
Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 1 of 36

Maintainability of the kernels of open-source operating systems:

A comparison of Linux to FreeBSD, NetBSD, and OpenBSD

Liguo Yu,a,1 Stephen R. Schach, a,* Kai Chen, a Gillian Z. Heller, b Jeff Offutt c

a Department of Electrical Engineering and Computer Science, Vanderbilt University, Station B Box 351679,

Nashville, TN 37235–1679, USA. E-mail: liguo.yu@vanderbilt.edu, srs@vuse.vanderbilt.edu,

kai.chen@vanderbilt.edu
b Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia. E-mail: gheller@efs.mq.edu.au

c Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030, USA.

E-mail: ofut@ise.gmu.edu

* Corresponding Author
 E-mail: srs@vuse.vanderbilt.edu

 Tel: +1.615.322.2924

 Fax: +1.615.343.5459

1 Present address: Computer Science Department, Tennessee Technological University, P.O.

Box 5101, Cookeville, TN 38505, USA. E-mail: yul@csc.tntech.edu

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 2 of 36

Maintainability of the kernels of open-source operating systems:

A comparison of Linux to FreeBSD, NetBSD, and OpenBSD
__

Abstract

We compared and contrasted the maintainability of four open-source operating systems:

Linux, FreeBSD, NetBSD, and OpenBSD. We used our categorization of common coupling in

kernel-based software to highlight future maintenance problems. An unsafe definition is a

definition of a global variable that can affect a kernel module if that definition is changed. For

each operating system we determined a number of measures, including the number of global

variables, the number of instances of global variables in the kernel and overall, as well as the

number of unsafe definitions in the kernel and overall. We also computed the value of each our

measures per kernel KLOC and per KLOC overall. For every measure and every ratio, Linux

compared unfavorably to FreeBSD, NetBSD, and OpenBSD. Accordingly, we are concerned

about the future maintainability of Linux.

Keywords: Maintainability; Common coupling; Definition-use analysis; Open-source software; Linux.

__

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 3 of 36

1. Introduction

The coupling between two modules is a measure of the degree of interaction between those

modules and, hence, of the dependency between the modules. Certain types of coupling,

especially common (global) coupling, are considered to present risks for software development,

especially for maintenance (Briand et al., 1988; Troy and Zweben, 1981). Two modules are

defined to be common coupled if they both reference the same global variable. The open-source

software development life-cycle model can best be described as continuous maintenance, as

encapsulated in the dictum “release early and often” (Raymond, 2000). Accordingly, it is

important that open-source software should have as little common coupling as possible.

In a longitudinal study of 400 successive versions of Linux (Offutt, 2002; Schach and Offutt,

2002; Schach et al., 2002), we showed that the number of lines of code in each kernel module

increases linearly with version number, whereas the number of instances of common coupling

between each kernel module and all the other Linux modules grows exponentially. Both results

were significant at the 99.99% level. In view of the deleterious effect of common coupling, we

concluded that the resulting dependencies between modules had the potential of rendering Linux

hard to maintain in the future.

At conference presentations of our result (Offutt, 2002; Schach and Offutt, 2002), our

conclusion was challenged on two grounds:

1. Not all instances of common coupling are equally bad. For example, if global variables

can be changed in just a few places, Linux would be considerably more maintainable than

if global variables can be changed in many places.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 4 of 36

We responded to the first argument by performing a definition-use analysis of Linux. Our

results were based on a new categorization of common coupling in which certain forms of

common coupling are safer than others from the viewpoint of maintainability (Yu et al., 2004).

2. All operating systems have to use global variables to achieve efficiency, and there is no

alternative to the widespread utilization of common coupling in Linux.

This paper is our response to the second argument. Specifically, we show that there is far

more common coupling in Linux than in three other open-source operating systems, FreeBSD,

NetBSD, and OpenBSD (in what follows, we refer collectively to FreeBSD, NetBSD, and

OpenBSD as “the three BSDs”). Furthermore, Linux has a higher proportion of unsafe forms of

common coupling than the three BSDs. This leads us to conclude that is possible to structure

Linux (and other operating systems) in a way that would increase its maintainability without

sacrificing efficiency.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 5 of 36

2. Kernel-Based Software

In 1969, Per Brinch Hansen developed a multiprogramming operating system for the RC

4000 computer. The operating system consisted of a kernel (“nucleus”) that handled program

execution, whereas input–output was performed by hardware-specific nonkernel modules

(Brinch Hansen, 1970). This concept was subsequently extended to the architecture of database

management systems (Härden, 1986). Today, the kernel–nonkernel architecture is widely used

in the design of operating systems, database management systems, and other systems software,

including games systems (Xbox365, 2004). In this paper, we refer to software that is comprised

of a kernel together with optional nonkernel modules as kernel-based software.

