occurs more often with “being not

skilled at resolving an easy technical problem”.

The second principle of categorization states that the human mind attentional resources are limited.

This means that the human mind tries to categorize objects or persons, with minimum effort. In the

quest for “minimum effort for categorization” not all behaviors have the same importance. Some

behaviors are more distinctive for a category and thus have a higher potential to distinguish around

stimuli. Therefore, human memory will retain those primes which are more distinctive for a

category as components of a prototype25.

The more an attribute is shared by members of a category, and is rare among the non-members of

the same category, the more it is prototypical. As an example, “owning a Ferrari” is a personal

attribute which is particularly distinctive to categorize a person as “wealthy”; on the other hand,

“having a credit card” is not really a good clue to classify someone in the same category.

The fact that attributes of a prototype can be qualified as “more or less” prototypical, raises the

following question: what are the boundaries of a prototype?

3.5 The fuzzy nature of prototypes

Categorization occurs whenever the perceived qualities of a person match an existing prototype.

This simplified description of how categorization works may implicitly transmit the idea that,

25 Hence, the term “distinctive” is used as a synonymous of “prototypical”

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 32 -

classification is the outcome of a checklist of necessary and sufficient features. Consistently, a

person must be perceived to have all the necessary characteristics to be classified into a category; if

the person does not fulfill the required attributes – he will not be categorized accordingly. This

assertion views categories as well-defined and distinct.

Actually, this “all-or-none” point of view does not correctly represent the nature of a person

category. As Cantor and Mischel (1979) noted “.. [for an observer] it would be difficult to find a set

of necessary and sufficient features shared by all members of any particular person category that

one would want to use as the definitive test of category membership”. As an example, they note

how classification process depends heavily on contextual constraints. Consequently, they suggest

that the nature of person categories is best described by the concept of “fuzzy sets” whose borders

are ill-defined. The existence of linguistic hedges like “almost”, “virtually” or “sort of” (Lakoff,

1972) is compatible with this conception of ill-defined categories. As an example, a robin and a

penguin are both technically birds. Nevertheless, we may agree that while a “robin is a bird par

excellence” a “penguin is a sort of bird”.

As Wittgenstein (1953) (cited by Rosch, 1978) has pointed out, categorical judgments are a problem

only if one is concerned with boundaries – in the normal course of life, two neighbors know on

whose properties they are standing, without exact demarcation. Thus, Rosch (1978) proposed an

alternative conception of prototypes – as “the clearest cases of category membership defined

operationally by people’s judgments of goodness of membership in the category”.

3.6 Effects of attributes prototypicality on items recall order

Prototypicality affects efficiency measures of human mind processing performance. In particular,

two dependent variables are presented: speed of information processing and order and probability of

item output (Rosch, 1978)

Speed of information processing - reaction time. The speed at which subjects can judge whether a

stimulus (object or person) is part of a category, is a widely used measure which correlates with

prototypicality. More prototypical items are associated with lower response time (Cohen, 1983;

Lord et al., 1984).

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 33 -

Order and probability of item output. Rosch (1975) demonstrated that subjects are more likely to

recall as first the most prototypical items, while less prototypical ones are cited in the last positions

or not cited at all.

3.7 The theory of leadership perception (1982)

Lord, Foti and Phillips (1982) have built a theory of leadership perception on the work carried out

by Rosch (1978) on object categorization and by Cantor and Mischel (1979) on person

categorization. Their theory of leadership perception maintains that leaders emerge over a group to

the extent to which followers perceive them as such. As Lord and Maher summarize the core of the

theory:

 “The locus of leadership is not solely in a leader or solely in followers. Instead, it involves

behaviors, traits, characteristics, and outcomes produced by the leaders as these elements are

interpreted by followers” Lord and Maher (1991, pag. 11)

According to their theory, leadership is the result of a perceptual process. Leaders emerge on their

match to the leader prototype held by the observers. Whenever a match between observed behaviors

and a leader prototype occurs, an accordingly process of categorization follows. Once categorized,

leaders are able to perform those functions consistent with the expectations held by the followers.

Empirical tests for the theory of leadership perception have shown:

- The personality traits and personal attributes associated with the prototype of a leader

(Lord, Foti and De Vader, 1984; Offerman, Kennedy, Wirtz, 1994).

- The effects of leadership cognitive categorization in selecting, evaluating and describing

leaders (in order: Cronshaw and Lord, 1987; Bartol and Butterfield, 1976; Eden and

Leviatan, 1975)

The leader prototype discovered by Lord et al., (1984) is composed by 59 attributes characterized

by different levels of prototypicality. The prototypicality was measured by asking respondents to

rate each item out of a list of personality attributes depending on their fit to their image of a leader.

Table 1, is a sample of the first 34 personality traits, sorted by prototypicality:

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 34 -

Laboratory tests showed how leader prototypes influence the process of selection of leaders

(Cronshaw and Lord, 1987; Smith and Foti, 1998). In the experiment conducted by Cronshaw and

Lord, groups of undergraduate students were shown a 12 minutes videotape, showing a target

person interacting with other members of a work group. The videotape shown was different for each

group participating to the experiment. In particular, in each videotape the target person behaved to

match different sets of prototypical (or anti-prototypical) qualities. Leadership perceptions,

measured through the “General Leadership Impression”26 questionnaire administered to the

students, were consistently higher relatively for those videotapes showing high prototypical

behaviors.

Categorization affects evaluations of leaders, as well. As an example, there is overwhelming

evidence that leader’s gender affects their evaluations. In an experiment conducted by Bartol and

Butterfield (1976), students were provided with one of two versions of an evaluative questionnaire

containing four stories depicting different leadership styles. These leadership styles differed in the

leader’s orientation towards production emphasis, organizing behaviors, person consideration, and

tolerance of freedom; Managers names were altered in the two versions, to indicate males or

females. Results showed that leader gender has an effect on leader evaluations. Students scored

female managers higher on person consideration, while male managers were scored higher in

organizing behaviors.

26 The GLI (General Leadership Impression) asks subjects to rate on a 5-point scale a) the amount of leadership the
ratee exhibited b) how willing the rater would be to choose the ratee as formal leader c) how typical the ratee was of a
leader c) to what extent the ratee engaged in leader behavior e) the degree to which the ratee fir their image of a leader.
These measure are composed to produce a composite GLI indicator (Cronshaw and Lord, 1987, pag. 100).

1 Dedicated 18 Fair
2 Goal oriented 19 Strong character
3 Informed 20 Open-minded
4 Charismatic 21 Persuasive
5 Decisive 22 Interested
6 Responsible 23 Insightful
7 Intelligent 24 Understanding
8 Determined 25 Competitive
9 Organized 26 Cooperative
10 Verbal skills 27 Loyal
11 Believable 28 Educated
12 Directing 29 Industrious
13 Good administrator 30 Caring
14 Honest 31 Humanitarian
15 Concerned 32 Persistent
16 Disciplined 33 Likeable
17 Trustworthy 34 Well groomed

Table 1 - The personality traits and attributes of the leader prototype discovered by Lord, Foti and DeVader
(1984), sorted in decreasing order of prototypicality.

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 35 -

The implicit theories of leadership substantially bias the way followers describe their leaders (Eden

and Leviatan, 1975; Rush, Thomas and Lord, 1977). Rush, Thomas and Lord showed that there is a

high level of congruence between factor structures obtained from descriptions of a fictitious

supervisor and descriptions of real leaders. Authors concluded that since practically identical factors

structures emerged from fictitious and real leaders descriptions, the actual behavior of a leader is

relatively unimportant for behavioral descriptions, since descriptions are based mainly on

prototypes. In particular, this biasing effect of prototypes has questioned the validity of some

leadership measuring techniques relying on rating questionnaires administered to subordinates.

3.8 Relation between personality traits and observed behaviors

So far, the terms “personality traits” and “behaviors” have been used somewhat in an

interchangeable manner. In order to understand how categorization process of persons works, a

distinction should be made between these two concepts.

Indeed, we can imagine an inferential relation between behaviors and personality traits perceived by

an observer; behaviors are observable “hints” that individuals use to infer personality traits and thus

to classify people. As Calder puts it, “Judgments about leadership are made on the basis of observed

behaviors. An individual who labels another as a leader has no direct knowledge of the other’s

internal qualities. The other person’s behavior must serve as evidence for the existence of these

qualities.” (Calder, 1977). Figure 1, shows this concept:

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 36 -

Figure 1 - Inferential relation between observed behaviors and personal qualities.

As an example, how hackers classify “good coders”? A reader knowledgeable about programming

may realize that – indeed, there are some implicit theories used to evaluate the skills of a coder, in a

conscious or unconscious way. As it emerges from some public postings available on

www.google.com27, “good code” is code understandable with minimum effort, easily modifiable,

without bugs, and able to fulfill its tasks efficiently. In addition, the same behavior can account for

different types of personal qualities: using “UPPER CASES” in a public posting will be understood

as “shouting” and thus typically as a sign of impoliteness; on the other side, upper cases may be

used to infer the authoritarian and inflexible tone of an email.

This simplified overview of the relation between personal traits and behaviors does not represent

how the human mind technically process information. What is important to note is that personal

traits are summary labels for certain sets of behaviors. These summary labels are easily

communicable among individuals, and therefore are easily accessible to discover person prototypes.

3.9 Inferential processes and leadership perceptions

So far, leadership perceptions have been explained as a process of recognition of “appropriate”

leader’s behaviors and personality traits, as they are summarized by a prototype held by the

observer. This process of traits and behaviors recognition can occur in a conscious or unconscious

27 Information using the keyword “what is good code?”.

behavior_1
behavior_2

behavior_3

behavior_x

behavior_y

personal_quality_1
personal_quality_x

person_category_x

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 37 -

manner. However, leadership perceptions have been shown to be influenced by assessments of

causality for organizational outcomes or events, as well (Lord and Maher, 1991). In a study

conducted by Rush, Phillips, and Lord (1981), people were asked to make leadership ratings, after

having seen a 15 minutes video of group-solving problem. After viewing the video, but before

making leadership ratings, bogus performance feedback was provided. Results showed that, positive

performance feedback indeed reinforced leadership perceptions. Inferential processes of leadership

perceptions can occur in a conscious or unconscious manner, as well. Observers may assess

carefully leader causality for positive outcomes or events, evaluating the impact of facilitative or

inhibitive environmental factors; this type of inferential process is compatible with the concept the

observer as a “rational information processor”. Conversely, if we treat individuals as “limited

information processor”, it is reasonable to maintain that they assess causality in a more automatic

and unconscious way, through superficial and heuristic evaluations.

3.10 Reconstructive models of leadership prototypes (2001)

The traditional model of leadership categorization (Lord et al., 1982), conceived prototypes as fixed

systems of information to be retrieved from the memory when needed. A prototype was considered

a “file in the drawer” to be located whenever a good match with observed behaviors occurred.

Indeed, there is evidence suggesting that a fixed conception of prototypes might not represent

correctly their nature. The main reason is that prototypes have been shown to vary extensively

within the same individual dependently on many factors, such as context (e.g. military leaders vs.

religious leaders) (Lord et al., 1984), hierarchical level (e.g. upper vs. lower level management)

(Lord et al., 1984), national culture (Gerstner and Day, 1994), and task type and target gender (Hall,

Workman and Marchioro, 1998). Hence, if prototypes were fixed “files in the drawer”, the human

mind would contain an improbable high number of them to provide sufficient flexibility in

perceiving leadership (Lord, Brown, Harvey and Hall, 2001).

As Lord et al., (2001) note, the context sensitivity and the extensive within-individual variability of

leadership prototypes is more consistent with a model in which prototypes are generated on-the-fly,

to satisfy contextual constraints (Barsalou, 1983).

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 38 -

Hence, it has been proposed that prototypes are not fixed systems of information to be retrieved

from, but abstractions to be rebuilt at occurrence to correspond the requirements of different

contexts, tasks or maturational stages of a group or organization (Lord et al., 2001).

