
Software Engineering Lessons from Open Source Projects

Position Paper for the 1st Workshop on Open Source Software, ICSE-2001

Jai Asundi
Department of Engineering and Public Policy

Carnegie Mellon University
asundi@andrew.cmu.edu
Abstract

The Open Source form of software development has
captured the attention of academics and software practitio-
ners alike. Though, this ‘phenomenon’ has been touted by
some to be how all software will eventually be developed,
many are critical about how far this form of organization
will be successful. It is very likely that both the traditional
form as well as the Open Source form of organization for
software projects may co-exist. The position taken in this
paper is that commercial projects can learn important les-
sons from Open Source projects. This paper tries to capture
the elements of Open Source projects that can be applied to
traditional commercial projects and the means by which
further information can be gathered.

1. Introduction and Overview

Open Source(OS) software has captured the attention of
the entire software community. Many perceive it to be a
movement against a common enemy (read Microsoft and
other large software houses). However, the real battle is for
the increasing need for high quality and reliable software in
spite of the increasing complexity of the applications.
Though it is highly unlikely that the OS form of software
development will completely replace the traditional com-
mercial software development practice, there are important
lessons that can be borrowed and applied from each other.

Very little systematic work has been done to analyze and
measure the OS form of software development. There are
case-studies explaining the software architecture of OS
products[2][5] and how architecture recovery can be
applied[3]. In terms of studying the organization of OS
projects preliminary work [1][8] has shown how publicly
available archived information can be used to study and test
hypotheses in OS projects. 

In this paper I shall try to highlight the important lessons
that can be gathered from OS projects that could have inter-
esting implications for commercial projects.

2. Lessons from Open Source projects

Organization of personnel
The Apache project1 has shown us that 85% of the

enhancements to the software were done by the top 15 peo-
ple[8]. These top 15 are more or less the members of the
core-group. The numbers are not very different for other OS
projects[4]. We can thus see the parallels for a commercial
project where the core design team would be expected to do
most of the changes. What we can learn further is how the
various tasks are distributed amongst this team. Since OS
projects are self formed and responsibilities are assumed
rather than assigned, based on patch submit patterns we can
infer about how developers like to perceive their roles in a
software project. Mirroring this structure in a commercial
project could lead to better management of the product.

Informal Communication
Studies in distributed software development have shown

that informal communication amongst personnel is vital for
the coordination of the effort[6]. A glance at the mail
archives for various OS projects shows us that there is
extensive informal communication between the lead-devel-
opers, other developers and users. Some projects also run
chat sites once a week to discuss issues. This in spite of the
fact that the developers are from differing cultures and in
different time zones. Commercial projects could increase
their level interaction amongst the developers (either collo-
cated or distributed) by setting up discussion boards and run
chat sites to discuss technical issues so that there is no con-
fusion regarding accents or tone of voice. Also, other inter-
ested developers could “tune-in”, thus reducing the
confusion due to learning about issues second hand or
through a much delayed, formally stated memo.

Improved customer support
Many users of software products will agree that most

commercial software organizations fail miserably when it
comes to supporting their software product. A study[7]
shows that OS projects has a good record with user support
due to a larger number of people willing to offer informa-
tion about the product. A large fraction of the responses
seem to be simple and easily answered - done usually by a
very small fraction of people. Thus, the lesson for commer-
cial projects is that increased user-user as well as user-
developer interaction could lead to improved support as
well as better and more meaningful bug reports. 

1.http://www.apache.org/



3. Differences from Commercial Projects

There are a number of acknowledged differences
between OS projects and commercial projects that make the
two difficult to compare.

Existing code with design completed
Typically, most OS projects begin with a piece of code

and an already working piece of software. The design is
more or less frozen and only under unique circumstances is
the design redone or revisited.

Design is done by single person or two collocated persons
In commercial projects, the design is usually done by a

group of people and in some cases people who are not even
at the same location. This leads to larger problems of coor-
dination at the most important phase of the development
cycle.

4. Conclusions and Future Work

In spite of the difference in organization of OS projects,
important lessons can be borrowed and applied to commer-
cial software projects. The mailing list archives contain
important information that can be culled to benefit tradi-
tional software projects. Improved communication channels
and methods of increasing interaction between developers
and users are few of the preliminary lessons that can be bor-
rowed from OS projects. The next step would be gaining
information for the identification of personnel for various
responsibilities, allocation of tasks and structuring a soft-
ware project.

Other future work will include the use of the mail
archives to test various hypotheses in OS projects. This
would include a study of the code review process as well as
further analysis of the “many eyeballs” hypothesis.

5. References

[1] John Bley and Ashish Arora, How Many Eyeballs Are
Enough?: Peer Review in Open Source Development,
Workstudy Report, Carnegie Mellon University, 2000.

[2] Ivan Bowman, Richard Holt and Neil Brewster, Linux
as a Case Study: Its Extracted Software Architecture, ICSE
'99: International Conference on Software Engineering, Los
Angeles, May 1999.

[3] Ivan Bowman and Richard Holt, Software Architecture
Recovery Using Conway's Law, Proc. of CASCON'98,
December 1998, pages 123-133.

[4] Rishab Ghosh and Vipul Prakash, The Orbiten Free
Software Survey:May 2000, http://www.orbiten.org/,ofss/
01.html, (accessed March 10th, 2001).

[5] Ahmed E. Hassan and Richard C. Holt, A Reference
Architecture for Web Servers, WCRE 2000: Working Con-
ference on Reverse Engineering, Brisbane, Australia, Nov
6, 2000.

[6] James Herbsleb and Rebecca Grinter, Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited, Proceeding of the 21st International Conference
on Software Engineering, 1999, Los Angeles, CA, 1999

[7] Karim Lakhani and Eric von Hippel, How Open Source
software works: “Free” user-to-user assistance, MIT Sloan-
School of Management Working Paper #4117, May, 2000

[8] Audris Mockus, Roy Fielding and James Herbsleb, A
Case Study of Open Source Software Development: The
Apache Server, Proceedings of the 22nd International Con-
ference on Software Engineering, 2000, Limerick, Ireland,
June 2000


	Abstract
	1. Introduction and Overview
	2. Lessons from Open Source projects
	Organization of personnel
	Informal Communication
	Improved customer support

	3. Differences from Commercial Projects
	Existing code with design completed
	Design is done by single person or two collocated persons

	4. Conclusions and Future Work
	5. References
	Software Engineering Lessons from Open Source Projects
	Position Paper for the 1st Workshop on Open Source Software, ICSE-2001
	Jai Asundi
	Department of Engineering and Public Policy
	Carnegie Mellon University
	asundi@andrew.cmu.edu