The operating systems we consider this paper, Linux and the three BSDs, are all kernel-

based. That is, every installation of the operating systems consists of all the kernel modules,

together with a subset of the nonkernel modules specific to that installation. A characteristic of

all four open-source operating systems is that the kernel modules are under strict control,

whereas users are encouraged to write nonkernel modules, for example, for specific architectures

or hardware devices.

All four open-source operating systems are written in the programming language C. In this

study, a module is defined to be a source code file (“.c” file or “.h” file). The size of the product

is measured in thousands of lines of code (KLOC), excluding comments.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 6 of 36

Data regarding the number and total number of lines of code of kernel and nonkernel

modules in the four operating systems are provided in Table 1. A key point is that the Linux

kernel is far smaller than the kernels of the three BSDs, both with regard to the number of

modules and the total number of lines of code.

Table 1.
The kernel and nonkernel structure of four open-source operating systems.

Version Number of
kernel modules

Number of
nonkernel modules

Size of kernel
(KLOC)

Total size (KLOC)

Linux 2.4.20 26 9,407 14.230 4,260.445
FreeBSD 5.1 131 3,353 108.475 1,793.294
NetBSD 1.6 85 11,527 64.554 3,329.809
OpenBSD 3.3 81 4,569 55.969 1,825.733

3. Module Dependencies

As stated in Section 1, the coupling between two units of a software system is a measure of

the degree of interaction between those units and, hence, of the dependency between the units.

Many different categorizations of coupling have been published (Offutt et al., 1993; Page-Jones,

1980; Schach, 2005; Stevens et al., 1974), but all agree that common coupling is undesirable.

In this paper, we consider the classical coupling category common coupling. It has been

shown that, for a variety of coupling metrics, the stronger (more undesirable) the coupling, the

greater the fault-proneness (Briand et al., 1988; Troy and Zweben, 1981). A major reason

underlying this phenomenon is that dependencies within the code lead to regression faults.

Coupling has not yet been explicitly shown to be related to maintainability. However, there

is as yet no precise definition of maintainability, and therefore there are no generally accepted

metrics for maintainability. Nevertheless, if a module is fault-prone then it will have to undergo

repeated maintenance, and these frequent changes are likely to compromise its maintainability.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 7 of 36

Furthermore, these frequent changes will not always be restricted to the fault-prone module

itself; it is not uncommon to have to modify more than one module to fix a single fault. Thus,

the fault-proneness of one module can adversely affect the maintainability of a number of other

modules. In other words, it is easy to believe that strong coupling can have a deleterious effect

on maintainability (Yu et al., 2004).

We consider common coupling in this paper for four reasons:

• In a case study on multiversion real-time software, we showed that the vast majority of

the strong coupling introduced during the maintenance phase was common coupling

(Wang et al., 2001).

• As previously stated, there are many categorizations of coupling. In addition, there is

controversy as to what precisely constitutes weak or strong coupling. However, every

categorization we have seen includes a form of coupling that corresponds to classical

common coupling, and it is unanimously agreed that common coupling is undesirable.

• The number of instances of common coupling between a module P and the other modules

can change dramatically, even if module P itself never changes, an effect that has been

called clandestine common coupling (Schach et al., 2003). For example, if modules P

and Q both reference global variable global_var, then there is one instance of common

coupling between module P and the other modules. But if 100 new modules that

reference global variable global_var are written, then the number of instances of

common coupling between module P and the other modules increases to 101, even

though module P itself is unchanged.

• The effect of clandestine common coupling can be especially severe in the case of kernel-

based software. For every other form of coupling, the only way that coupling can be

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 8 of 36

introduced between an existing kernel module and a new nonkernel module is to

explicitly change the kernel module. But where there is common coupling, a new

nonkernel module can be coupled to an existing kernel module simply by including a

reference to a global variable in that new nonkernel module. Consequently, it is possible

for common coupling within a kernel-based module to increase without the knowledge of

the developers responsible for the kernel, that is, in a clandestine way.