3.11 Contextual constraints on prototype generation

The meaning of the term “leadership” is extremely sensitive to the context in which the perceiver

experiences it. To understand this concept, let us think about the meaning of the term “LOVE”28.

We all know what “LOVE” means; at the same time, there would be little doubt in admitting that

the term “LOVE” has different meanings dependently on the context (e.g. “LOVE” for a sport,

“LOVE” for your partner, “LOVE” for your nation [...]). Accordingly, Lord et al. (2001) maintain

that the prototype used for evaluation and selection of leaders is affected by different contextual

forces, among which:

- National and organizational culture

- Task nature

- Leader qualities

- Followers affective tone

- Followers self-schemas

- Followers level of identification with a group

Even though those constraints are simultaneously active, we can expect them to be characterized by

different levels of relative strength in shaping the generation of the leader prototype; while in some

situations the national culture may play a strong role determining the appropriate leader prototype,

in others – follower’s image of the self can have more weight.

3.12 External constraints: culture, task, leader qualities

Open-source software is produced by volunteers contributing from all over the world. Almost the

90% of the open-source developers that participated to a survey29 funded by the EU-Commission,

represented 21 different nationalities, from all the continents. The multi-cultural aspect of the open-

28 I borrowed the “LOVE” example from “Contextual constraints on prototype generation and their multilevel
consequences for leadership perceptions” (Lord, Brown, Harvey, and Hall, 2001).
29 See the “Berlecon Research GmbH - FLOSS report - part 4: Survey of Developers, June 2002.” available at
http://www.infonomics.nl/FLOSS/report

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 39 -

source development, make us wonder whether it could account for differences in leadership

perceptions. Gerstner and Day (1994), showed how business leader prototype varied considerably

among groups of participants of different nationalities, and underlined the potential effect on

practices of intercultural management.

The national cultural layer is not the only cultural “force” likely to have an effect on prototype

generation. As Lakhani and Wolf (2003) note, the open-source community shares its own culture,

represented by canonical texts like “The Jargon File”, “The Cathedral and The Bazaar” (Raymond,

1999) and the “General Public License” (Stallman, 1999); the existence of different and overlapping

cultural layers poses another question, related to the relative strength of each cultural layer in

respect to leadership.

The same nature of the task and leader qualities may have an impact on prototype generation, as

well. As an example, Hall et al. (1998) showed how, in small groups, females were more likely to

emerge as leaders on consideration tasks (e.g. behaviors aimed at the well-being of the group) while

males were more likely to emerge as leaders in initiating structure tasks (e.g. behaviors aimed at the

completion of a task in a effective and efficient manner). This gender effect is due to the fact that

certain tasks are considered stereotypically feminine while others stereotypically masculine.

3.13 Internal constraints: affect, self-schemas and level of identification

As Lord et al. (2001) note “[...] constraints may also arise from characteristics of the followers,

which operate through values, norms, affect, or goals to influence the leadership prototype that is

generated”. The internal constraints identified by the authors are: affect, self-schemas and self-

identity level.

The affective tone30 of a perceiver is likely to have a strong influence in perception of leadership,

since affective processing is fast and occurs early in the handling of any social stimulus. The

tendency to “like or dislike” a person may produce a strong internal constraint on subsequent

perceptions of leadership and on the effectiveness of leader’s behaviors.

Self-schemas are images of the self, different for every individual. When these organized

collections of information are chronic, or generally accessible (Lord et al. 2001) it is reasonable to

30 As taken from “The Medical Dictionary” available at http://www.books.md/index.html “Affective Tone” is “The
mental state (pleasure, repugnance, etc) that accompanies every act or thought”. Accessed 27 February 2004.

Implicit theories of “good leadership” in the open-source community
Cognitive categorization and leadership perceptions

 - 40 -

maintain that they can substantially affect the prototype generation. As Lord et al. (2001) put as an

example that might particularly fit the open-source environment “ [...] an individual who sees

herself as being dependent may be more likely to activate a leadership prototype in interpreting the

behavior of other individuals with whom she is interacting than an individual who sees herself as

being independent.” (Lord et al., 2001).

Another aspect of the self, is the level at which self-identity is defined. Lord et al. maintain that

self-identities can be defined at an individual, interpersonal or collective level, and that only one

level is operative at a time (Lord, Brown, and Freiberg, 1999). The activated aspect of the self-

identity, primed by the context, is called “Working Self-Concept” (Markus and Wurf, 1987). In

particular, when the self-identity is defined at a group level, traits and behaviors oriented to the

interest and identity of the whole group (e.g. self-sacrificing and cooperative) are likely to have a

strong influence in the prototype generation. Accordingly, it seems reasonable to assume that

different open-source developers may be characterized by different levels of group identification.

Kenneth Christiansen, stressed during an interview his orientation towards the product (i.e. The

GNOME Desktop Environment) and the group:

“[referring to The GNOME Project] ... it’s like we are a big family with shared grand goals. Even

though I do not like to maintain some modules because they are boring to me – I still do that for the

sake of GNOME!” [Interview with Kenneth Rohde Christiansen, 8 Oct. 2003].

On the other hand, participants whose self is defined at a more individual level31 might be less

likely to hold a prototype of a project leader based on behaviors oriented to the maintenance of the

group identity.

31 They might be those “external” participants that submit only a few patches and who are not involved in the project
life as such.

Implicit theories of “good leadership” in the open-source community

 - 41 -

Part II: Research objective and analysis

Implicit theories of “good leadership” in the open-source community
Research objective and structure

 - 42 -

4 Research objective and structure
The purposes of this chapter are:

• Present the preliminary interviews that inspired the definition of the research objective.

• Outline the research objective and the theoretical approach used.

• Briefly describe the research path I followed to achieve the research objective.

4.1 Preliminary interviews behind the definition of the research objective

During the early stage of the research process of this thesis, two interviews have been conducted

with Danish coders involved in development of open-source software. The interviews consisted in a

set of 36 questions related to the topic of leadership in the open-source environment32. The

objective was to find some interesting subjects on which to develop this paper. The questions posed

in the interviews ranged from the description of a project leader’s tasks, to the process of leaders

emergence and conflict resolution.

Answers related to the question “What are the characteristics of a good project leader?” provided

interesting clues that were worth being investigated further. The respondents’ answers suggested a

clear idea concerning the attributes and behaviors of a “good open-source project leader”. The

interviewees’ typical description spun around some recurrent concepts related to project leader’s

perceived knowledge and capacity to maintain friendly and supportive relations with other project

contributors.

Departing from this early observation, I wondered what were the main factors making up the

contributors’ idea of a “good open-source project leader”.

4.2 Research objective

The objective of this thesis is to identify the main factors describing the contributors’ personal

believes concerning the characteristics of a “good open-source project leader”. Even though

numerous attributes and behaviors may describe the contributors’ idea of a “good leader”, some of

them can be summarized by a small amount of main concepts called “factors”. If such factors are

identified, the investigation and communication of the characteristics of a “good leader” can be

performed in a more efficient way than considering single attributes and behaviors on their own.

32 Appendix A contains the questionnaire of the interviews.

Implicit theories of “good leadership” in the open-source community
Research objective and structure

 - 43 -

4.3 Theoretical model

This thesis refers the theoretical model developed by Lord, Foti and Phillips (1982) and revised by

Lord, Brown, Harvey and Hall (2001) on the implicit theories of leadership held by individuals (see

chapters 2 and 3). This theory maintains that leadership is a topic to be studied primarily in the

followers rather than in the leaders themselves. Leaders emerge over a group not for their innate

characteristics, but to the extent to which they are classified as such by the followers. The process

of leader classification is based on a set of personal attributes and behaviors called “prototype”,

which resides in the minds of the followers. Whenever a match between the perceived

characteristics of a person and the leader prototype occurs, a consistent classification follows.

Seizing on this model, this thesis investigates the prototype used by open-source contributors to

classify “good project leader”. Specifically, this paper focuses on the identification of the main

factors summarizing the contributors’ prototype.

4.4 Research structure

Three chapters are dedicated to the study of the prototype of a “good project leader”.

Chapter five deals with the identification of the prototype content. The term “prototype content”

refers to the attributes and behaviors contributors deem appropriate for a “good open-source project

leader”.

Chapter six deals with the identification of the prototype structure. The term “prototype structure”

refers to the main factors describing the attributes and behaviors of “good project leader”.

Chapter seven and eight present respectively a discussion of the identified factors and conclusions.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype content

 - 44 -

5 Identification of the prototype content
The purposes of this chapter are to:

• Identify the attributes and behaviors making up the contributors’ prototype of a “good project leader”.

• Classify the identified attributes and behaviors.

5.1 What is a “prototype content”?

The aim of this chapter is to identify the content of the prototype of a “good open-source project

leader”. The term “prototype content” refers to the attributes and behaviors33 making up the

contributors’ idea of a “good leader”.

5.2 Method used to determine the prototype content

The approach used to determine the prototype content has been based on the effects

prototypicality34 has on the probability of item recall. Behaviors, which represent well the prototype

of a person are recalled frequently by respondents. On the other hand, behaviors which do not fit the

prototype tend to be recalled less frequently (see section 3.6).

For this purpose, an open-ended questionnaire has been administered to some developers engaged

in the development of open-source software. Respondents have been asked to recall and write into a

web-form as many characteristics of a “good project leader” as they could (Appendix B contains the

complete questionnaire).

5.3 Launching the questionnaire

Data has been collected administering the questionnaire to 34 volunteers who accepted to

participate in the research between the 2 December 2003 and the 9 January 2004. Personal email

invitations have been sent to 67 randomly chosen open-source contributors, whose contacts have

been taken from public mailing-list postings. No more than two or three contact emails were taken

from the same mailing-list of a project. Thirty-four respondents agreed to participate35. The

33 From now on, the term “behaviors” will be used as a shortened version of “attributes and behaviors”.
34 Prototypicality measures how well a behavior represents an individual’s image of a certain person (see section 3.4).
35 The participation rate was approximately equal to 51%.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype content

 - 45 -

invitation contained a link to a web-based questionnaire set up in the server facilities of the

university. As a whole, 392 raw items have been collected36.

5.4 Classification of the collected items

The first problem concerning the raw data was its classification and normalization. Each of the 34

submissions contained some redundant items, which required treatment. In addition, while some

items were expressed in short terms e.g. “competent”, some others consisted in little but articulated

behavioral descriptions e.g. “being a visible leader in the mailing list and other form of

communications means”. Indeed, raw data had to be refined to get a clear picture of the prototype

content.

The process of data refinement proceeded in the following manner:

1. The behaviors of the first submission inspired the determination of some initial “behavioral

classes” necessary for item categorization.

2. The behaviors collected with the second submission have been categorized using the

existing behavioral classes cited in point 1.

3. If some behaviors of the second submission did not fit the existing classifications, then new

classes were extracted and kept apart for reuse.

4. The same process of categorization has been performed for all the subsequent contributions.

The labels for each behavioral class have been determined by considering the typical descriptions

submitted by respondents. As an example, “patience” was an attribute frequently recalled by

contributors. Even though some respondents submitted the term “patient” without any additional

specification, the majority of those leaving a behavioral description about the same attribute

reported “patience in dealing with the contributors”. In such case, the explicit description of an

attribute was selected as a basis for the behavioral label.

The process of item classification has been performed with a certain level of approximation.

Typically, approximation has been based on the similarity of the terms used e.g. “friendly” has

been classified as “He is friendly and approachable” and concepts expressed e.g. “gives voice to the

project” has been classified as “He acts as the spokesman of the project”.

