
Ini
tia

l S
ub

miss
ion

LINKSTER: Enabling Efficient Manual Inspection
and Annotation of Mined Data

Christian Bird†, Adrian Bachmann‡, Foyzur Rahman†, Abraham Bernstein‡

†Computer Science Department, University of California, Davis, USA
‡Department of Informatics, University of Zurich, Switzerland

{bachmann,bernstein}@ifi.uzh.ch
{cabird,mfrahman,ptdevanbu}@ucdavis.edu

ABSTRACT
While many uses of mined software engineering data are automatic
in nature, some techniques and studies either require, or can be im-
proved, by manual methods. Unfortunately, manually inspecting,
analyzing, and annotating mined data can be difficult and tedious,
especially when information from multiple sources must be inte-
grated. Oddly, while there are numerous tools and frameworks for
automatically mining and analyzing data, there is a dearth of tools
which facilitate manual methods. To fill this void, we have devel-
oped LINKSTER, a tool which integrates data from bug databases,
source code repositories, and mailing list archives to allow manual
inspection and annotation. LINKSTER has already been used suc-
cessfully by an OSS project lead to obtain data for one empirical
study.

1. INTRODUCTION
Over the past 10 years, information mined from software archives

has become an increasingly used source of data for both tools and
empirical studies in software engineering research. The majority of
such research relies on automatic methods of mining and analyzing
such data. Oftentimes, as in the case of Sliwerski et al. [1] and Bird
et al. [2], heuristics are used because sound and precise techniques
do not exist. These heuristics are based on codifying the steps used
in a manual process, and in many cases these methods have been
shown to be quite effective. However there are cases where manual
inspection and annotation may be required, for example:

• To refine the results of automatic, heuristics-based approaches.
• To evaluate how well a heuristic-based, or predictive tool,

performs.
• To understand a phenomenon by examining multiple data

sources in an exploratory way.
• To understand very noisy data.

In their 2006 CSCW distinguished paper, Cataldo et al. [3] ex-
amined the relationship between coordination patterns and the time
to resolution for Modifiation Requests (MRs). They observed that
communication patterns had a significant effect on resolution time.
In this study, developer communication (in the form of IRC logs)
had to be manually associated with relevant modification requests
(MRs) because they were rarely mentioned explicitly in discussion.
The authors were able to associate MRs via contextual information
and key phrases like “John’s issue” or “the memory problem.” They
estimate that the process took over 2000 man-hours divided among
three co-workers to complete.

The difficulty with manual inspection is that it can be cumber-
some to identify, integrate, view, and annotate different forms of
data from multiple sources. Consider the steps required in our lab
to record notes about the changes that introduced a severe bug into

a piece of software:
1. Execute a SQL query on the database which contains bug

tracking and source code repository data to identify the se-
vere bug and the filenames and revisions associated with the
fix.

2. Query repository system for meta-data associated with com-
mit such as author, date, and log message.

3. Check out the content of the file before and after the bug
fixing commit to examine change context.

4. For each line that was modified in the bug fixing commit, use
git blame to determine which commits introduced the of-
fending line.

5. Check out the contents of the file before and after each of the
bug introducing commits, to examine the context of these
changes.

6. For each bug introducing commit, issue a SQL query to ex-
tract meta-data such as author and log message.

7. Issue an insert SQL statement to record observations from
manual inspection of the data.

In many steps, information in one step (e.g. a revision and a
filename) must be recorded for use in the command of a future
step. These steps also assume that one is familiar with the data
schema, repository locations, and syntax of the commands used.
Whether for impartiality or required expertise, the researchers (of-
ten the only people who have such knowledge) may not be annotat-
ing the data themselves. In these cases, efficiency is critical because
researchers want to maximize the amount of data obtained, tedium
may drive away potential contributors, and there may be some form
of compensation provided (e.g. an hourly wage for undergradu-
ates). We claim that when the process by which manual data is
inspected and annotated becomes efficient enough, the types and
uses of such data qualitatively change.

