
Creating a Free, Dependable Software Engineering Environment for
Building Java Applications

Marcus Bittman
Allegheny College

Department of Computer Science
Meadville, PA 16335
814-332-3629

bittmam@allegheny.edu

Robert Roos
Allegheny College

Department of Computer Science
Meadville, PA 16335
814-332-2883

rroos@allegheny.edu

Gregory M. Kapfhammer
Allegheny College

Department of Computer Science
Meadville, PA 16335
814-332-2877

gkapfham@allegheny.edu

ABSTRACT
As open source software engineering becomes more preva-
lent, employing sound software engineering practices and
the tools used to implement these practices becomes more
important. This paper examines the current status of free
software engineering tools. For each set of tools, we deter-
mined the important attributes that would best assist a de-
veloper in each stage of the waterfall model. We rated each
tool based on predetermined attributes. We used the creation
of a graphical user interface based email client in Java to
assist in evaluating each tool. Our findings show that there
is still a need for free tools to extract UML diagrams, test
graphical user interfaces, make configuring Emacs easier,
and profile Java applications. In other areas there are free
tools that provide satisfactory functionality such as Concur-
rent Versions System (CVS), GVim, JUnit, JRefactory, GNU
Make, Jakarta Ant, Javadoc, and Doc++.

Keywords
Open source, software engineering, development tools, free-
ware

1 INTRODUCTION
Current projects developed in the open source arena do not
necessarily adhere to process models such as the waterfall or
evolutionary approaches to creating software. In most cases,
an open source software project is started by a single devel-
oper and then posted at a website such as [23] for further
work by the open source community.

Although many projects have been successful (Linux [13]
and Apache [2] are two examples), there is still a need for
free tools to create dependable software. We have examined
a variety of free tools to assess the current state of free soft-
ware development using an Athlon class machine running

Red Hat 7.0 [19]. The tools have been categorized according
to the stages of an abbreviatedwaterfall model which include
the following [21]:

Requirements definition/system and software design

Implementation and unit testing

Integration and system testing

Operation and maintenance

We tailored our environment to tools for Java application de-
velopment since the language is platform independent [25].
We implemented a graphical user interface (GUI) based
email client with Java 2 Standard Development Kit (SDK)
1.3 to provide a means to evaluate each tool. In order to rate
these tools without contaminating results, we used several
different tools during each phase of the project’s develop-
ment for different tasks (see [4] for detailed results).

We rated the tools according to the following scheme. Values
2, 4, 6, and 8 are not described—they provide a means to fine
tune scores (see Tables 1 and 2 for tool ratings).

0—the attribute is a failure

1—the attribute contains many problems and has one
useful trait

3—the attribute has many problems and few useful
qualities

5—the attribute is usable, but contains a significant
number of problems

7—the attribute is fairly usable, but contains minor
problems

9—the attribute is almost perfect except for one or two
minor cosmetic problems

10—no problems encountered with this attribute



Section 2 discusses tools that were deemed the most mature,
while Section 3 considers tools that need to be improved. In
Section 4, we provide conclusions for this work.

2 THE MOST REFINED
The tools we found most useful were Emacs [6], GVim
[7], Netbeans [16], GNU Make [22], Jakarta Ant [1], JU-
nit [3], JPython [9], JRefactory [20], CVS [5], Doc++ [29]
and Javadoc [26].

Editors/Integrated Development Environments
Ideally, a developer would use Emacs or GVim to write
and edit source code, while using Netbeans to create GUIs.
Emacs was more customizable than GVim, but configuring
Emacs was more difficult than GVim.

Build Systems
We found that GNU Make [22] executed commands faster
than Jakarta Ant [1] due to Ant’s usage of Java to issue rules.
Since Ant utilizes Java commands, its build files are platform
independent [1].

Testing Tools
JUnit successfully provided an interface to create a harness
to test Java applications on the unit level, meaning that it es-
tablishes a model to compare an expected value to the value
returned from a method [3].

Since traditional capture/replay tools are limited by compo-
nent location, we utilized JPython to create replay scripts to
automate the usage of a GUI [9]. JPython has the ability to
utilize classes from Java’s API and provides a compiler to
turn JPython scripts into Java bytecode.

Refactoring Tools
JRefactory restructures Java code and performed well on the
limited refactorings that we tested. They included moving
a class and extracting an interface from a pre–existing class
[20].

Version Control Systems
We found that CVS supports multiple user access to a sin-
gle file very concisely [5]. It also contains provisions for
accessing a repository through the Internet, thereby making
development on a single project’s source code possible from
anywhere in the world.