36 This value has been calculated consolidating all the results and counting the number of carriage returns (“return” to a
new line character), excluding blank lines.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype content

 - 46 -

Whenever item classification was doubtful due to the level of abstraction of the terms or

descriptions used, approximation has been performed after having contacted by email the original

submitter for a clarification e.g. “leads by doing” after a clarification turned to be “He is active in

the development of code”. Since respondents sometimes tended to clarify one attribute using two or

more behavioral descriptions, all of them were used for the item classification e.g. “provides

leadership to less experienced developers” after clarification has been classified either as “He is

willing to mentor others” and ”He sets out the overall direction of the project”. Table 2 is an

example of raw submission with the correspondent classification:

Raw submission Classification Raw submission Classification

accept comments and
suggestions

He accepts comments
and suggestions

 develops and develops He is active in the
development of code

gives voice to the group He acts as the
spokesperson of the
project

 good vision He has a vision, a future
perspective for the
project

solve disputes He cares about settling
conflicts between
developers

 help with fixing bugs He helps contributors
resolve technical
problems

constantly reviews code
for quality testability

He is committed to a
quality product (he
makes sure bugs are
corrected)

 never nervous He is calm and
equilibrate

keeps deadlines He emphasizes the
meeting of deadlines
(e.g. "feature freezes")

 friendly He is friendly and
approachable

maintains the project
actively

He is dedicated to the
project (time, effort [..])

 knows every technical
aspect of the project

He is knowledgable on
technical aspects of the
project

patient He is patient when
dealing with contributors

 educate new developers He is willing to mentor
others

visible in the mailing list He is present in the
places where
development occurs
(mailing-lists/IRC/etc.)

 able to write real code He is technically
competent - he writes
real good code

rigorous He is technically accurate listen to contributors He listens to what
contributors have to say

good motivation skills He motivates contributors review patches He reviews the work of
others

points out possible
corrections

He offers new
approaches to problems

 creates infrastructure He sets up / maintains an
infrastructure
(cvs/website/mail-list)

Table 2 -Example of a raw submission with related classification.

The complete list of raw items with corresponding classification is presented in Appendix D.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype content

 - 47 -

As the process of classification went on, the extracted behavioral classes were lumped on the group

of available labels. At the end of the process of classification, the number of behavioral classes was

equal to 89.

5.5 Results of the classification process

Once classified, absolute frequencies have been calculated for each behavioral class, counting the

number of times it has been used in the process of item categorization. Behavioral classes used

more than once in the classification of the behaviors submitted by the same respondent, accounted

for one unit in the calculation of the frequencies. Table 3 presents a sample of such items, sorted by

frequency of use in the classification process. Appendix C contains the full list.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype content

 - 48 -

Item # Personal attributes and behaviors used more than 5 times for the classification of the raw items Absolute

frequency
1 He is technically competent - he writes real good code 20
2 He has a vision, a future perspective for the project 12
3 He is dedicated to the project (time, effort [..]) 12
4 He is committed to a quality product (he makes sure bugs are corrected) 11
5 He is easy to understand 10
6 He is patient when dealing with contributors 10
7 He helps contributors resolve technical problems 9
8 He is active in the development of code 9
9 He is delegative - he doesn't try to do all the work on his own 9

10 He is friendly and approachable 9
11 He is present in the places where development occurs (mailing-lists/IRC/etc.) 9
12 He is knowledgeable on technical aspects of the project 8
13 He sets up / maintains an infrastructure (cvs/website/mail-list) 8
14 He establishes the roadmap/plan for the development 8
15 He keeps everyone informed on the project directions and achievements 7
16 He offers new approaches to problems 7
17 He accepts comments and suggestions 7
18 He is willing to mentor others 7
19 He makes decisions - public debate could drag ineffectively for weeks 7
20 He coordinates the efforts of the contributors (e.g to avoid overlapping contribution and to make things work

together)
6

21 He encourages participation to the project 6
22 He is an experienced coder 6
23 He praises developers for their contribution 6
24 He listens to what contributors have to say 6
25 He sets out the overall direction of the project 6
26 He emphasizes the meeting of deadlines (e.g. "feature freezes") 6
27 He answers emails in a timely fashion 6
28 He cares about settling conflicts between developers 5
29 He decides what code/features to include or not to include 5
30 He discusses in the open various approaches with other coders 5
31 He is polite and respectful 5
32 He is concerned with getting the things done 5
33 He makes sure that guidelines and coding procedures are available to developers 5
34 He accepts external contributions (he is willing to say "that piece of work is better than mine") 5
35 He acts as the spokesperson of the project 5
36 He represents the project in conferences and the like 5

Table 3 – Behavioral classes used more than 5 times in the classification of the raw items.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 49 -

6 Identification of the prototype structure
The purposes of this chapter are to:

• Explain what the term “prototype structure” means and why it is worth investigating.

• Describe the second questionnaire used to collect the necessary data to study the prototype structure.

• Describe the application of factor analysis to identify the prototype structure.

6.1 What is a “prototype structure” and why is it worth investigating?

The aim of this chapter is to identify the structure of the prototype of a “good open-source project

leader”. The term “structure” means the basic concepts that summarize developers’ idea of “good

leadership”.

The contributors’ image of a “good leader” has proven to be composed by numerous attributes and

behaviors37. Nonetheless, it is possible to identify some basic behavioral descriptions that

summarize this prototype. In particular, some behaviors may be grouped together by some latent

relationship, in the mind of the respondents. If such relationship can be identified, it can be used to

summarize the personal believes of the open-source contributors.

A statistical approach called “factor analysis” is used to identify latent relationships between

variables describing a phenomenon. Such analysis allows a researcher to classify the correlated

variables into groups called “factors”. Accordingly, in this chapter such tool will be applied to the

available data.

However, factor analysis cannot be applied directly to the list of items classified in chapter 5. This

plain list does not provide the necessary information to determine how behaviors tend to group in

the minds of the contributors. Therefore, a method to identify such clusters of behaviors had to be

figured out for the second stage.

The methodology used by psychological studies consists in administering a questionnaire of

behaviors which asks respondents to rate each item dependently on how well it describes a person

they have classified under a certain category. Subsequently, factor analysis figures out any latent

relationship among behaviors by analyzing the way ratings tend to co vary. If the analysis identifies

any regularity in the way behaviors are rated, a factor is said to exist.

37 The study of the prototype content described in chapter 5, identified 89 attributes and behaviors.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 50 -

In the same manner, a rating-based questionnaire which asked respondents to describe a real life

“good project leader” has been put together. The next section will describe the principle behind its

creation.

6.2 The principle behind the rating-based questionnaire

The principle on which the rating-based questionnaire has been created, refers to the effect the

prototypes have on the way individuals are described. As noted in section 3.7, people tend to

describe a person accordingly to the prototype they have used for their classification (Eden and

Leviatan, 1975; Rush, Thomas and Lord, 1977). This means that the actual behavior of a person is

relatively unimportant for behavioral descriptions, since descriptions are mainly based on the

prototype we use to classify a target person.

Accordingly, in the questionnaire set up for this stage, participants have been asked firstly to

classify the leaders they dealt with dependently on their level of satisfaction and secondly, to

describe the classified leaders by rating each listed behaviors on a “1 to 9” scale. The next section

will describe the choices of leader classifications available to the respondents.

6.3 Leaders’ classification accordingly to the respondents’ level of satisfaction

If respondents were only asked to describe their leaders, there would be no way to verify in which

category such leaders were classified – specifically whether they were “good leaders” or “bad

leaders”. For this reason respondents have been asked to classify the leader they dealt with before

performing the description.

However, respondents have not been asked to classify their leader using categories like “good

project leader” or “bad leader”, since such qualifications might have been perceived as too personal

or just inappropriate. Therefore, a different approach has been selected. Respondents have been

asked to classify their leaders according to the level of satisfaction they experienced while working

with them.

Five evaluative statements were available for leader classification to provide respondents with

sufficient flexibility when expressing their level of satisfaction. The evaluative statements were:

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 51 -

• “I am VERY satisfied with my project leader”

• “I am satisfied with my project leader”

• “I am sufficiently satisfied with my project leader”

• “I am unsatisfied with my project leader”

• “ I am NOT satisfied at all with my project leader”

However, the main focus in this thesis is on leaders that contributors are satisfied with. Hence, only

the submissions of the contributors that stated to be generally satisfied with their leader, have been

considered for the analysis. Specifically, the submissions relative to the first three evaluations have

been grouped and considered as equivalent.

After having performed the classification, respondents have been asked to describe the classified

leader by rating each behavior listed in the questionnaire. The next section shows which behaviors

have been chosen to be part of the survey.

6.4 Selecting the attributes and behaviors to build the questionnaire

In order to focus the study on the most relevant behaviors of a “good project leader”, 36 out of 89

identified items have been retained for the rating-based questionnaire. The behaviors selected were

the ones used at least five times in the classification process carried out in the first stage.

Indeed, all the 89 behaviors are part of the prototype of a “good project leader”. However, each

behavior has a different “weight” in the classification process, which can be approximated by the

number of times it has been recalled by contributors38. Behaviors recalled more frequently are those

that capture the essence of the prototype and hence are most important in classifying a “good

leader”.

Before converging into the questionnaire, the picked items have been randomly mixed to eliminate

any possible bias due to the order they were shown in. Appendix E contains all the snapshots of the

questionnaire.

38 See section 3.6 for the effect prototypicality has on probability of item recall.

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 52 -

6.5 Launching the questionnaire

For this questionnaire, invitations have been publicly posted between the 2 February 2004 and the

22 February 2004 in the development mailing lists of the open-source projects listed in Appendix F.

The invitation posted contained a link to the questionnaire web page. Access to the questionnaire

was not regulated by any PIN code or any other authentication method39 to facilitate questionnaire

participation.

As a whole, 104 valid submissions40 have been collected, among which:

• 36 respondents stated to be “VERY satisfied” with the leader of the project in which they

were active the most;

• 35 respondents stated to be “satisfied”

• 27 stated to be “sufficiently satisfied”

• 6 respondents stated to be “unsatisfied”

• No respondents said to be “NOT satisfied at all”

6.6 Performing factor analysis on the data

In the rating-based questionnaire respondents were asked to describe their project leaders by rating

each behavior listed on a scale from 1 to 9. We can wonder whether the ratings collected for each

behavior are moving independently from one another or if some of them tend to move together in a

consistent manner - thus revealing that a latent relationship connects them.

Factor analysis is a statistical approach capable of figuring out any latent relationship among

variables. Accordingly, “principal axis factoring”41 has been applied to the available data, using a

statistical software application called “SPSS version 12”42.

39 The fact that the questionnaire access was not controlled by any authentication method (e.g. PIN code), questions the
quality of the submissions. As a way to ensure a reasonable level of submissions quality, the questionnaire has been
publicized ONLY on relevant development mailing list (advocacy mailing list have been carefully avoided). In addition,
those contributions that missed more than 1/3 of the 36 questions have been eliminated.
40 The total amount of raw submission was equal to 198 out of which 94 had to be eliminated because either totally left
blank or not reaching the minimum number of answers for contribution validity (24 items out of 36). Hence the
response rate was equal approximately to 47%.
41 “Principal axis factoring” is the exact label for the factor analysis I introduced.
42 In this chapter factor analysis is considered as a useful tool to achieve the objective of this thesis, without going into
an in depth description. However, an exhaustive explanation of factor analysis is presented by the article of Rudolph J.
Rummel, “Understanding Factor Analysis” available at: http://www.hawaii.edu/powerkills/UFA.HTM

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 53 -

It is important to outline two characteristics in the way this type of tool extract factors from a set of

data:

1. Factors extracted are uncorrelated (i.e. it is possible to think of them as perpendicular lines

in a space.)

2. Factors are extracted in a specific order, from one that explains the greatest regularity in the

way data tend to move, to those that marginally account for lower levels of such regularity.

From a researcher’s point of view, not all the identifiable factors are equally interesting. As said,

factors tend to explain less and less amounts of latent regularity in the data as they are extracted.

Thus, the first question in a factor analysis is to decide how many factors to extract, knowing that

factors that are furthest away can only explain lower level of regularity.