4. Definition-Use Analysis

Suppose that a variable yyy is declared in a program. Every occurrence of that variable can

then be categorized as either

(a) A definition (or def) of that variable, that is, an assignment of a value to that variable (for

example, read (yyy) or yyy = 3); or

(b)A use of that variable, that is, an access to the current value of that variable (for example,

x = yyy + 3 or if (yyy > 7) return).

Suppose that modules M1 and M2 are common coupled because they both reference global

variable global_var. There are three possible situations:

(1) Only M1 can change the value of global_var. That is, global_var is defined in M1 but
only used in M2.

(2) Only M2 can change the value of global_var. That is, global_var is defined in M2 but

only used in M1.

(3) Both M1 and M2 can change the value of global_var. That is, global_var is defined in

both M1 and M2.

Situations (1) and (2) pose less risk for maintenance than (3) because there are fewer

dependencies between the two modules when only one can change the value of global_var. The

dependencies are localized, thus effects of changes can be easily determined. When only one

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 9 of 36

module can define global_var, changes to the other module cannot affect the defining module.

Furthermore, within a given module that can change global variable global_var, fewer places

that can change global_var is better.

In def-use analysis, each instance of a variable is labeled as either a definition or a use of that

variable. The next section describes how def-use analysis can be utilized to characterize

common coupling in kernel-based software.

5. Categorization of Common Coupling in Kernel-Based Software

This section provides an overview of our categorization of common coupling in kernel-based

software and the associated graphical notation. There are five separate categories, which are

fully described in a previous paper (Yu et al., 2004).

5.1. Category-1 Global Variables

Consider Figure 1. It depicts two modules, M1 and M2. The outer rectangle denotes the

kernel, so M1 is a kernel module and M2 is a nonkernel module. The arrow from M1 to M2

denotes that M1 defines gv_1 (at least once) and M2 uses gv_1 (at least once).

A category-1 global variable is defined in one or more kernel modules, but is not used in any

kernel modules. (It is used in one or more nonkernel modules, but that is not important here.)

gv_1:

Figure 1: A category-1 global variable gv_1.

The key point is that a change to gv_1 inside the kernel cannot affect the rest of the kernel in

any way. That is, a category-1 global variable is kernel-to-kernel safe, that is, a change to a

kernel module cannot affect the kernel.

1 M M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 10 of 36

Now consider gv_1 from the viewpoint of a nonkernel module. Global variable gv_1 is not

used in any kernel modules, so a change to gv_1 in a nonkernel module cannot affect a kernel

module in any way. That is, a category-1 global variable is nonkernel-to-kernel safe, that is, a

change to a nonkernel module cannot affect the kernel.

5.2. Category-2 Global Variables

Next, consider Figure 2, which depicts two kernel modules, M1 and M2, and global variable

gv_2, which is defined in kernel module M1 and used in kernel module M2. A category-2 global

variable is defined in one kernel module, and is used in one or more kernel modules. Category-2

global variables may be used in nonkernel modules, but that use is not important.

gv_2:

Figure 2: A category-2 global variable gv_2.

As with category 1, a modification to a category-2 global variable in a nonkernel module

cannot affect a kernel module because there are no definitions of a category-2 global variable in

a nonkernel module. That is, category-2 global variables are nonkernel-to-kernel safe.

However, category-2 global variables are kernel-to-kernel unsafe because a change to the kernel

module that defines the variable can affect the kernel module that uses it. By definition,

however, a category-2 global variable is defined in only one kernel module, and thus it is

minimally kernel-to-kernel unsafe.

 M2 M1

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 11 of 36

5.3. Category-3 Global Variables

Now consider Figure 3, which depicts three kernel modules, M1, M2, and M3, and global

variable gv_3, which is defined in kernel modules M1 and M3 and used in kernel module M2. A

category-3 global variable is defined in more than one kernel module, and is also used in one or

more kernel modules. Category-3 global variables may be used in nonkernel modules, but that

use is not important.

 gv_3:

Figure 3: A category-3 global variable gv_3.

As with category 2, category-3 global variables are nonkernel-to-kernel safe. However, they

are kernel-to-kernel unsafe. They are not minimally kernel-to-kernel unsafe, because a category-

3 global variable is defined in more than one kernel module.