Documentation Extraction Tools
While Javadoc extracts documentation from only Java source
code [26], Doc++ can extract documentation from C/C++
and Java code [29]. Javadoc extracts HTML documentation
and joins an application’s documentation with the Javadoc
from Java’s API. Doc++ gives the user the ability to cre-
ate HTML or LATEX documentation. We recommend using
Javadoc for HTML documentation and Doc++ for printed
documentation.

3 THE LEAST USEFUL TOOLS
The least useful tools were Argo [27], Dia [11], Super-
Womble [8], and HProf [15]. These tools provide useful
options, but are not up to the standards set by tools in the
previous category.

Argo, a UML diagramming tool, was built with Java [27].
Since the application was built with Java, the interface can be
sluggish. This tool’s future usefulness will lie in developers’
abilities to make the interface more responsive.

Dia, a lightweight diagramming tool, contains a toolkit for
creating UML diagrams [11]. Unfortunately this tool does
not include provisions to ensure that diagrams adhere to
UML standards.

SuperWomble is a tool that extracts UML diagrams from
Java bytecode [8]. This tool isn’t highly developed because
it is a research prototype. Therefore its use is limited.

HProf is a profiler for Java applications that provides the
ability to track many different types of information such as
CPU and memory usage [15]. It is deficient in its ability to
display information in a readable format.

4 CONCLUSION
The greatest benefit of this research was the identification of
the open source community’s need for the following.

a capture/replay tool to test and automate Java Swing
GUIs, which could be created with aid from classes in
the Java API

a diagramming tool for UML that provides a more re-
sponsive user interface than Argo

the creation of a GUI interface or a series of configura-
tion scripts to configure Emacs—changing to XEmacs
is a possibility [28].

a profiling tool for Java applications that creates read-
able information (see [12] for a discussion of the
JVMPI)

This research assessed the current state of free tools for soft-
ware engineering. We conclude that there is a distinct need
for tools to better assist developers in the specified areas of
the software engineering lifecycle. Furthermore, there is an
ongoing need for the assessment of free tools for software
development as languages and processes evolve. This en-
sures that developers are afforded the most advanced suite
of tools to assist in the efficient creation of dependable soft-
ware.

2



Attributes To
ol
s

A
rg
o

D
ia

Em
ac
s

G
Vi
m

N
et
be
an
s

G
N
U
M
ak
e

Ja
ka
rt
a
A
nt

JU
ni
t3
.4

Ease of Installation 9 10 3 9 6 9 7 9
Documentation/Help 5 6 7 8 8 10 9 7
UML Support 6 7 — — — — — —
Diagram Portability 10 8 — — — — — —
Savable Properties 10 9 — — — — — —
Dependability 8 5 — — — — — —
Skeleton Code Generation n/a n/a — — — — — —
Formatting Readability — — 9 7 8 — — —
Ability to Make Changes Quickly — — 7 9 4 — — —
Configurability/Customizability — — 9 6 9 — — —
Java Support — — 8 7 8 — — —
Ease of Use — — — — — 9 9 —
Ability to Create a Test Harness — — — — — — — 9
Ability to Test Many Different Methods with One Harness — — — — — — — 7
Viewability/Detail of Results — — — — — — — 9
Reuse of Test Cases — — — — — — — 9

“n/a” – tool doesn’t contain an attribute that can be assessed, but should contain this attribute
“—” – tool wasn’t rated on the attribute and shouldn’t contain the attribute

Table 1: Tool Ratings

3



Attributes To
ol
s

Su
pe
rW
om
bl
e

M
et
am
at
a
D
eb
ug
ge
r

JP
yt
ho
n

JR
ef
ac
to
ry

H
Pr
of

C
V
S

D
oc
++

Ja
va
do
c

Ease of Installation 4 10 9 7 n/a 7 4 n/a
Documentation/Help 4 8 5 7 5 9 7 9
Ability to Extract Comments — — — — — — 4 10
Comment Compatibility — — — — — — 10 10
Documentation Formatting — — — — — — 7 9
Formatting Options — — — — — — 8 9
Extractable Dependencies 4 — — — — — — —
Readability/Manipulation of Diagrams 3 — — — — — — —
Ease in Creation of Diagrams 7 — — — — — — —
Portability of Diagrams 4 — — — — — — —
Iteration Options — 7 — — — — — —
User Interface — 8 — 9 — — — —
Ability to Manipulate a GUI — — 7 — — — — —
Test Case Life — — 9 — — — — —
Options for Refactoring — — — 6 — — — —
Quality of Refactorings — — — 9 — — — —
Profiling Capabilities — — — — 9 — — —
Usability of Output — — — — 7 — — —
Ease of Configuration — — — — — 5 — —
Ease of Check Out/In — — — — — 8 — —
Access Control — — — — — 6 — —
Multiple Accesses — — — — — 9 — —
Version Control — — — — — 9 — —

“n/a” – tool doesn’t contain an attribute that can be assessed, but should contain this attribute
“—” – tool wasn’t rated on the attribute and shouldn’t contain the attribute

Table 2: Tool Ratings Continued

4



REFERENCES
[1] Ant. The Jakarta Project, Jan 2001. http://jakarta.apache.

org/ant/; accessed January 20, 2001.