The rule of thumb for determining the number of factors to extract is to retain those associated to an

“eigenvalue greater than one”, to say those factors that explain at least the variance accounted for

by one of the original variables. Following, is a graphic representation of the eigenvalues associated

to each factor, called “scree plot”:

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 54 -

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

Factor Number

0

2

4

6

8

10

12

Ei
ge

nv
al

ue
Scree Plot

Figure 2 - Graphical representation of the eigenvalues associated with each factor

Figure 2 shows each factor associated to the amount of variability it can explain. As it can be seen

from the scree plot, the first factor account for the largest amount of regularity in the data.

Accordingly, all the following factors explain decreasing levels of regularity.

From the scree plot in Figure 2, eight factors are associated to an eigenvalue greater than one and

thus are worth to be extracted. However, since the first three factors account for the majority of the

total variance, those are the ones that will be considered in this analysis.

The first thing to do after the selection of the number of factors to extract, is to estimate how much

variance they account for, as a set. Such information is contained in Table 4:

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 55 -

Initial Eigenvalues
Extraction Sums of Squared

Loadings Rotation Sums of Squared Loadings

Factor Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

%
1 11.242 31.227 31.227 10.734 29.818 29.818 7.311 20.308 20.308
2 3.372 9.367 40.594 2.912 8.088 37.906 5.574 15.483 35.791
3 3.190 8.861 49.455 2.661 7.393 45.298 3.423 9.508 45.298
4 1.677 4.658 54.113
5 1.536 4.266 58.379
6 1.444 4.010 62.389
7 1.355 3.763 66.152
8 1.273 3.535 69.687

Table 4 - Total variance explained by the extracted factors

The values grayed out in Table 4 show that the three first factors account for the 45% of the total

variance. This means that the 45% of the variation of the 36 variables can be explained by three

latent relationships (factors).

Now that we know that three relationships exist, the question is: “What are the behaviors involved

in such relationships?”

6.7 Identification of the behaviors making up each factor

Factor analysis produces an “unrotated factor matrix”43. Such matrix shows how many factors have

been extracted and the amount of variability explained by each one. However, this matrix does not

provide an easy way to identify the behaviors involved in each relationship. For this purpose, a

rotation must be applied to the unrotated factor matrix.

To understand what a rotation is, we can think of factors as perpendicular axis projected in a space

in which behaviors are plotted as points. Such points may tend to form distinct clusters in the space,

thus revealing that they are kept together by some latent relationship. Rotations “rotate” factor axis

until they identify such clusters and the behaviors that make them up.

For this part of the analysis, a Varimax orthogonal rotation has been applied to the unrotated matrix

shown in Appendix G. Such orthogonal rotation has been selected because it permits to identify

43 This matrix is shown in Appendix G

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 56 -

clusters of behaviors that are uncorrelated. This means that the identified behaviors represent the

“essence” of the phenomenon and thus do not contain any redundant information.

The output of such rotation is shown in the “rotated factor matrix” in Table 5:

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 57 -

Factor
 1 2 3
discusses_openly .637 .108 .281
accepts_contributions .632 .003 .273
patient .763 .214 .080
answers_emails_promptly

.594 .393 -.109

easy_to_understand .705 .253 -.091
delegative .557 .103 .198
settle_conflicts .588 .339 -.094
friendly .793 -.060 .060
keeps_informed .465 .501 .102
listens .803 .305 -.003
accepts_suggestions .724 .228 .130
praises_developers .493 .459 .006
polite .718 .130 .105
represents_the_project .114 .513 -.120
talks_for_the_group .248 .453 -.191
knowleadgeable .251 .089 .684
experienced -.006 -.071 .875
competent .215 -.058 .749
sets_direction .120 .570 .297
has_vision .347 .594 .132
mentor_others .339 .514 -.066
helps_contributors .422 .365 .372
offers_new_approaches .393 .372 .363
decides_what_to_include -.220 .312 .478
makes_decisions -.020 .710 .073
maintains_infrastructure .107 .421 .107
establishes_roadmap .102 .701 .251
coordinates_work .505 .344 .100
makes_guidelines .208 .450 -.001
commited_to_quality .164 .370 .395
encourgaes_participation .582 .431 .262
dedicated -.022 .472 .098
get_things_done .265 .648 .084
emphasizes_deadlines .235 .475 -.006
present .118 .243 .122
active .065 .096 .594

Table 5 - Rotated factor matrix of the three factors (Varimax)

Implicit theories of “good leadership” in the open-source community
Identification of the prototype structure

 - 58 -

The rows of such matrix define the behaviors44 while the columns define the extracted factors. The

cells of the matrix show “factor loadings” that indicate how much each behavior correlates to each

factor - basically how near a point is to the rotated axis. Such factor loadings range from 1 to -1.

While a factor loading of 1 indicates a perfect positive correlation between a behavior and a factor

(i.e. the behavior lies exactly on the factor), a factor loading of 0 indicates the absence of correlation

between a specific pair of behaviors and factor.

As a rule of thumb, items that correlate at least 0.4 on the highest factor and less than 0.3 on the

others are considered as part of a factor. Following the factor loadings marked accordingly to this

rule in Table 5, it is possible to determine the behaviors part of each factor. These behaviors

grouped for each factor, are shown in the following table:

1 2 3

discusses_openly represents_the_project knowleadgeable
accepts_contributions talks_for_the_group experienced
patient sets_direction competent
easy_to_understand makes_decisions active
delegative maintains_infrastructure
friendly establishes_roadmap
listens makes_guidelines
accepts_suggestions dedicated
polite get_things_done
 emphasizes_deadlines

Table 6 - Behaviors part of each of the three factors extracted

Now that the items composing each factor have been identified, the question is: “What do these

factors represent?”.

44 The rows of the matrix shown in Table 5 reports stripped-down versions of the behavioral descriptions used in the
rating-based questionnaire.

Implicit theories of “good leadership” in the open-source community
Discussion

 - 59 -

7 Discussion
The discussion will focus on three points:

• The interpretation of the factors.

• The relation between the factors.

• The capacity of the three factors to describe a “good project leader”.

7.1 The interpretation of the factors

The analysis performed in the precedent chapter revealed that three main factors summarize the

developers’ prototype of a “good project leader”. However, such analysis does not tell us what

those factors represent. This is the reason why the factors must be interpreted.

The factor interpretation is performed by considering all the behaviors making up each factor. As

shown in Table 6 the behaviors that correlate strongly with the first factor depict a friendly and

patient project leader, willing to listen to the contributors’ suggestions and delegate tasks. This

leader is easy to understand by the contributors, he publicly discusses different technical approaches

and does not refuse to recognize the good work of others. This description identifies a category of

behaviors that stresses the importance of the consideration for the person. Therefore, this factor has

been labeled “person orientation”.

The second factor is composed by behaviors that emphasize the leader orientation towards the task

and the facilitation of work. This leader is perceived as dedicated to the project and goal-oriented.

He takes care of planning activities, makes sure that guidelines are available for contributors, and

emphasizes deadlines for the submission of new software functionalities. Such leader performs the

necessary organizational activities for the project to keep it in process. Accordingly, this cluster of

behaviors has been labeled “task orientation”.

The last group is made up by a few items which nonetheless correlate strongly with the factor. The

technical skills of the leader, his level of experience and the involvement in the production of code

depict a leader that “knows and does”. This factor has been labeled “competence/activity”.

The three interpreted factors are shown in the following table:

Implicit theories of “good leadership” in the open-source community
Discussion

 - 60 -

Person orientation Task orientation Competence/Activity

discusses_openly represents_the_project knowleadgeable
accepts_contributions talks_for_the_group experienced
patient sets_direction competent
easy_to_understand makes_decisions active
delegative maintains_infrastructure
friendly establishes_roadmap
listens makes_guidelines
accepts_suggestions dedicated
polite get_things_done
 emphasizes_deadlines

These three factors summarize the contributors’ expectations towards their project leader. A “good

leader” is expected to be a competent programmer active in the development of code, who engages

in the provision of organizational services instrumental to the achievement of the project goals and

able to maintain friendly and considerate relation with the contributors.

The process of interpretation permits the identification of the main concepts behind the

contributors’ idea of a “good leader”, nevertheless it does not tell us whether there is any relation

between these factors. The next section will answer this question.

7.2 The relation between factors

If we go through Table 5, we notice that some behaviors correlate highly on two or three factors. As

an example, “He settles conflicts between developers” and “He praises developers for their

contributions” are both highly correlated with the “person orientation” and “task orientation”

groups. The same can be said in respect to “He coordinates the efforts of the contributors” and “He

keeps everyone informed on the project directions and achievements”. Why do such behaviors

correlate highly on different factors?

My explanation is that, in the open-source environment it can be difficult to draw a clear distinction

between task oriented and person oriented behaviors, for two reasons:

1. Some behaviors oriented to the facilitation of the work and the provision of organizational

services, are perceived by the community also as expressions of person consideration. As an

example, “coordinating the efforts of the contributors” is not only perceived as a way to

Implicit theories of “good leadership” in the open-source community
Discussion

 - 61 -

achieve the project goals, but also as a sign of “kindness and friendliness”, since the project

leader is typically not paid for that.

2. Some behaviors oriented to the consideration of the person and the maintenance of group

well-being, are necessary for the achievement of the project goals. This is especially true in

the open-source environment in which contributions are unpaid. “Praising developers for

their contributions” is not only a sign of person consideration, but also a way to keep the

flow of unpaid contributions alive. On the other hand, “Settling conflicts between

developers” is necessary to avoid the fragmentation of the group and keep the project in

process.

This observation reveals that, task oriented and person oriented behaviors are intertwined. However,

it is difficult to say to what extent such factors are overlapping, since not all the behaviors correlate

highly on both factors. As an example “He is friendly and approachable”, correlate highly with the

person orientation and low with task orientation. This means that being friendly is a good sign of

person orientation, but not necessarily of task orientation.

On the other hand, the behaviors shown in Table 5 do not tend to intercorrelate very much with the

competence/activity factor, meaning that this group is distinct from the task and person orientation

ones.

7.3 The capacity of the three factors to describe a “good project leader”

So far, three factors have been identified and interpreted, which explain the 45% of the total

variation of the data. This is a remarkable amount but there is still a portion of variation that is not

accounted for by any of the three factors. Therefore, what explains the rest of the variation?

Other factors than the three extracted ones might explain the remaining portion of variability. The

scree plot shown in Figure 2 suggests the existence of five additional relationships between

behaviors. However, these factors cannot account for all the variation that is left45.

45 The purpose of this thesis is to focus of the main latent relationship in the data. This is the reason why, such
additional factors have not been extracted.

Implicit theories of “good leadership” in the open-source community
Discussion

 - 62 -

The remaining variation can be due to the absence of any regularity in the way “good project

leaders” have been described by respondents. Now the question is “what is the source of such

irregularity?”

A possible explanation can be related to the context surrounding the project. As Lord et al. (2001)

suggest, there are different contextual constraints that shape the prototype of a leader (see section

3.11). National culture of the followers, the nature of the task a leader is expected to perform,

followers self-schemas, are all forces that make the prototype of a “good leader” variable from

situation to situation. Among these, I think that the nature of the task a leader is expected to perform

affected substantially the results of the analysis. This is especially true if we recognize that

leadership often is shared among open-source contributors by distributing responsibilities for

different tasks (see section 1.8). As an example, in the FreeBSD project a “core team” assigns

maintainers to different areas of code and solve disputes between them, while a “release team” is

expected to emphasize deadlines for the submission of new software functionalities (Saers, 2003).

This observation is particularly appropriate if we consider the mailing lists of the projects in which

the invitation to the questionnaire has been posted. Most of them are big projects, likely to present

complex leadership arrangements, in which responsibilities are spread among a large number of

participants. In such cases, contributors may hold different prototypes of “good leaders” depending

on the tasks leaders are expected to perform.