5.4. Category-4 Global Variables

Consider Figure 4, which depicts kernel module M1 and nonkernel module M2, and global

variable gv_4. (Note that Figure 4 is the same as Figure 1, but with the direction of the arrow

reversed). A category-4 global variable is defined in one or more nonkernel modules, and used

in one or more kernel modules. As with category-2 and -3 global variables, uses in nonkernel

modules are not important. Figure 4 depicts a category-4 global variable gv_4.

 gv_4:

Figure 4: A category-4 global variable gv_4.

Category-4 global variables are highly undesirable. They are kernel-to-kernel safe but

nonkernel-to-kernel unsafe. That is, a kernel module that uses a category-4 global variable is

vulnerable to modifications to that global variable in a nonkernel module that defines the

 M2 M1 M3

1 M M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 12 of 36

variable. The principle of “separation of concerns” tells us that changes to nonkernel modules

should not be able to affect kernel modules.

4.5. Category-5 Global Variables

Finally, consider Figure 5, which depicts kernel module M1 and nonkernel module M2, and

global variable gv_5. A category-5 global variable is defined in one or more nonkernel

modules, defined in one or more kernel modules, and used in one or more kernel modules.

Figure 5 depicts a category-5 global variable.

gv_5:

Figure 5: A category-5 global variable gv_5.

Category-5 global variables are both kernel-to-kernel unsafe and nonkernel-to-kernel unsafe.

That is, a kernel module that contains a category-5 global variable is vulnerable to modifications

to both a kernel module and a nonkernel module in which that global variable is defined. It is

extremely difficult to minimize the impact of changes that involve category-5 global variables.

In summary, all global variables are unacceptable, but some are more unacceptable than

others. Category-1 global variables are the least deleterious from the viewpoint of

maintainability of the kernel, followed by categories 2 and 3, in that order. However, category-4

and category-5 global variables should be considered unacceptable. In what follows, we use the

term unsafe definition to refer to a definition of a global variable that can affect a kernel module

if that definition is changed. That is, an unsafe definition is a definition of a category-2, -3, or –5

global variable in a kernel module, or a definition of a category-4 or –5 global variable in a

nonkernel module.

M1 M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 13 of 36

6. Common Coupling In Open-Source Operating Systems

We analyzed Linux and the three BSDs using our categorization of common coupling in

kernel-based software. The Linux cross-referencing tool lxr was used to identify the global

variables. For each global variable, lxr was then used to determine in which modules the global

variable appears, and extract the corresponding lines of code. For each instance of a global

variable, we manually checked whether it is a definition or use, a straightforward determination.

To be sure that we had counted correctly, two researchers (Yu and Chen) performed the study

independently. There were only a few discrepancies, all of which were clerical errors and

therefore easy to reconcile.

An overview of our results is shown in Table 2. As shown in the table, Linux has 99 distinct

global variables. Altogether, there are 1,022 instances of global variables in kernel modules.

However, if multiple instances of a given global variable in a module are ignored, there are 193

unique instances of a global variable in kernel modules. The other entries are similar.

The rightmost two columns of Table 2 reveal that Linux has a disproportionately large

number of instances of global variables in both kernel and nonkernel modules. The large number

of instances of global variables in kernel modules, 1022, is surprising in view of the relatively

small size of the Linux kernel, as shown in Table 1. However, from the viewpoint of

maintainability, what must be considered is not the total number of instances of global variables

but rather the breakdown of those instances by definitions and uses in each of the five categories

described in Section 5. The data are given in Tables 3, 4, 5, and 6.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 14 of 36

Table 2.
Global variables in open-source operating systems.

Operating
system

Total
number of

global
variables

Number of
unique

instances of
a global

variable in
kernel

modules

Number of
unique

instances of a
global

variable in
nonkernel
modules

Total number
of instances

of global
variables in

kernel
modules

Total number
of instances

of global
variables in
nonkernel
modules

Linux 99 193 2,808 1,022 14,088
FreeBSD 75 166 338 483 770
NetBSD 66 112 411 378 1,222
OpenBSD 75 122 268 343 521

Table 3.
 Definitions and uses of global variables in Linux 2.4.20.