[2] The Apache Software Foundation. Apache.org, March 2001. http:
//www.apache.org; accessed March 11, 2001.

[3] K. Beck and E. Gamma. JUnit, September 2000. http://www.
junit.org; accessed September 24, 2000.

[4] M. Bittman. Creating a Free, Dependable Software Engineering En-
vironment. Technical Report CS01–03, Allegheny College, March
2001. http://ace.allegheny.edu/˜bittman/.

[5] CVSHome.org. CVS Home, October 2000. http://www.
cvshome.org/; accessed October 10, 2000.

[6] GNU Org. Free software, Sep 2000. http://www.gnu.org; ac-
cessed September 17, 2000.

[7] S. Guckes. The Vim (Vi Improved) Home Page, September 2000.
http://www.vim.org; accessed September 24, 2000.

[8] D. Jackson. Womble, Oct 2000. http://sdg.lcs.mit.edu/
womble/; accessed October 11, 2000.

[9] JPython.org. Jpython, Jan 2001. http://www.jpython.org/;
accessed January 8, 2000.

[10] P. Kinnucan. Java Development Environment for Emacs, Decem-
ber 2000. http://sunsite.dk/jde/; accessed December 21,
2000.

[11] A. Larsson and J. Henstridge. Dia’s homepage, November
2000. http://www.lysator.liu.se/˜alla/dia/; ac-
cessed November 25, 2000.

[12] S. Liang and D. Viswanathan. Comprehensive Profiling Support in the
Java Virtual Machine. 5th USENIX Conference on Object–Oriented
Technologies and SYstems, 1999.

[13] Linux.org. Linux online, March 2001. http://www.Linux.org;
accessed March 11, 2001.

[14] MetaMata.com. Metamata Development Environment Personal Edi-
tion, January 2001. http://charlie.metamata.com/java/
servlet/automation.Charlie?l=i; accessed January 13,
2001.

[15] N. Meyers. Perfanal: A Performance Analysis Tool, Sep 2000.
http://developer.java.sun.com/developer/
technicalArticles//Programming/%perfanal/
index.html; accessed September 31, 2000.

[16] NetBeans.org. Netbeans, September 2000. http://www.
netbeans.org; accessed September 24, 2000.

[17] G. Pennington. Jprof, Sep 2000. http://starship.python.
net/crew/garyp/jProf.html; accessed September 31, 2000.

[18] RCS. Cyclic RCS page, October 2000. http://www.cvshome.
org/cyclic/cyclic-pages/rcs.html; accessed October
10, 2000.

[19] Red Hat, Oct 2000. http://www.redhat.com; accessed October
16, 2000.

[20] C. Seguin. Software, Sep 2000. http://users.snip.net/
˜aseguin/chrissoft.html; accessed September 31, 2000.

[21] I. Sommerville. Software Engineering. Pearson Education, Harlow,
England, 2001.

[22] R. M. Stallman and R. McGrath. GNU Make, Jan 2001.
http://www.gnu.org/manual/make/html_chapter/
make_toc.html; accessed January 20, 2001.

[23] Source Forge. Breaking Down the Barriers to Open Source Develop-
ment, March 2001. http://www.sourceforge.net; accessed
March 11, 2001.

[24] Sun Microsystems. Java Virtual Machine Profiler Interface (JVMPI),
Feb 1999. http://java.sun.com/products/jdk/1.2/
docs/guide/jvmpi/jvmpi.html#hprof; accessed January
11, 2001.

[25] Sun Microsystems. Java, Sep 2000. http://java.sun.com; ac-
cessed September 24, 2000.

[26] Sun Microsystems. Javadoc, Sep 2000. http://java.sun.
com/j2se/1.3/docs/tooldocs/javadoc/index.html;
accessed September 24, 2000.

[27] Tigris.org. Argouml, September 2000. http://argouml.
tigris.org; accessed September 24, 2000.

[28] XEmacs. XEmacs, March 2001. http://www.xemacs.org; ac-
cessed March 14, 2001.

[29] M. Zckler and R. Wunderling. Doc++, Sep 2000. http://www.
zib.de/Visual/software/doc++/index.html; accessed
September 24, 2000.

5