This thesis has studied the prototype of a “good project leader” in general terms, without taking into

account the leadership arrangements of a project. However, if information concerning the

distribution of the responsibilities within projects had been collected, there most probably would

have emerged a clearer picture of the prototype of a “good leader”.

Implicit theories of “good leadership” in the open-source community
Conclusions

 - 63 -

8 Conclusions

The objective of this thesis was to identify the main factors describing the open-source contributors’

personal believes concerning the attributes and behaviors of a “good project leader”. The

contributors’ believes proved to be rooted into three factors, which represent:

• The project leader’s orientation towards the maintainance of friendly and considerate

relationships with the contributors (person orientation).

• The project leader’s orientation towards the achievement of the project goals, through the

provision of organizational services to the community (task orientation).

• The project leader’s competence and activity in the development of code

(competence/activity).

Specifically, the task and person orientation factors are not clearly distinct in the minds of the

contributors. The contributors’ believes concerning “good leadership” interwine the leader’s

orientation towards the facilitation of the work and achievement of the project goals with his

orientation towards the maintainance of the relations with the developers. There are two possible

explanations for this effect:

1. Open-source contributors consider the leader’s provision of organizational services to the

community as a sign of concern towards getting the work done (task orientation) and also as

a sign of kindness and friendliness (person consideration), since the leader typically

performs such role for free.

2. Open-source contributors perceive that the achievement of the project goals cannot be

performed without keeping considerate relationships with developers and maintaining the

social well-being of the community.

In addition, this thesis shows that the expectations held by contributors towards “good leaders” are

variable. Even though different contextual forces may constrain the contributors’ expectations, the

leadership arrangements of the project (i.e. how responsibilities are shared among participants) play

Implicit theories of “good leadership” in the open-source community
Conclusions

 - 64 -

a strong role in shaping the contributors’ personal believes concerning the characteristics of a “good

project leader”.

Implicit theories of “good leadership” in the open-source community
Appendices

 - 65 -

Appendix A – Preliminary interview questions

1. What is your personal conception of the term “leadership”? Can you state your personal
definition?

2. Can you lower the concept of “leadership” in the open source environment? What does the

term “he/she is the leader of this project” or “they are the leaders of this project” mean?

3. Can you cite any example of a leader (person or group) of an open-source project?

4. Why do you think of him/them as leader/s?

5. What is the difference between a “leader” and a “maintainer”?

6. Can you think about maintainers being leaders and maintainers NOT being leaders? What
does justify this existent or missing overlapping?

7. Can you cite any leaderless open-source project? What makes you think that there is no

leader in such projects?

8. Can you explain why some open-source projects do not have a leader?

9. Why do some projects present a shared-leadership model, while others a single person
leader?

10. Into those projects showing a clear leadership dynamic, is the leader occupying a formal

position?

11. What are the characteristics of a leader candidate?

12. Is there any formal procedure governing the “election” of the leader?

13. Is there any informal path through which contributors become leaders? If any, can you
describe it?

14. To what extent do you think the role of a “leader” is a natural emergent figure opposed to

the result of an appointment procedure?

15. Is the emergence of a leader related to any condition you can state?

16. Can you describe the difference between a leaderless and a leader-endowed project? In
which way you think they perform differently?

17. How important is the role of a leader for the success of an open-source project? Can you

state the reasons?

18. What are the tasks carried out by a leader? What type of tasks are exclusively carried out by
the leader or the leading group?

19. To what extent do you think the task of a leader is strictly “technical”? (e.g. just a

gatekeeper to the CVS)

Implicit theories of “good leadership” in the open-source community
Appendices

 - 66 -

20. Can you cite any example project that owns a lot of its success to the organizational

capacities of the leader? What is it special with him? What kind of tasks does he perform?

21. What are the characteristics of a good leader? What are the prerequisite for a good leader?

22. What shouldn’t a leader do? Can you state any “don’t” for an open-source leader?

23. Can you state any open-source project in which, even existing a formal leader, still there are
some persons exerting a considerable influence on the project? Along what dimensions is
this influence exerted? What makes this influence effective/ineffective?

24. Have you ever felt being an “example” for your members? In relation to what aspects? Why

contributors were looking at you as an “example”?

25. Have you ever felt like leading the group, or part of it? What makes you think you were
occupying a leadership position?

26. Let us say you had to cite the most representative contributor of the project you are

participating to. At which developer would you point at? Why do you think of him as the
most representative contributor of the project? Do you think he exerts any influence over the
other members? If yes, in respect to what aspects?

27. What are the “sources of power” backing the capacity of a leader to influence contributors?

28. How would you go if you had to “persuade” a contributor to perform a certain task? Have

you ever been effective doing this? What made your “persuasion attempt” successful?

29. Do you think there are tasks for which it is easier to “persuade” contributors to perform
them?

30. Have much of your work, requiring a sort of interaction with others, is resolved through

“orders”?

31. Have you ever felt authoritative? Can you cite any example of leader authoritative behaviour
in an open-source project? What did justify his authority?

32. What is the nature of the most common conflicts in the open-source environment? How are

such conflicts resolved?

33. Can you remember any situation in which a third person intervened resolving a conflict?
What was the source of his capacity to settle such conflict?

34. Do you ever intervene in resolving any disputes? Why have you felt like doing that? Have

you been effective for this purpose? What did it make you effective?

35. Is there anyone able to assign tasks? How successful is he at that? Has he any authority
doing that? What does justify his authority? If he has not any authority, what makes him
effective?

36. How would you identify the leader (or leaders) in an open-source project?

Implicit theories of “good leadership” in the open-source community
Appendices

 - 67 -

Appendix B – First open-ended questionnaire

Implicit theories of “good leadership” in the open-source community
Appendices

 - 68 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 69 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 70 -

Appendix C – List of the extracted behavioral classes

Item # Extracted behavioral classes (1 of 2) Absolute
frequency

1 He is technically competent - he writes real good code 20
2 He has a vision, a future perspective for the project 12
3 He is dedicated to the project (time, effort [..]) 12
4 He is committed to a quality product (he makes sure bugs are corrected) 11
5 He is easy to understand 10
6 He is patient when dealing with contributors 10
7 He helps contributors resolve technical problems 9
8 He is active in the development of code 9
9 He is delegative - he doesn't try to do all the work on his own 9

10 He is friendly and approachable 9
11 He is present in the places where development occurs (mailing-lists/IRC/etc.) 9
12 He is knowledgeable on technical aspects of the project 8
13 He sets up / maintains an infrastructure (cvs/website/mail-list) 8
14 He establishes the roadmap/plan for the development 8
15 He keeps everyone informed on the project directions and achievements 7
16 He offers new approaches to problems 7
17 He accepts comments and suggestions 7
18 He is willing to mentor others 7
19 He makes decisions - public debate could drag ineffectively for weeks 7
20 He coordinates the efforts of the contributors (e.g to avoid overlapping contribution and to make things

work together)
6

21 He encourages participation to the project 6
22 He is an experienced coder 6
23 He praises developers for their contribution 6
24 He listens to what contributors have to say 6
25 He sets out the overall direction of the project 6
26 He emphasizes the meeting of deadlines (e.g. "feature freezes") 6
27 He answers emails in a timely fashion 6
28 He cares about settling conflicts between developers 5
29 He decides what code/features to include or not to include 5
30 He discusses in the open various approaches with other coders 5
31 He is polite and respectful 5
32 He is concerned with getting the things done 5
33 He makes sure that guidelines and coding procedures are available to developers 5
34 He accepts external contributions (he is willing to say "that piece of work is better than mine") 5

35 He acts as the spokesperson of the project 5
36 He represents the project in conferences and the like 5
37 He makes sure that documentation of the software is available 4
38 His mind is open to new solutions 4
39 He promotes the project (advertises it, maintains PR etc) 4
40 He reviews the work of others 4
41 He has a mature sense of responsibilities 4
42 He recruits new project members 4
43 He organizes the project activities 4
44 He discourages heated arguments 3
45 He has a general overview of the project 3

Implicit theories of “good leadership” in the open-source community
Appendices

 - 71 -

Item # Extracted behavioral classes (2 of 2) Absolute
frequency

46 He motivates contributors 3
47 He is calm and equilibrate 3
48 He is enthusiast of the project and excitable 3
49 He is intelligent 3
50 He is technically accurate 3
51 He believes in the open-source ideology 2
52 He builds personal relations with contributors 2
53 He gives feedbacks on the work of others 2
54 He explains publicly his choices 2
55 He has cultural sensitivity 2
56 He is collaborative 2
57 He is diplomatic 2
58 He is humble 2
59 He is humorous - development is fun with him 2
60 He is not easily drawnable into flamefests 2
61 He is optimist 2
62 He knows about cutting edge techniques 2
63 He takes care of building the final package 2
64 He throws project members out if they have negative overall contribution 2
65 He starts a project out of a desire to learn or expand the knowledge of a new technology 2
66 He is organized 2
67 He knows at least one second language 2
68 He makes no discriminations 1
69 He actively looks for people to work on things that nobody picks up 1
70 He adjusts to changes fast 1
71 He considers aesthetical issues 1
72 He divides the work among contributors 1
73 He does not rule out people when people don't fit his vision 1
74 He establishes partnership with companies and others projects 1
75 He has an independent character 1
76 He has been under a good project leader for a long time 1
77 He has the ability to think like a user (to approximate their needs) 1
78 He is a perfectionist 1
79 He persuades others that the chosen idea is best 1
80 He is always looking for improvements 1
81 He is knowledgeable on legal aspects 1
82 He is prone to step out when needed 1
83 He is realistic on what could be done and achieved 1
84 He is self-motivated 1
85 He is willing to prune to improve growth 1
86 He favors information exchanges 1
87 He is trustworthy 1
88 He keeps the project interesting and alive 1
89 He organize meetings (IRC, email [..]) 1

Implicit theories of “good leadership” in the open-source community
Appendices

 - 72 -

Appendix D – List of the raw items and related behavioral classification

1 He accepts comments and suggestions accept comments and suggestions
2 He accepts comments and suggestions be open to suggestions by others
3 He accepts comments and suggestions take advices from the team
4 He accepts comments and suggestions listens to developers comments
5 He accepts comments and suggestions listens to criticism
6 He accepts comments and suggestions / He accepts external

contributions (he is willing to say "that piece of work is better
than mine")

encourages feedback and contributions

7 He accepts comments and suggestions / He accepts external
contributions (he is willing to say "that piece of work is better
than mine")

accepts feedback and contributions

8 He accepts comments and suggestions / He makes decisions -
public debate could drag ineffectively for weeks

accepts different points of view but then he must take a
decision

9 He accepts external contributions (he is willing to say "that
piece of work is better than mine")

accept external contributions

10 He accepts external contributions (he is willing to say "that
piece of work is better than mine")

be willing to accept code from others

11 He accepts external contributions (he is willing to say "that
piece of work is better than mine")

accepts code

12 He actively looks for people to work on things that nobody picks
up

activily looks for people to work on things that nobody picks up
themselves

13 He acts as the spokesperson of the project gives voice to the group
14 He acts as the spokesperson of the project talks for the project
15 He acts as the spokesperson of the project talk person
16 He acts as the spokesperson of the project makes announcements for the project
17 He acts as the spokesperson of the project project spokesperson
18 He adjustes to changes fast Ability to ajust to changes FAST
19 He answers emails in a timely fashion respond to emails: be available and responsive when other

contributors (and potential contributors) ask questions

20 He answers emails in a timely fashion answers emails in a timely fashion
21 He answers emails in a timely fashion *responding to email promptly (even when you don't want to)

22 He answers emails in a timely fashion answers e-mails right away
23 He answers emails in a timely fashion *available
24 He answers emails in a timely fashion answer emails fast
25 He believes in the open-source ideology *wants to be part of the open-source community
26 He believes in the open-source ideology not to idealogical
27 He builds personal relations with contributors Empaty (getting to know people on the project on a personnal

level)}

28 He builds personal relations with contributors *the ability to work |with others remotely and still maintain and
sense of |connectiveness