Category Number Kernel modules Nonkernel modules
number of global

variables
Number

of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

Number
of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

1 23 25 35 – 220 0 389
2 28 76 36 208 1,041 – 4,437
3 4 10 25 15 91 – 302
4 24 27 – 65 66 40 171
5 20 55 180 458 1,390 1,627 7,122

Overall 99 193 276 746 2,808 1,667 12,421

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 15 of 36

Table 4.
Definitions and uses of global variables in FreeBSD 5.1.

Category Number Kernel modules Nonkernel modules
number of global

variables
Number

of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

Number
of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

1 22 23 53 – 73 0 87
2 35 104 74 251 172 – 504
3 8 18 23 28 36 – 70
4 4 8 – 25 24 22 21
5 6 13 6 23 33 24 42

Overall 75 166 156 327 338 46 724

Table 5.
Definitions and uses of global variables in NetBSD 1.6.

Category Number Kernel modules Nonkernel modules
number of global

variables
Number

of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

Number
of unique
instances

of a
global

variable

Number
of

instances
of

definitions

Number
of

instances
of uses

1 19 22 34 – 159 0 336
2 28 57 49 162 129 – 547
3 0 0 0 0 0 – 0
4 4 6 – 18 33 31 76
5 15 27 38 77 90 50 182

Overall 66 112 121 257 411 81 1,141

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 16 of 36

Table 6.
Definitions and uses of global variables in OpenBSD 3.3.

Category Number Kernel modules Nonkernel modules
number of global

variables
Number of

unique
instances of

a global
variable

Number of
instances of
definitions

Number
of

instances
of uses

Number of
unique

instances
of a global

variable

Number of
instances of
definitions

Number
of

instances
of uses

1 22 22 31 – 63 0 107
2 27 61 49 148 71 – 131
3 6 14 18 20 10 – 18
4 10 11 – 25 75 29 111
5 10 14 14 38 49 55 70

Overall 75 122 112 231 268 84 437

7. Results and Statistical Analyses

Critical aspects of Tables 1 through 6 are summarized in Table 7 and depicted in Figures 6

and 7. From the rightmost two columns of the table, we see that Linux has far more unsafe

definitions of global variables than any of the BSDs. Specifically, there are 241 unsafe

definitions in the Linux kernel, which is only 14.230 KLOC in size, as opposed to 103, 87, and

81 definitions in FreeBSD, NetBSD, and OpenBSD, despite the fact that the kernels of the three

BSDs are 7.6, 4.5, and 3.9 times larger than the Linux kernel.

Turning to nonkernel modules, the Linux nonkernel modules contain 1,667 unsafe

definitions, as opposed to just 46, 81, and 84 for the three BSDs. The results of this and the

previous paragraph are summarized in Table 8 and depicted in Figure 8.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 17 of 36

Table 7.
Key aspects of Tables 1 through 6.

Operating

system
Total

number of
global

variables

Total number of
instances of global

variables

Number of instances
of category-4 and -5

global variables

Percentage of
instances of category-

4 and -5 global
variables

 Kernel
modules

Nonkernel
modules

Kernel
modules

Nonkernel
modules

Kernel
modules

Nonkernel
modules

Linux 99 1,022 14,088 703 8960 69% 64%
FreeBSD 75 483 770 54 109 11% 14%
NetBSD 66 378 1,222 133 339 35% 28%
OpenBSD 75 343 521 77 265 22% 51%

Figure 6: Instances of global variables per KLOC.

71.82

4.45 5.86 6.13
3.55

0.70 0.48 0.47
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Linux FreeBSD NetBSD OpenBSD

Instances of global
variables in kernel
modules per KLOC of
kernel modules
Total instances of
global variables per
total KLOC

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 18 of 36

49.40

0.50 2.06 1.382.27
0.09 0.14 0.19

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Linux FreeBSD NetBSD OpenBSD

Instances of
category-4 and -5
global variables in
kernel modules per
KLOC of kernel
modules
Total instances of
category-4 and -5
global variables per
total KLOC

Figure 7: Instances of category-4 and –5 global variables per KLOC.

Table 8.
Unsafe definitions of global variables.

