
5

How can Academic Software Research and Open Source Software
Development help each other?

Vamshi Ambati S P Kishore
Institute for Software Research International Language Technologies Institute

Carnegie Mellon University Carnegie Mellon University
 vamshi@andrew.cmu.edu skishore@cs.cmu.edu

Abstract

In this paper we discuss a few issues faced in
coordinating, managing and implementing academic
software research projects and suggest how some of
these issues can be addressed by adopting tools and
processes from Open Source Software Development.
At the same time we also discuss how a few issues in
Open Source Software Development (OSSD) projects
can be addressed by adopting processes from
Academic Software Research.

1. Introduction

Academic Software Research (ASR) has made
substantive contributions in varying degrees for the
growth of Software and Technology in diverse areas
like data mining, bioinformatics, astronomy, natural
language processing, medicine and others. With the
wide spread of the Internet, many universities and
researchers are working on collaborative projects
from geographically distant areas. A typical
example is the Universal Digital Library [7] project
where universities and researchers from India, China,
and the United States are collaborating on massive
distributed sub-projects like document acquisition,
digitization, quality control etc. However,
characteristics of Academic Software Research like
rapid prototyping, less documentation, frequent
inflow and outflow of project members (e.g.,
students graduating, researchers changing positions)
though useful and productive in collocated projects,
are beginning to create problems in the academic
community as the projects scale and move into
geographically distributed environments. The
characteristics of Academic Software Research and
the issues mentioned above are essentially deviations
from the conventional software engineering practices
and it is worth investigating different paradigms of
software development and imbibing processes and
practices into the software development cycle of
academic software research.

In this paper, we take the position that a
few problems of communication, coordination and

quality that creep into Academic Software Research
as they scale and distribute geographically can be
solved by adopting practices and tools from OSSD
and that issues like entry barrier in the developer
community for a new comer and gap between
Developer and non-developer community exhibited
in some OSSD projects can be addressed by adopting
practices from academic software research.

This paper is organized as follows. Section 2
discusses characteristics and issues that crop up in
Academic Software Research. In section 3 we
discuss Open Source Software development as an
emerging paradigm in Software Engineering and the
issues faced by OSSD. Section 4 suggests tools and
processes that can be adopted by Academic Software
Research while section 5 discusses how OSSD can
benefit from processes adopted from Academic
Software Research. Finally, we conclude by pointing
out a necessity for new tools that are needed for the
benefit of both the academic and open source
communities.

2. Academic Software Research (ASR)

We define Academic Software Research as a team
based activity in which students or researchers in
Academic institutions involve themselves in building
large scale software systems with the guidance of
faculty or senior researchers. These projects are
mostly funded and usually managed by a single
institution including various other departments in
it .With the advent and extensive use of internet for
software development, the scenario is changing and
projects are now involving groups from globally
distributed institutions. However, to make
development easier these projects are always divided
into sub problems and the researchers are allowed to
pick the problem that they are interested in. As a
result a single person or a small group gets to work
on each of the sub problems identified.

Although results are promising in academic
software, academicians complain that in massive
distributed projects involving various academic

6

institutions issues of collaboration, communication
and control creep in which if handled appropriately
would enable the successful completion of projects
in a cheaper and elegant way. Another issue that
affects academic software research adversely is
projects in which an active developer opts out of the
project suddenly or leaves the institution after the
completion of his academics. There is a lot of
contextual information and assumptions involved in
the project, made by that developer at various
moments of time and all these are now lost and the
code is the only artifact that remains. This makes the
learning period of a new comer longer and
sometimes the code becomes so obsolete and un-
understandable that the new comer opts to redo the
code himself. This introduces an unexpected delay in
the project and can also cause unforeseen problems
to the entire project if this group is a critical
component for the project as a whole. Some of the
other issues which are indirectly related to the
already mentioned are:

1) Documentation in research projects is very
sparse. Research involves results and achieving
these results becomes the primary goal during
the developmental phase and so documentation
is usually done at the end of development. But
research projects often don�’t work on a deadline.
And even if they did work that way, it is very
unlikely that the person who starts the project is
the same as the person who finishes it. As a
result, in the due course the documentation part
is lost which makes things tougher at the end.

2) In Academic software research the person who
works on the module is the person who knows
the most about it and the bugs in it. Bug tracking
is very specific to the group or developer. Other
groups are only concerned about the results of
the research and not how it works. As a result,
when the project scales these bugs grow and
lead the researcher into performing quick fixes
which turn out to be hazardous to the quality and
the long term goals of the project.

Methods and Tools which address these issues
should evolve. A few suggestions are made in the
final sections of the paper, but there is a requirement
for more of them. We strongly feel that if these
issues are addressed completely, academic software
research can be more productive and produce a
double fold of the existing outputs.