29 He cares about settling conflicts between developers settles disagreements between other developers
30 He cares about settling conflicts between developers Mediator
31 He cares about settling conflicts between developers Negotiator
32 He cares about settling conflicts between developers Mediates in conflicts
33 He cares about settling conflicts between developers Mediating conflicts
34 He cares about settling conflicts between developers solve disputes
35 He cares about settling conflicts between developers right arbitrator
36 He cares about settling conflicts between developers arbitrer (for example betwenn members)
37 He considers aestheticall issues considers aestheticall issues
38 He coordinates the efforts of the contributors (e.g to avoid

overlapping contribution and to make things work togheter)
to coordinate things

Implicit theories of “good leadership” in the open-source community
Appendices

 - 73 -

39 He coordinates the efforts of the contributors (e.g to avoid
overlapping contribution and to make things work togheter)

coordinate single project groups

40 He coordinates the efforts of the contributors (e.g to avoid
overlapping contributions and to make things work togheter)

coordinate releases

41 He coordinates the efforts of the contributors (e.g to avoid
overlapping contributions and to make things work togheter)

coordinate activites: many contributors on a project mean there
are many things going on at once. The project leader
coordinates the contributions~ ensuring each contribution
works together

42 He coordinates the efforts of the contributors (e.g to avoid
overlapping contributions and to make things work togheter)

so is avoiding duplicate work among developers

43 He coordinates the efforts of the contributors (e.g to avoid
overlapping contributions and to make things work togheter)

make sure different people working on the same issue talk to
each other

44 He coordinates the efforts of the contributors (e.g to avoid
overlapping contributions and to make things work togheter)

coordinates releases

45 He decides what code/features to include or not to include Retire features/code/functionality when it is no longer used

46 He decides what code/features to include or not to include decides which patches to apply

47 He decides what code/features to include or not to include decide what to include and not include

48 He decides what code/features to include or not to include makes decisions on a day-to-day basis about what code to
include/not include

49 He decides what code/features to include or not to include decide features to include

50 He discourages heated arguments discourages heated arguments
51 He discourages heated arguments looking forward(don't hang in old debats)
52 He discusses in the open various approaches with other coders discuss with others on how to resolve bugs

53 He discusses in the open various approaches with other coders discusses various approaches with other coders

54 He discusses in the open various approaches with other coders fosters open discussion and debate

55 He discusses in the open various approaches with other coders communicates his ideas|invites others to share their opinion on
technical issues

56 He discusses in the open various approaches with other coders discuss with others on techinical matters

57 He divides the work among contributors divide the work
58 He does not rule out people when poeple don't fit his vision Not ruling out other people's projects even when they don't fit

with his vision or immediate goals

59 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

 keeps deadlines otherwise nothing is gonna work

60 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

make contributors observe "features freezes"

61 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

*Time management. As an open source leader you have to
deal with a very large number of volunteers~ each of which can
only contribute a small ammount of time. Some times I feel like
I am more a manager than a developer.

62 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

time-management - it is important to keep deadlines

63 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

keeps deadlines

64 He emphasizes the meeting of deadlines (e.g. "feature
freezes")

sets terms to be respected (see the GNOME time-based
releases)

65 He encourages participation to the project Encourage new developers
66 He encourages participation to the project encourages others to participate
67 He encourages participation to the project encourages participation

Implicit theories of “good leadership” in the open-source community
Appendices

 - 74 -

68 He encourages participation to the project Ability to engage users and people with all skill levels and time
constraints. There must be a place for everyone.

69 He encourages participation to the project Encouraging people to contribute
70 He encourages participation to the project encourage people to submit patches
71 He establishes partnership with companies and others projects establishing partnership with companies and other projects

72 He establishes the roadmap/plan for the development Establishes the roadmap/plan for the development
73 He establishes the roadmap/plan for the development Defining project roadmaps is important
74 He establishes the roadmap/plan for the development updating roadmaps
75 He establishes the roadmap/plan for the development sets milestones
76 He establishes the roadmap/plan for the development Work on product roadmap
77 He establishes the roadmap/plan for the development A clear road-map of what has to be done~ and what is most

important. For example~ in the project I'm running I have a list
of things "to do".

78 He establishes the roadmap/plan for the development organizes a project's goals
79 He establishes the roadmap/plan for the development Publicizes the goals/mission/roadmap/plan so that

teammembers are clear on what is important to work on

80 He explains publicly his choices explain choices which were taken or no
81 He favors information exchanges favors information exchange
82 He gives feedbacks on the works of others gives balanced feedback to active developers
83 He has a general overview of the project has overview
84 He has a general overview of the project Ability to see the forest for the trees
85 He has a general overview of the project A global vision
86 He has a mature sense of responsibilities Mature
87 He has a mature sense of responsibilities Maturity
88 He has a mature sense of responsibilities mature sense of responsisbilities
89 He has a mature sense of responsibilities *responsible
90 He has a mature sense of responsibilities *accountable
91 He has a vision, a future perspective for the project Visionary
92 He has a vision, a future perspective for the project good overview of project goals
93 He has a vision, a future perspective for the project Establishes the mission for the project
94 He has a vision, a future perspective for the project a sense of perspective
95 He has a vision, a future perspective for the project clearly recognizes the scope and tasks of the project
96 He has a vision, a future perspective for the project good vision
97 He has a vision, a future perspective for the project intuitive feel for the direction and long term goals of the project

98 He has a vision, a future perspective for the project Vision
99 He has a vision, a future perspective for the project focused on certain pre-established goals

100 He has a vision, a future perspective for the project clear vision of the project and it's future
101 He has a vision, a future perspective for the project good vision
102 He has a vision, a future perspective for the project has a vision
103 He has a vision, a future perspective for the project / He

decides which features to include and not to include
*decide about future changes

104 He has an independent character independent character
105 He has been under a good project leader for a long time has been under a good project leader himself for a long time

106 He has cultural sensitivity Basic cultural sensitivity (if the project is global)
107 He has cultural sensitivity Multicultural
108 He has the ability to think like a user (to approximate their

needs)
*the ability to think like a user

109 He helps contributors resolve technical problems Helpful
110 He helps contributors resolve technical problems elucidates doubts from other developers

Implicit theories of “good leadership” in the open-source community
Appendices

 - 75 -

111 He helps contributors resolve technical problems helps developers of his software
112 He helps contributors resolve technical problems Helpful
113 He helps contributors resolve technical problems help developers with specific problems
114 He helps contributors resolve technical problems willing to help
115 He helps contributors resolve technical problems available for questions by developers / users
116 He helps contributors resolve technical problems help with answering questions
117 He helps contributors resolve technical problems support the project/product (I mean some kind of hotline)
118 He helps contributors resolve technical problems helps contributors
119 He helps contributors resolve technical problems help with fixing bugs
120 He is a perfectionist Perfectionist
121 He is active in the development of code *lead-by-doing
122 He is active in the development of code Coding
123 He is active in the development of code is also a developer
124 He is active in the development of code participates to the software development
125 He is active in the development of code write lots of good code
126 He is active in the development of code develops and develops
127 He is active in the development of code active in coding
128 He is active in the development of code writes code (usually the major part!)
129 He is active in the development of code / He is dedicated to the

project (time, effort […])
active in coding and dedicated

130 He is always looking for improvements aways looking for improvements
131 He is an experienced coder Experience in coding
132 He is an experienced coder Experienced
133 He is an experienced coder experience with software design
134 He is an experienced coder Experienced
135 He is an experienced coder Experiences
136 He is an experienced coder experienced coder
137 He is calm and equilibrate Basic mental stability (ie: no behavioural disorders)
138 He is calm and equilibrate Calm
139 He is calm and equilibrate never nervous
140 He is collaborative able to work with other people (a lot of developers lack this

skill). Definitely not a "prima donna" kind of developer.

141 He is collaborative wants to collaborate
142 He is committed to a quality product (he makes sure bugs are

corrected)
constantly reviews code for quality testability

143 He is committed to a quality product (he makes sure bugs are
corrected)

Fixing bugs

144 He is committed to a quality product (he makes sure bugs are
corrected)

considers technical issues

145 He is committed to a quality product (he makes sure bugs are
corrected)

track bugs

146 He is committed to a quality product (he makes sure bugs are
corrected)

committed to a quality product

147 He is committed to a quality product (he makes sure bugs are
corrected)

Testing

148 He is committed to a quality product (he makes sure bugs are
corrected)

tackles the reported errors

149 He is committed to a quality product (he makes sure bugs are
corrected)

review the quality of the code and patches

150 He is committed to a quality product (he makes sure bugs are
corrected)

making sure bugs are effectively eliminated

151 He is committed to a quality product (he makes sure bugs are
corrected)

bug-busting-business

152 He is committed to a quality product (he makes sure bugs are
corrected)

Debug

153 He is committed to a quality product (he makes sure bugs are
corrected)

attentive to bug reports from users

Implicit theories of “good leadership” in the open-source community
Appendices

 - 76 -

154 He is committed to a quality product (he makes sure bugs are
corrected)

work on open bugs

155 He is concerned with getting the things done *moves the project forward
156 He is concerned with getting the things done Ability to focus until job is completly done
157 He is concerned with getting the things done Deliver
158 He is concerned with getting the things done wants things get done
159 He is dedicated to the project (time, effort [..]) dedicated (time/effort)
160 He is dedicated to the project (time, effort [..]) Stays in touch with or at least aware of the major activities in

the project on a daily basis
161 He is dedicated to the project (time, effort [..]) dedicated to project & has plenty of time to commit to it.
162 He is dedicated to the project (time, effort [..]) Involvement
163 He is dedicated to the project (time, effort [..]) maintains the project actively
164 He is dedicated to the project (time, effort [..]) donate money and time to the project
165 He is dedicated to the project (time, effort [..]) has enough time to spend on it
166 He is dedicated to the project (time, effort [..]) Creates initial code to prove that he/she is willing to spend

time/work on it

167 He is dedicated to the project (time, effort [..]) *a sense of ownership of the project
168 He is dedicated to the project (time, effort [..]) Dedication
169 He is dedicated to the project (time, effort [..]) very dedicated in terms of time
170 He is dedicated to the project (time, effort [..]) put a lot of time on the project
171 He is dedicated to the project (time, effort [..]) dedicated to the project
172 He is delegative - he doesn't try to do all the work on his own is able to delegate responsibility (trusts others)

173 He is delegative - he doesn't try to do all the work on his own Ability to delegate work. You can't completley run the whole
project. Letting people make decisions on their own is
important to keep them interested~ give them a sense of
ownership (see the section on volunteer pride) and ease of your
schedule.}

174 He is delegative - he doesn't try to do all the work on his own Ability to delegate tasks to people with less experience

175 He is delegative - he doesn't try to do all the work on his own Delegating tasks

176 He is delegative - he doesn't try to do all the work on his own Being able to delegate tasks on others (not try to do all the work
on his own)}

177 He is delegative - he doesn't try to do all the work on his own delegate to other people

178 He is delegative - he doesn't try to do all the work on his own willing to delegate

179 He is delegative - he doesn't try to do all the work on his own the ability to track and delegate responsibilities to others

180 He is delegative - he doesn't try to do all the work on his own willing to delegate control/authority

181 He is delegative - he doesn't try to do all the work on his own delegates authority to other project members

182 He is delegative - he doesn't try to do all the work on his own to delegate

183 He is diplomatic Diplomatic
184 He is diplomatic Diplomacy
185 He is easy to understand good with people over email
186 He is easy to understand good communicator, easy to understand
187 He is easy to understand writes well
188 He is easy to understand good communicator
189 He is easy to understand speaks clear
190 He is easy to understand communicates well
191 He is easy to understand makes himself understood by the others
192 He is easy to understand able to communicate in a clear manner
193 He is easy to understand Excellent communication skills
194 He is easy to understand writes in a way everyone understands
195 He is enthusiast for the project and excitable is proud of the project

Implicit theories of “good leadership” in the open-source community
Appendices

 - 77 -

196 He is enthusiast for the project and excitable Excitable
197 He is enthusiast of the project and excitable enthusiasm for the project
198 He is friendly and approachable Very reachable for the project members
199 He is friendly and approachable Nice
200 He is friendly and approachable Friendly
201 He is friendly and approachable Conversant
202 He is friendly and approachable a good friend in the project to talk to
203 He is friendly and approachable socially proficient
204 He is friendly and approachable good social sense
205 He is friendly and approachable Friendly kind of guy who can talk with anybody
206 He is friendly and approachable Friendly
207 He is humble Humble
208 He is humble / He accepts external contributions (he is willing

to say "that piece of work is better than mine")
humility. In particular the ability to say "that pice of work is
better than mine"

209 He is humorous - development is fun with him A sense of humour. Development must be fun. This is
important for any volunteer-based project.