In an effort to take advantage of the benefits of manually in-
spected and annotated data and overcome the problems associated
with the process of obtaining it, we have developed LINKSTER.
LINKSTER is written in python and PyQt, and runs on Linux and
OS X.

In a recent study [4], an APACHE developer used LINKSTER to
examine 677 commits in one day. He linked commits to their as-
sociated bugs, marked the type of each change, and included notes
with commits to help us understand how the project worked, how
well a linking heuristic worked, and what the effects of a perfect
oracle are on a bug prediction method.

2. DESCRIPTION OF LINKSTER
LINKSTER efficiently displays, integrates, and allows inspection

and annotation of information from three main sources of data:



Ini
tia

l S
ub

miss
ion

source code repositories, developer mailing lists archives, and bug
tracking databases. LINKSTER requires access to a source code
repository for file content and a database which contains the raw
mined repository, mailing list, and bug tracking information. All
notes and annotations made by the user are also recorded in the
database.
Commit Information

Figure 1-a contains a screenshot of the commit information win-
dow of LINKSTER. The top (1) contains a list of commits that sat-
isfy some constraint, such as commits within a time window. Each
line contains the revision identifier, date of the commit, author, and
the first line of the commit message. Right clicking on a commit
entry brings up a contextual menu that will allow the user to pop-
ulate the Message Information Window with messages sent by the
author of the commit within a time window of the commit.

When a commit entry in the list is selected, the meta-data is up-
dated in the bottom half (2). The list of files modified in the commit
(3) is also displayed. Double clicking a file brings up the Blame &
Diff Information for the file, allowing the user to examine the exact
changes that were made. For annotation purposes, the user may
select the reason(s) for the commit by checking boxes (4) or drag
and drop (or remove) a bug record from the Bug Information Win-
dow into the list of bug IDs (5), which is populated with the set of
automatically identified links between the commit and bug records
Finally, the user may enter free form notes for the commit (6).
Blame & Diff Information

Figure 1-b shows the blame & diff information window for the
changes to a file in a particular commit. The left view (8) shows
the content of the file prior to the change and the right view (10)
displays the content of the file after. Lines that were removed in the
commit are prefixed with “−” and are highlighted red, while those
that are added have “+” and are green. In addition, each line is
prefixed with revision identifier associated with the commit that in-
troduced the line. Selecting a line causes all other lines introduced
in the same commit to become highlighted in gray and updates the
meta-data (7) with information from the line introducing commit.
This can help the user determine why, when, and by whom, the line
was added. When more information is desired, double clicking a
line will bring up a new blame & diff window for the commit which
introduced the line.

The views are synchronized such that scrolling in one view causes
the other to change accordingly. The thumbnail view (9) graphi-
cally shows the differences for the entire file with red indicating
removed lines and green, added lines. Clicking on a location in the
thumbnail view will cause the pre and post views to jump to that
location, making identifying and examining the changes easy for
large files.

The commit status list (11) contains an entry for each commit
that originates a line in the file views. This is for use in a study
of bug introducing commits. When the user selects a line in either
view, the matching commit number is highlighted in this list. As-
suming that the file represents a bug fix, the user can annotate each
prior commit as “guilty” of introducing the bug, an “innocent” by-
stander in the bug introduction, “unset”, indicating that no one has
examined it yet, or “unsure”, indicating that the user has inspected
it, but cannot confidently assign “guilty” or “innocent”.
Bug Information

Figure 2-a contains the Bug Information Window. The top por-
tion (12) is a list displaying bugs from the bug database the satisfy
some criterion such as marked as closed or having a higher than
normal severity level. Each entry contains the bug ID, date that the
bug entry was created, and the one line summary of the bug. Hov-

ering over an entry shows the bug severity in a tooltip. Any of these
entries may be dragged to the bug IDs list (5) in the commit infor-
mation window or to the associated items list (20) of the message
information window to indicate that it is associated with a bug or
message.