Operating

system
Total

number of
global

variables

Size of
kernel

(KLOC)

Total size
(KLOC)

Number of unsafe
definitions

Number of unsafe
definitions per

KLOC

 Kernel
modules

Nonkernel
modules

Kernel
modules

Nonkernel
modules

Linux 99 14.230 4,260.445 241 1,667 16.936 0.393
FreeBSD 75 108.475 1,793.294 103 46 0.950 0.027
NetBSD 66 64.554 3,329.809 87 81 1.348 0.025

OpenBSD 75 55.969 1,825.733 81 84 1.447 0.047

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 19 of 36

16.94

0.95 1.35 1.45
0.45 0.08 0.05 0.09

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

Lin
ux

Free
BSD

NetB
SD

Ope
nB

SD

Number of unsafe
definitions in kernel
modules per KLOC
Total number of
unsafe definitions
per KLOC

Figure 8. Number of unsafe definitions per KLOC.

Our results show that Linux has many more instances of global variables and far more

instances of unsafe definitions than the three BSDs. In order to quantify these differences, we

performed two sets of statistical tests. First, we tested differences between the three BSDs, in

order to be able to pool the results. On finding that the BSDs were statistically different, we had

to compare Linux with each of the BSDs separately; these constituted our second set of statistical

tests.

In more detail, first we tested the following two null hypotheses:

• H01: There is no significant difference between the distribution of the total number of

instances of global variables in the three BSD-based open-source operating systems and

the distribution of the size (in KLOC) of those operating systems.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 20 of 36

• H02: There is no significant difference between the distribution of the total number of

unsafe definitions in the three BSD-based open-source operating systems and the

distribution of the size (in KLOC) of those operating systems.

We constructed the relevant contingency tables and performed the chi-square test of

independence. In both cases, the corresponding P-value was less than 0.0001, so we rejected the

corresponding null hypotheses at the 99.99% level of significance. Accordingly, we could not

pool the BSD data, but had to compare Linux separately with each BSD.

In our second set of statistical tests, we compared Linux pairwise with each BSD. First we

considered FreeBSD. We tested the following four null hypotheses:

• H03: There is no significant difference between the distribution of the total number of

instances of global variables in Linux and FreeBSD, and the distribution of the size (in

KLOC) of those two operating systems.

• H04: There is no significant difference between the distribution of the number of instances

of global variables in the Linux and FreeBSD kernels, and the distribution of the size (in

KLOC) of the two operating system kernels.

• H05: There is no significant difference between the distribution of the total number of

unsafe definitions of global variables in Linux and FreeBSD, and the distribution of the

size (in KLOC) of those two operating systems.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 21 of 36

• H06: There is no significant difference between the distribution of the number of unsafe

definitions of global variables in the Linux and FreeBSD kernels, and the distribution of

the size (in KLOC) of the two operating system kernels.

We constructed the relevant contingency tables and performed the chi-square tests. In each

case, the P-value was less than 0.0001, so we rejected all four null hypotheses at the 99.99%

level of significance. We concluded that there are significant differences between Linux and

FreeBSD with respect to:

• The total number of instances of global variables per KLOC;

• The number of instances of global variables in the kernel per KLOC;

• The total number of unsafe definitions of global variables per KLOC; and

• The number of unsafe definitions of global variables in the kernel per KLOC.

We remark that we could not directly test any of the above four ratios, because the chi-square

test can be applied to only counts (numbers) like number of global variables and number of lines

of code, and not to ratios like the number of global variables per KLOC.

We then compared Linux with NetBSD and OpenBSD, and obtained identical results. That

is, we rejected the corresponding sets of null hypotheses at the 99.99% level of significance.

These differences are due to the fact that Linux has many more instances of unsafe definitions of

global variables than FreeBSD, OpenBSD, or NetBSD both in kernel and nonkernel modules, as

reflected in Table 8.

There are some clear threats to the validity of our results. First, as with any study of four

software systems, there is an external threat in that these results cannot be guaranteed to apply to

other software systems. However, our goal (as expressed at the end of Section 1) was to decide

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 22 of 36

whether Linux is less maintainable than the three BSDs. We can think of no reason why equally

credible results will not be obtained when our method is applied to other kernel-based software

systems.

There are also two internal threats to validity. Our results rely on counting various data

definitions and uses, and then categorizing them. We used an automated tool to reduce the threat

from inaccurate counting. The categorization is somewhat more problematic because it was

done by hand using judgment that is inherently subjective. To ameliorate this internal threat, the

categorization was performed by two different individuals and the results were then reconciled,

as described in Section 6.