210 He is humorous - development is fun with him sense of humour
211 He is intelligent Intelligent
212 He is intelligent Intelligent
213 He is intelligent Intelligent
214 He is knowledgable on legal aspects understands legal implications of IP
215 He is knowledgable on technical aspects of the project has expertise of technical project details
216 He is knowledgable on technical aspects of the project in depth knowledge of the project
217 He is knowledgable on technical aspects of the project understanding of project requisites
218 He is knowledgable on technical aspects of the project knows the structure of the implementation
219 He is knowledgable on technical aspects of the project must know a lot about the topic
220 He is knowledgable on technical aspects of the project knows every technical aspect of the project
221 He is knowledgable on technical aspects of the project good technical knowledge in some domain
222 He is knowledgable on technical aspects of the project knowledge of protocols and standards
223 He is not easily drawnable into flamefests thick skin i.e. not easily drawn into flamefests
224 He is not easily drawnable into flamefests thick skin
225 He is optimist optimism
226 He is optimist riesce a trasmettere fiducia nel progetto
227 He is organised Organized
228 He is organized Organized
229 He is patient when dealing with contributors patient when explaining
230 He is patient when dealing with contributors Patience
231 He is patient when dealing with contributors patient when dealing with contributors
232 He is patient when dealing with contributors Patience
233 He is patient when dealing with contributors Tolerance
234 He is patient when dealing with contributors shows a lot a patience with developers
235 He is patient when dealing with contributors patience
236 He is patient when dealing with contributors patient working with codevelopers
237 He is patient when dealing with contributors *the ability |to deal with people without hating them
238 He is patient when dealing with contributors Patient
239 He is polite and respectful Keeping polite during conflicts
240 He is polite and respectful polite and respectful
241 He is polite and respectful respect for other's opinions
242 He is polite and respectful Respectful
243 He is polite and respectful / He is concerned with getting the

things done / He discourages heated arguments
*diplomacy

244 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

present in the mailing list

245 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

Day and night monitoring of project chat room.

Implicit theories of “good leadership” in the open-source community
Appendices

 - 78 -

246 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

Availability (constant presence~ at least perceived)

247 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

online regularly

248 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

frequently converse (live?) on IRC

249 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

being a visible leader on mailing lists and other forms of
communications

250 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

makes him/herself available on project mailing lists or
discussion channels

251 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

communicate frequently via email/IRC/IM

252 He is present in the places where development occurs (mailing-
lists/IRC/etc.)

visible in the mailing list

253 He is prone to step out when needed Takes a vacation when necessary
254 He is realistic on what could be done and achieved / He sets

out the overall direction of the project
set direction / realistic when setting goals

255 He is self-motivated self-motivated
256 He is technically accurate Accurate
257 He is technically accurate Thorough
258 He is technically accurate Rigorous
259 He is technically competent - he writes real good code coding skills
260 He is technically competent - he writes real good code technically competent
261 He is technically competent - he writes real good code technically good (but not necessary an expert)
262 He is technically competent - he writes real good code Skilled
263 He is technically competent - he writes real good code Competente
264 He is technically competent - he writes real good code Technical expertise
265 He is technically competent - he writes real good code good programmer
266 He is technically competent - he writes real good code professional level contributions: low-quality contributions leaves

other contributors doubting the leader's judgement and
credibility

267 He is technically competent - he writes real good code good technical judgement
268 He is technically competent - he writes real good code able to write real code
269 He is technically competent - he writes real good code produces good source code
270 He is technically competent - he writes real good code competent coder
271 He is technically competent - he writes real good code good engineering skills
272 He is technically competent - he writes real good code Competent
273 He is technically competent - he writes real good code competent programmer
274 He is technically competent - he writes real good code not a perfect programmer
275 He is technically competent - he writes real good code good architect
276 He is technically competent - he writes real good code good coder
277 He is technically competent - he writes real good code technical abilities to gain respect|of project participants
278 He is technically competent - he writes real good code technically proficient
279 He is technically competent - he writes real good code writes quality code
280 He is technically competent - he writes real good code Knowledge
281 He is technically competent - he writes real good code Knowledgeable
282 He is technically competent - he writes real good code good technical design skills
283 He is trustworthy Trustable
284 He is trustworthy Trustworthy
285 He is willing to mentor others helps out new developers find their way
286 He is willing to mentor others educate new developers
287 He is willing to mentor others willing to mentor others
288 He is willing to mentor others good teacher
289 He is willing to mentor others willing to educate newcomers
290 He is willing to mentor others teaches to new contributors
291 He is willing to mentor others / He sets out the overall direction

of the project
*provides leadership to less experienced developers

292 He is willing to prune to improve growth Willingness to prune to improve growth

Implicit theories of “good leadership” in the open-source community
Appendices

 - 79 -

293 He keeps everyone informed on the project directions and
achievements

keeps users informed about the project progress / plan

294 He keeps everyone informed on the project directions and
achievements

keep developers informed about the project direction

295 He keeps everyone informed on the project directions and
achivements

keep everybody informed

296 He keeps everyone informed on the project directions and
achivements

providing an overview of the project goals and achievements

297 He keeps everyone informed on the project directions and
achivements

keep track of where project is and where it's going

298 He keeps everyone informed on the project directions and
achivements

keep users informed about progress / plans

299 He keeps everyone informed on the project directions and
achivements

keeping people informed of the project plans and directions

300 He keeps the project interesting and alive Keeps project interesting and alive
301 He knows about cutting edge techniques Cutting edge knowlege of new techinqes
302 He knows about cutting edge techniques stay in front on new tehc.
303 He knows at least one second language Know at least one second language (makes one appreciate

how english may be for other people)
304 He knows at least one second language knows different languages
305 He listens to what contributors have to say listen to maintainers
306 He listens to what contributors have to say listens to people
307 He listens to what contributors have to say good listener
308 He listens to what contributors have to say listens to user demands
309 He listens to what contributors have to say don't listen to talkers
310 He listens to what contributors have to say listen to contributors
311 He listens to what contributors have to say _listen_ to his codevelopers
312 He makes decisions - public debate could drag ineffectively for

weeks
Ability to say "the buck stops here~ and it stops now"

313 He makes decisions - public debate could drag ineffectively for
weeks

decide (to keep the project going forward)

314 He makes decisions - public debate could drag ineffectively for
weeks

make decisions: somebody has to decide when design debates
have reached a conclusion and decide the course to take

315 He makes decisions - public debate could drag ineffectively for
weeks

*the ability to make decisions

316 He makes decisions - public debate could drag ineffectively for
weeks

*decisive

317 He makes decisions - public debate could drag ineffectively for
weeks

takes decisions, someone must to do that

318 He makes decisions - public debate could drag ineffectively for
weeks

must be able to|make decissions - public debate can drag for
WEEKS

319 He makes no discriminations non-discriminating
320 He makes sure that documentation of the software is available Encourages supporting activities lige FAQ maintenance~

HOWTO writing etc. as much as coding
321 He makes sure that documentation of the software is available constantly reviews code for documentation

322 He makes sure that documentation of the software is available ensures project documentation is available and of reasonable
quality

323 He makes sure that documentation of the software is available documents the project in its current status

324 He makes sure that guidelines and coding procedures are
available to developers

sets coding guidlines for contributors

325 He makes sure that guidelines and coding procedures are
available to developers

provide potential contributors with detailed intructions on how to
write patches

326 He makes sure that guidelines and coding procedures are
available to developers

set up guidelines for developers

327 He makes sure that guidelines and coding procedures are
available to developers

is clear about the guidelines and the coding procedures

328 He makes sure that guidelines and coding procedures are
available to developers

work on standards to be used by developers

Implicit theories of “good leadership” in the open-source community
Appendices

 - 80 -

329 He motivates contributors can motivate people
330 He motivates contributors motivates people
331 He motivates contributors good motivation skills
332 He motivates contributors motivating/Inspiring partners
333 He offers new approaches to problems points out possible corrections
334 He offers new approaches to problems suggest how to resolve problems
335 He offers new approaches to problems generate ideas: if there is a problem and nobody has an idea

about how to fix it~ it will often be the leader who steps up to
lead the discussion to find a solution

336 He offers new approaches to problems suggests corrections
337 He offers new approaches to problems always has an idea on how fix a problem
338 He offers new approaches to problems tells how to fix nasty bugs (nobody has been able to fix)

339 He offers new approaches to problems offers solutions
340 He organize meetings (IRC, email [..]) organizing meetings (IRC mail etc...)
341 He organizes the project activities good organizational skills
342 He organizes the project activities organizes well contributors tasks
343 He organizes the project activities good organization skills
344 He organizes the project activities organizational skills
345 He persuades others that the choosen idea is best persuades other the choosen idea is best
346 He praises developers for their contribution regularly praises the developers
347 He praises developers for their contribution Retires project members with full honours when they drop away

348 He praises developers for their contribution thanks contributors for their contributions
349 He praises developers for their contribution Help the volunteers get a sense of pride and accomplishments.

Praising their efforts is good~ but here are other forms.

350 He praises developers for their contribution and never belittle other people's work most free software is
done in spare time by volunteers

351 He praises developers for their contribution knows to thank people
352 He promotes the project (advertises it, maintains PR etc) understands|marketing

353 He promotes the project (advertises it, maintains PR etc) advertise the project

354 He promotes the project (advertises it, maintains PR etc) promotes the project

355 He promotes the project (advertises it, maintains PR etc) doing marketing

356 He recruits new project members Recruits new developers
357 He recruits new project members find good people that will help the project and recruit them

358 He recruits new project members recruits additional personnel to the project
359 He recruits new project members seeks new talents
360 He releases frequently organizes releases of codebase frequently
361 He represents the project in conferences and the like present at conferences
362 He represents the project in conferences and the like represent the project in the events
363 He represents the project in conferences and the like represent the project
364 He represents the project in conferences and the like Representation
365 He represents the project in conferences and the like present for the project in the major happenings
366 He reviews the work of others review patches
367 He reviews the work of others is a good reviewer
368 He reviews the work of others reviewing patches and code check-ins
369 He reviews the work of others / He gives feedbacks on the work

of others
check on the work of others and give them feedback

370 He sets out the overall direction of the project sets the direction of the project
371 He sets out the overall direction of the project points out the project's real goal every time someone gets lost

372 He sets out the overall direction of the project Sets out the overall direction
373 He sets out the overall direction of the project guides the others

Implicit theories of “good leadership” in the open-source community
Appendices

 - 81 -

374 He sets up / maintains an infrastructure (cvs/website/mail-list) ensures website is kept up to date

375 He sets up / maintains an infrastructure (cvs/website/mail-list) creates and maintains a good mailing list

376 He sets up / maintains an infrastructure (cvs/website/mail-list) creates and maintains a clear, concise website

377 He sets up / maintains an infrastructure (cvs/website/mail-list) organize the project (paperwork^ bank account^ web site^ cvs
repository^)

378 He sets up / maintains an infrastructure (cvs/website/mail-list) creates infrastructure

379 He sets up / maintains an infrastructure (cvs/website/mail-list) Creates a community somehow (website~ forums etc.)

380 He sets up / maintains an infrastructure (cvs/website/mail-list) sets up / provides an infrastructure (cvs etc.)

381 He sets up / maintains an infrastructure (cvs/website/mail-list) Maintain source control (CVS-branches)

382 He sets up / maintains an infrastructure (cvs/website/mail-list) work on infrastructure to be used by developers

383 He starts a project out of a desire to learn or expand on
knowledge of a new technology

starts a project out of a desire to learn or expand on knowledge
of a new technology

384 He starts a project out of a desire to learn or expand on
knowledge of a new technology

wants to learn

385 He takes care of building the final package packaging skills
386 He takes care of building the final package packaging releases
387 He throws project members out if they have negative overall

contribution
Throw project members out if they have negative overall
contribution

388 He throws project members out if they have negative overall
contribution

and isolating those you can't work together yet are valuable to
the project

389 His mind is open to new solutions open-minded
390 His mind is open to new solutions does not discard any alternative solution (openminded)
391 His mind is open to new solutions open minded
392 His mind is open to new solutions open for ideas

Implicit theories of “good leadership” in the open-source community
Appendices

 - 82 -

Appendix E – Rating-based questionnaire

Implicit theories of “good leadership” in the open-source community
Appendices

 - 83 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 84 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 85 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 86 -

Implicit theories of “good leadership” in the open-source community
Appendices

 - 87 -

Appendix F – Open-source projects invited to the rating-based questionnaire.