3. Open Source Software Development

The open source model of software development has
gained the attention of the business, the practitioners

and the research communities [4]. It is characterized
as a fundamentally new way to develop software [3].
 Open source developments typically have a
central person or body that selects some subset of the
developed code for the �“official�” releases and makes
them widely available for distribution [1]. Tasks are
not assigned; any person interested in a particular
aspect of development can choose to participate and
contribute to it. There is no explicit system-level
design or even detailed design [3] other than in the
heads of a few set of core developers. Communities
for different phases of software development are
formed. Every interested and motivated person joins
the community that suits his level of interest and
expertise. Usually the set of core developers is very
small and they have the editing and commit
privileges over the modules in the code. Then there
are several other communities each consisting of
potentially large numbers of volunteers for bug-fixes,
testing, bug-reporting, documentation, release
management etc. The communities are globally
separated and co-ordination between them takes
place in ad hoc ways [1]. Code is written with more
care and creativity because developers are working
only on things for which they have a real passion.
 Though the quality and dependability of today�’s
open source software projects have proved to be
roughly on par with commercial developed software,
we feel there are several areas where there are
opportunities for improvement. For example often
new developers have to understand the code and
community practices and culture in order to
contribute to the project. And there isn�’t much
documentation as most of the OSS projects can not
afford extensive documentation. Therefore it remains
an obstacle for the initiation and infusion of new
members into existing communities. Another
significant issue is that the feedbacks of non-
developers are not often heard on the mailing lists.
This we feel is because the feedbacks from non-
developers are treated as unpractical by the
developers. Bringing awareness of the project and
work culture and creating familiarity with tools
among the huge user community seems a challenge.
If it can be achieved we would see more users
joining the developer community and this would
result in improved and constructive interactions
between the different communities.

4. OSSD helps ASR

In order to address issues in academic
software research mentioned in section 2 we reverted
to the two most popular Software Engineering
paradigms in the present world �– Proprietary and

7

Open Source Software development, to see if any of
them have a closest possible solution.

For years now, Proprietary Software
development has successfully implemented methods
of enforcing opt-out rules or agreements or by
producing extensive documentation to avoid issues
that might arise due to persons leaving projects
abruptly. Such methods clearly can not be adopted in
Academic software research as no one can be bound
to agreements in Academia. Also, the
communication methods of Proprietary Software
development are person to person communications
and do not scale as size and complexity quickly
overwhelm communication channels [1]. Ad hoc
communication is always necessary however, as a
default means of overcoming coordination problems
[1].

We then turned to Open Source Software
Development which bears common similarities with
Academic software Research [2]. Observing the
characteristics of Academic Software Research and
the characteristics of OSSD mentioned in the
previous sections we support this similarity and
propose that academic software research can benefit
the most by adopting methods and practices from
OSSD.

Adopt existing tools: OSSD has created for itself a
set of software engineering tools with features that fit
the characteristics of open source development
process [5]. It has addressed similar issues of
collaboration and communication that Academic
Software Research is facing through these efficient
set of tools. A comprehensive list of tools that were
used in most successful Open source projects and
Research projects in various phases of software
development is presented in table below. Also, the
first step in adopting OSSD processes and methods
would require the adoption of these tools [5].

Table 1 Some common tools used in OSSD

Version control CVS, Subversion, WinCVS,
ViewCVS

Issue tracking Bugzilla,
Gnats,DebBugs,Bonsai

Communication Mailman, IRC, MajorDomo,
Ezmlm

Build systems Ant, Make,Autoconf

Design and code
generation

ArgoUM ,XDoclet, Castor

Testing tools DejaGnu, Tinderbox,
JUnit,Lint, CodeStriker

Collaboration
Environments

SourceForge , SourceCast

Peer reviews: Open source software development
has benefited from �“peer reviews�”. They have been
recognized as a widely used and important quality
assurance process in OSSD. A peer review is an
informal review where someone other than the
author, either collocated or distributed, checks the
code with purpose of finding defects. It also
maintains a healthy and competitive environment
amongst the developers. In Academic Software
Research a particular group of developers or in most
cases just one developer is given the responsibility of
a sub-problem and then the solution is expected of
him. This would sometimes lead to group specific or
person specific results. Introducing a �“peer review�”
in Academic Software Research would result in
many people to get familiar with the work done in
the sub-problem and would assure quality and
maintainability to the code.