8. Conclusions

This paper is an application of a new classification of common coupling. The classification

is based on the definition-use characteristics of global variables in kernel and nonkernel modules.

Our results show there is considerably more common coupling in Linux than in FreeBSD,

NetBSD, and OpenBSD. In particular, Linux contains far more unsafe definitions of global

variables, especially definitions of category-4 and -5 global variables. Consequently, from the

viewpoint of common coupling, we are concerned that Linux will be more difficult to maintain

in the future than the three BSDs.

Linux compares unfavorably to the three BSDs with respect to every measure we considered,

including:

• Total number of global variables

• Total number of instances of global variables in the kernel and overall

• Total number of instances of global variables per KLOC in the kernel and overall

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 23 of 36

• Number of unsafe definitions of global variables in the kernel and overall

• Number of unsafe definitions of global variables per KLOC in the kernel and overall

• Number of instances of category-4 and -5 global variables in kernel and nonkernel

modules

• Number of instances of category-4 and -5 global variables per KLOC in the kernel and

overall

• Percentage of instances of category-4 and -5 global variables in kernel and nonkernel

modules

We are also concerned that maintainability is not being sufficiently considered by the Linux

development team. The size of Linux is continuously growing (version 2.4.40 comprises over 4

million lines of code), yet there has not yet been a large-scale restructuring.

As we noted in Section 1, this paper is a response to the claim that the widespread usage of

global variables in Linux is necessary for efficiency. Our results show that the three open-source

BSDs have far fewer instances of global variables than Linux, and that it therefore is possible to

design an efficient operating system without a plethora of global variables. As we have pointed

out, common coupling in general and category-4 and category-5 global variables in particular,

are potential threats to the maintainability of the kernel. We believe that Linux developers need

to consider controlling the use of global variables in order to balance maintainability and system

efficiency.

Acknowledgment

This work was sponsored in part by the National Science Foundation under grant number CCR–

0097056.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 24 of 36

References

Briand, L.C., Daly, J., Porter, V., Wüst, J., 1998. A comprehensive empirical validation of

design measures for object-oriented systems. In: Proceedings of the 5th International

Software Metrics Symposium, Bethesda, Maryland, pp. 246–257.

Brinch Hansen, P., 1970. The nucleus of a multiprogramming system. Communications of the

ACM 4 (4), 238–241.

Härden, T., 1986. New Approaches to Object Processing in Engineering Databases, Abstract in:

Proceedings of the International Workshop on Object-Oriented Database Systems, Pacific

Grove, CA, p. 217, September 1986. Full text available at: https://portal.acm.org/poplogin.-

cfm?dl=ACM&coll=GUIDE&comp_id=318875&want_href=delivery%2Ecfm%3Fid%3D31

8875%26type%3Dpdf&CFID=19366447&CFTOKEN=6322313.

Offutt, J., 2002. Open-source software: more or less secure and reliable? Panel at the

International Symposium on Software Reliability Engineering (ISSRE ‘02), Annapolis, MD.

Offutt, J., Harrold, M. J., Kolte, P., 1993. A software metric system for module coupling.

Journal of Systems and Software 20 (3), 295–308.

Page-Jones, M., 1980. The Practical Guide to Structured Systems Design. Yourdon Press, New

York.

Raymond E. S., 2000. The cathedral and the bazaar. www.catb.org/~esr/writings/cathedral-

bazaar/

Schach, S. R., 2005. Object-Oriented and Classical Software Engineering, Sixth Edition.

McGraw-Hill, Boston, MA.

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., Offutt, A. J., 2002. Maintainability of the

Linux kernel. IEE Proceedings—Software 149 (2), 18–23.

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., Offutt, J., 2003. Quality impacts of

clandestine common coupling. Software Quality Journal 11 (3), 211–218.

Schach, S. R., Offutt, J., 2002. On the nonmaintainability of open-source software. In:

Proceedings of the 2nd Workshop on Open-Source Software Engineering, Orlando, FL, pp.

47–49.

Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., Offutt, A.J., 2003. Quality impacts of

clandestine common coupling. Software Quality Journal 11 (7), 211–218.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 25 of 36

 Stevens, W.P., Myers, G.J., Constantine, L.L., 1974. Structured design. IBM Systems Journal

13 (2), 38–54.

Troy, D.A., Zweben, S.H., 1981. Measuring the quality of structured design. Journal of Systems

and Software 2 (2), 113–120.