Selecting a bug entry will populate the bottom half of the win-
dow with detailed information. The left side (13) contains short
attributes of the bug, while the right side (14) displays the full bug
description followed by all of the comments in chronological order
with author and date. Clicking on the Bug Activity tab (15) displays
a list (not shown) of all changes to the bug record, such as assign-
ing the bug to a developer or marking a bug as closed. Each entry
indicates when the change was made, who made it, and the old and
new values for the changed field. Finally, clicking on the Fixing
Files tab (16) shows a list (not shown) of all of the file commits
associated with the fix of the bug. This list is comprised of files au-
tomatically linked based on attributes of commits such as commit
messages and also files manually linked with LINKSTER. Double
clicking on a file in this list will bring up a blame & diff window
for the commit.

Message Information
Information from messages sent on the developer mailing lists

for a project is displayed in he window depicted in Figure 2-b.
As with the others, the top portion (17) lists messages that satisfy
some constraint, in this case, those sent by Joe Orton. When a user
chooses to see the messages from a mailing list participant, we use
aliasing information to identify messages sent by that person via all
of their known email addresses.

Selecting a message updates the information shown below. Rel-
evant information from message headers, such as sender, date, and
subject, are displayed (18) as well as the body of the email mes-
sage (19). Bugs from the bug tracking database and commits from
the source code repository that are associated with the message are
listed in the Associated Items list (20). The user may drag bug and
commit entries to this list to indicate that the message references
them. This information is backed directly by a database so that it
can be filled from automatic methods and the data can be used by
other tools or for later analysis easily.

3. CONCLUSION
The variety and sophistication of the questions investigators seek

to study in empirical software engineering have grown dramati-
cally; increasingly, manual annotation and labeling of data is be-
coming necessary. LINKSTER is an interactive, integrated, brows-
ing and querying tool that facilitates the exploration and annotation
of large volumes of semi-structured softare engineering data.

4. REFERENCES
[1] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” in

Proc. of the international workshop on Mining software repositories, 2005.
[2] C. Bird, A. Gourley, and P. Devanbu, “Detecting Patch Submission and

Acceptance in OSS Projects,” in Proc. of the International Workshop on Mining
Software Repositories, 2007.

[3] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, “Identification of
coordination requirements: implications for the Design of collaboration and
awareness tools,” Proc. of the 20th conference on Computer supported
cooperative work, 2006.

[4] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein, “The Missing
Links: Bugs and Bug-fix Commits,” in Proc. of the 16th Symposium on
Foundations of Software Engineering, 2010.

Appendix B. SETUP AND EXECUTION



Ini
tia

l S
ub

miss
ion

Appendix A. SCREEN SHOTS

1

2

3

4 5

6

7

8

9

10

11

a b

Figure 1: The commit information window and the blame diff window

12

13 14

15 16

17

18

19

20

Drag & Drop

a b

Figure 2: The bug information window and the email information window



Ini
tia

l S
ub

miss
ion

The setup for the demonstration will be relatively straightfor-
ward. Although the tools allows for a distributed setup (e.g. the
database can reside on a system different from the source code
repository), I will have everything required on my laptop. Thus,
all that I require is access to a projector so that others can view my
screen as I point out the different features and uses of LINKSTER.
I expect that setup will take all of a few minutes maximum.

During the execution of my demonstration, I will take a few
minutes to describe the data sources and then describe each of
the GUI elements of LINKSTER, indicating its purpose and use.
Next, I will describe some of the current studies that we are us-
ing LINKSTER for and go through mock exercises that actual users
have performed. One example would be looking at the context of a
change in the source code, indicating the type of change (e.g. bug
fix, feature addition, backport), and adding a free form annotation.
Another would be manually linking a closed bug to the set of com-
mits that close the bug and also to an email message discussing the
bug. Lastly, I would demonstrate creating an association between
a change in the repository and the code review performed via the
mailing list. I would expect that the entire demonstration would
take between 12 and 15 minutes, but could be pared down to 10
minutes if available time is an issue.


	Introduction
	Description of LINKSTER
	Conclusion
	References
	Setup and Execution
	Screen Shots