A public email of invitation to the second questionnaire set up for this work has been posted in the

major development mailing lists or newsgroups dedicate to the following projects (in alphabetic

order):

Alzabo
Bugzilla
Compiere
Emacs
Epiphany
Fvwm
Gimp
Gnucash
Horde
Jabber
Kaffe
KDE
Kopete
Kwin
Mailman
Mono
MySQL
NetBSD
Openoffice
Orbit
Perl
PHP
Plone
Prelude
Spamassassin
Squid
Tcl
Webmin
XFree86
Zope

Implicit theories of “good leadership” in the open-source community
Appendices

 - 88 -

Appendix G – Unrotated Factor Matrix

Unrotated Factor Matrix

Factor

1 2 3

discusses_openly .619 .055 -.331
accepts_contributions .551 .048 -.411
patient .726 -.175 -.275
answers_emails_promptly

.657 -.295 .003

easy_to_understand .662 -.316 -.176
delegative .534 .003 -.273
settle_conflicts .624 -.280 -.041
friendly .580 -.208 -.507
keeps_informed .679 -.052 .117
listens .790 -.266 -.208
accepts_suggestions .718 -.115 -.252
praises_developers .650 -.152 .088
polite .649 -.138 -.322
represents_the_project .363 -.144 .371
talks_for_the_group .411 -.256 .262
knowleadgeable .420 .563 -.214
experienced .179 .826 -.237
competent .322 .634 -.324
sets_direction .510 .248 .326
has_vision .653 .017 .252
mentor_others .548 -.169 .234
helps_contributors .635 .216 -.024
offers_new_approaches .615 .217 .000
decides_what_to_include .145 .528 .273
makes_decisions .430 .085 .564
maintains_infrastructure .362 .071 .254
establishes_roadmap .563 .212 .450
coordinates_work .615 -.069 -.030
makes_guidelines .428 -.064 .242
commited_to_quality .448 .323 .121
encourgaes_participation .766 .059 -.038
dedicated .292 .106 .369
get_things_done .612 .000 .351
emphasizes_deadlines .461 -.078 .248
present .267 .079 .102
active .260 .539 -.084

Table 7 - Unrotated factor matrix of the three extracted factors

Implicit theories of good leadership in the open-source community
References

 - 89 -

References

Barsalou, L.W. (1983). Ad hoc categories. Memory and Cognition, 11, 211-227.

Bartol, K.M., & Butterfield, D.A. (1976). Sex effects in evaluating leaders. Journal of Applied

Psychology, 61(4), 446-454.

Bass, B.M., (1990). Bass & Stogdill’s handbook of leadership: theory, research, and managerial

applications (3rd ed.). New York: Free Press.

Bowers, D.G. and Seashore, S.E. (1966). Predicting organizational effectiveness with a four factor

theory of leadership. Administrative Science Quarterly, 11, 238-263.

Calder, B. J. (1977). An attribution theory of leadership. In B. M. Staw & G. R. Salancik (Eds.),

New directions in organizational behavior. Chicago: St. Clair.

Cantor, N., & Mischel, W. (1979). Prototypes in person perception. In L. Berkowitz (Eds.),

Advances in experimental psychology (vol. 12). New York: Academic Press.

Christiansen, K.R., 2003, Interview conducted the 8th of October.

Cohen, C.E. (1983). Inferring the characteristics of other people: categories and attribute

accessibility. Journal of Personality and Social Psychology, 44, 34-44.

Cronshaw, S.F., & Lord, R.G. (1987). Effects of categorization, attribution, and encoding processes

on leadership perceptions. Journal of Applied Psychology, 71(1), 97-106.

Deci, E.L., & Ryan, R.M. (1985). Intrinsic motivation and self-determination in human behavior.

New York: Plenum Press.

Eden, D., & Leviatan, U. (1975). Implicit leadership theory as a determinant of the factor structure

underlying supervisory behavior scales. Journal of Applied Psychology, 60, 736-741.

Implicit theories of good leadership in the open-source community
References

 - 90 -

Edwards, K., (2000). When Beggars Become Choosers. Article available at:

http://firstmonday.org/issues/issue5_10/edwards/index.html

Edwards, K., (2001). Towards a Theory for Understanding the Open Source Software Phenomenon.

Paper available for download at: http://edwards.dk/towards.pdf

Edwards, K., (2003). Technological Innovation in Software Industry – Open Source Software.

Ph.D. thesis available for download at: http://edwards.dk/thesis.pdf

Fielding, R.T. (1999). Shared leadership in the Apache project. Communications of the ACM, 42(4),

42-43.

Gerstner, C.R., & Day, D.V. (1994). Cross-cultural comparison of leadership prototypes.

Leadership Quarterly, 5(2), 121-134.

Gibb, C.A. (1954). Leadership. In G. Lindzey (ed.), Handbook of social psychology (vol. 2),

Reading: Addison-Wesley.

Hall, R.J., Workman, J.W., & Marchioro, C.A. (1998). Sex, task, and behavioral flexibility effects

on leadership perceptions. Organizational Behavior and Human Decision Processes, 74, 1-32.

Hollander. E.P., & Julian, J.W. (1969). Contemporary trends in the analysis of leadership processes.

Psychological Bulletin, 71, 387-397.

Holmström, B. (1999). Managerial incentive problems: a dynamic perspective. Review of Economic

Studies, 66, 169-182.

Kamp, P., 2003, Interview conducted the 10th of October.

Kamp, P., 2004, Email dated Monday, 23 February 2004 13:13:00.

Katz, D., & Kahn, R.L. (1978). The social psychology of organizations (2nd ed.). New York: John

Wiley.

Implicit theories of good leadership in the open-source community
References

 - 91 -

Kelly, G.A. (1963). A theory of personality: the psychology of personal constructs. New York:

Norton.

Lakhani, K.R., & Wolf, R.B. (2003). Why hackers do what they do: understanding motivation

efforts in Free/Open Source software projects. MIT Sloan Working Paper No. 4425-03 available for

download at http://ssrn.com/abstract=443040

Lakoff, G. (1972). Hedges: A study in meaning criteria and the logic of fuzzy concepts. Papers

from the eighth regional meeting, Chicago Linguistic society. Chicago: University of Chicago

Linguistics Department.

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of Industrial

Economics, 50(2), 197-234.

Lindenberg, S. (2001). Intrinsic motivation in a new light. Kyklos, 54(2/3), 317-342.

Lord, R.G., Brown, D.J., & Freiberg, S.J. (1999). Understanding the dynamics of leadership: the

role of follower self-concepts in the leader/follower relationship. Organizational Behavior and

Human Decision Processes, 78, 1-37.

Lord, R.G., Brown, D.J., Harvey, J.L., & Hall, R.J. (2001). Contextual constraints on prototype

generation and their multilevel consequences for leadership perceptions. Leadership Quarterly,

12(3), 311-338.

Lord, R.G., Foti, R.J. & DeVader, C.L. (1984). A test of leadership categorization theory: internal

structure, information processing, and leadership perceptions. Organizational Behavior and Human

Performance, 34, 343-378.

Lord, R.G., Foti, R.J., & Phillips, J.S. (1982). A theory of leadership categorization. In J.G. Hunt,

U. Sekaran, & C. Schriesheim (Eds.), Leadership: beyond establishment views. Carbondale, IL:

Southern Illinois Univ. Press.

Lord, R.G., & Maher, K.J. (1991). Leadership and information processing: Linking perceptions and

performance. Boston: Unwin Hyman.

Implicit theories of good leadership in the open-source community
References

 - 92 -

Markus, H., & Wurf, E. (1987). The dynamic self-concept: a social psychological perspective.

Annual Review of Psychology, 38, 299-338.

Meindl, J.R. (1993). Reinventing leadership: a radical, social psychological approach. In J. Keith

Murnighan (Eds.), Social psychology in organizations: advances in theory and research. New

Jersey: Prentice Hall.

Moon, J.Y., & Sproull, L. (2000). The Essence of the Distributed Work: The case of the Linux

Kernel. Article available at http://www.firstmonday.org/issues/issue5_11/moon/index.html

Offermann, L.R., Kennedy, J.K., & Wirtz, P. W. (1994). Implicit leadership theories: content,

structure, and generalizability. Leadership Quarterly, 5(1), 43-58.

Raymond, E. 1996. The New Hacker Dictionary (3rd ed.) Cambridge, MA: MIT Press.

Raymond, E. 1999. The cathedral and the bazaar: musings on Linux and open source from an

accidental revolutionary. Sebastopol: CA: O'Reilly and Associates.

Rosch, E. (1975) Cognitive representations of semantic categories. Journal of Experimental

Psychology: General., 104, 192-233.

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and

categorization. Hillsdale, NJ: Erlbaum.

Rummel R.J., (1970). Understanding factor analysis. Article summary of Rummel's Applied Factor

Analysis, available online at: http://www.hawaii.edu/powerkills/UFA.HTM

Rush, M.C., Thomas, J.C., & Lord, R.G. (1977). Implicit leadership theory: a potential threat to the

internal validity of leader behavior questionnaires. Organizational Behavior and Human

Performance, 20, 93-110.

Ryan, R.M., & Deci, E.L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New

Directions. Contemporary Educational Psychology, 25, 54-67.

Implicit theories of good leadership in the open-source community
References

 - 93 -

Saers, N., (2003). A project model for the FreeBSD project. Candidatus Scientiarum Thesis at the

University of Oslo, Institute for Informatics, available at: http://niklas.saers.com/thesis/thesis.html

Smith, J.A., & Foti, R.J. (1998). A pattern approach to the study of leader emergence. Leadership

Quarterly, 9(2), 147-160.

Stallman, R. (1999). The GNU Operating System and the Free Software Movement. In C. DiBona,

S. Ockman and M Stone (Eds.), Open Sources: Voices from the Open Source Revolution.

Sebastopol, CA: O'Reilly.

Von Hippel, E. (1994). “Sticky information" and the locus of problem solving: implications for

innovation. Management Science, 40(4), 429-439.

Von Hippel, E. (2002). Horizontal innovation networks – by and for users. MIT Sloan School of

Management paper available for download at: http://opensource.mit.edu/papers/vonhippel3.pdf

Wittgenstein, L. (1953). Philosophical investigations. New York: Macmillan.

Yukl, G. (2002). Leadership in organizations (5th ed.). Upper Saddle River: Prentice Hall.