Community development: In OSSD there are
groups of members called �“communities�” for various
phases of the software development. There is a small
set of core developers who have the editing and
commit privileges and decides what goes into the
code. This is the developer community. There are
other large communities for each task of bug-fixing,
testing, bug-reporting, documentation, release
management etc. This helps the developers to stay
concentrated on their work and also enables
extensive testing and efficient bug fixing. This may
not be feasible in Academic Software Research but a
reasonable way of implementation of the concept of
a �“community�” in Academic Software Research
could be that every sub-group working on a sub-
problem could act as a community to the other sub-
group.

Several projects at Carnegie Mellon University
(CMU) have benefited from the open source
practices and methodologies. RADAR [6] project
funded by DARPA is a very good example of one
such project. Interactions and communications of
different groups take place over the mailing lists
which not only enable ad-hoc communication but
also act as a log of the interactions. Every leader of a
subgroup in RADAR is also a member of one or
more groups and acts as a reviewer for that group,
ensuring the quality across the sub projects.

5. ASR helps OSSD

In this section let us look at how we can attempt to
solve some of the issues of Open Source Software
development mentioned in section 3. We feel that a
significant portion of the issues mentioned arise due

8

to the fact that as projects scale in size like the
Apache and Mozilla, it becomes extremely difficult
for a new comer to join any of the non user
communities. As a result there is a huge gap between
the experts in that community and the new comers.
We feel that the way Academic Software Research
solves this issue can be helpful to the Open Source
Software Development and we also feel that
adopting this does not violate the characteristics of
Open Source Software Development.
 In Academic Software Research whenever a
new comer comes into the project he looks for
people who can teach him and these are often the
senior researchers or faculty in that project. In OSSD
there has been activity in the mailing lists which
creates an asynchronous mode of learning. But since
code developers are mostly involved in other
activities most of the questions are left unanswered.
So, bringing in the notion of a community of
teaching assistants would solve this problem to a
considerable extent. Among many motivations for
which developers work on OSS projects fame, fun
and learning are a few. A good way of learning is by
teaching. The members in such a �“teaching
community�” would be people who are in OSSD just
for learning and are self-motivated and willing to
teach what they have learnt. The result of growth of
such a community would make the non-developers
more knowledgeable and also creates a way for more
users to join the developer community which is good
for further progress in the project.

6. Need for new tools

We need more tools to adequately address the issues
in both Academic Software Research and Open
Source software development. A potential artifact
that we have figured out in any software
development involving research is an intermediate
result. The problem of a researcher or a developer
leaving the project can only be addressed in its full if
we can completely know and understand these
results and the various issues that the developer
treaded upon while achieving them. Results indicate
the progress of the project. The research community
needs tools that keep track of results and the
configurations of the project that lead to such results.
 Although there is a wide range of tools available
in OSSD, in order to support many other software
engineering practices like requirements management,
project management, metrics estimation, scheduling,
program analysis and test suite design etc [5] we still
need more of them. The open source community and
the Academic Software Research community should
involve in building these tools for the benefit of the
two communities.

7. Conclusion

We have tried to raise issues in Academic Software
Research and suggested that they can be addressed
by adopting from OSSD tools for development and
collaboration and processes and methodologies like
�“peer reviews�” and community development. We
also discussed issues in OSSD and suggested a
�“teaching community�” as a possible solution for
some of the issues.

8. Acknowledgements

We are indebted to the valuable suggestions and
comments of Dr. Raj Reddy (CMU), Dr. William
Scherlis (CMU), Dr. Anthony Tomasic (CMU) and
Timothy J Halloran (CMU).

9. References

[1] Mockus, A., Fielding, R., & Herbsleb, J.D. Two
Case Studies of Open Source Software
Development: Apache and Mozilla (2002). ACM
Transactions on Software Engineering and
Methodology, 11, 3, pp. 309-346.
[2] Nikolai Bezroukov �„Open Source Software
Development as a Special Type of Academic
Software Research�”
URL:http://www.firstmonday.dk/issues/issue4_10/be
zroukov/index.html
 [3] P.Vixie, �“Software Engineering,�” in Open
Sources: Voices from the Open Source Revolution,
C Dibona, S Ockman and M.Stone, Eds. Sebastopol,
CA:O�’Reilly, 1999, pp.91-100.
[4]. Capiluppi A., Lago P., Morisio M., 2002,
"Characterizing the OSS process", at the 2nd

Workshop on Open Source Software Engineering,
Int. Conf. Software Engineering, May 2002
 [5] Jason E Robbins (2002) �“Adopting OSSE
Practices by Adopting OSS Tools�”. Chapter in
Perspectives on Open Source and Free
Software,J.Feller, B.Fitzerlad et al.
 [6] The RADAR project (CMU)
http://www.radar.cs.cmu.edu/
[7]The Universal Digital Library Project
http://www.ulib.org/