Wang, S., Schach, S. R., Heller, G. Z., 2001. A case study in repeated maintenance. J. Software

Maintenance and Evolution: Research and Practice 13 (2), 127–141.

Xbox365, 2004. Xbox system software overview. www.xbox365.com/stories/xdkcomplete.-

shtml

Yu, L., Schach, S. R., Chen, K., Offutt, J., 2004. Categorization of common coupling and its

application to the maintainability of the Linux kernel. IEEE Transactions on Software

Engineering 30 (10), 694–706.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 26 of 36

Figure Captions

Figure 1: A category-1 global variable gv_1.

Figure 2: A category-2 global variable gv_2.

Figure 3: A category-3 global variable gv_3.

Figure 4: A category-4 global variable gv_4.

Figure 5: A category-5 global variable gv_5.

Figure 6: Instances of global variables per KLOC.

Figure 7: Instances of category-4 and –5 global variables per KLOC.

Figure 8. Number of unsafe definitions per KLOC.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 27 of 36

gv_1:

Figure 1: A category-1 global variable gv_1.

1 M M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 28 of 36

gv_2:

Figure 2: A category-2 global variable gv_2.

 M2 M1

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 29 of 36

gv_3:

Figure 3: A category-3 variable gv_3.

 M2 M1 M3

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 30 of 36

 gv_4:

Figure 4: A category-4 variable gv_4.

1 M M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 31 of 36

gv_5:

Figure 5: A category-5 global variable gv_5.

M1 M2

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 32 of 36

Figure 6: Instances of global variables per KLOC.

71.82

4.45 5.86 6.13
3.55

0.70 0.48 0.47
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Linux FreeBSD NetBSD OpenBSD

Instances of global
variables in kernel
modules per KLOC of
kernel modules
Total instances of
global variables per
total KLOC

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 33 of 36

49.40

0.50 2.06 1.382.27
0.09 0.14 0.19

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Linux FreeBSD NetBSD OpenBSD

Instances of
category-4 and -5
global variables in
kernel modules per
KLOC of kernel
modules
Total instances of
category-4 and -5
global variables per
total KLOC

Figure 7: Instances of category-4 and –5 global variables per KLOC.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 34 of 36

16.94

0.95 1.35 1.45
0.45 0.08 0.05 0.09

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

Lin
ux

Free
BSD

NetB
SD

Ope
nB

SD

Number of unsafe
definitions in kernel
modules per KLOC
Total number of
unsafe definitions
per KLOC

Figure 8. Number of unsafe definitions per KLOC.

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 35 of 36

Brief biographies

Liguo Yu obtained the PhD degree in computer science from Vanderbilt University. He is an

assistant professor of computer science at Tennessee Technological University. His research

concentrates on the maintainability of the Linux kernel and open-source software development.

Before working in software engineering, his research focused on modeling and system

identification, and fault detection and isolation of hybrid systems. E-mail:

liguo.yu@vanderbilt.edu

Stephen R. Schach is an Associate Professor in the Department of Electrical Engineering and

Computer Science at Vanderbilt University, Nashville, Tennessee. Steve is the author of over

115 refereed research papers. He has written ten software engineering textbooks, including

Object-Oriented and Classical Software Engineering, Sixth Edition (McGraw-Hill, 2005). He

consults internationally on software engineering topics. Steve's research interests are in software

maintenance and open-source software engineering. He obtained his PhD from the University of

Cape Town. E-mail: srs@vuse.vanderbilt.edu.

Kai Chen is a PhD student in the Department of Electrical Engineering and Computer Science at

Vanderbilt University. His current research interests include development and maintenance of

open-source software, embedded software design, domain-specific modeling language design,

formal methods, model verification, and model-integrated computing. E-mail:

kai.chen@vanderbilt.edu

Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 36 of 36

Gillian Z. Heller is an Associate Professor in the Department of Statistics at Macquarie

University, Sydney, Australia, where she has been for the last 12 years. Her B.Sc. (Hons) and

Ph.D. degrees are in Mathematical Statistics, from the University of Cape Town, South Africa,

and her M.Sc. in Operations Research is from the University of South Africa. Gillian’s research

interests are in discrete distribution theory, with applications in biostatistics. E-mail:

gheller@efs.mq.edu.au.

Jeff Offutt is an Associate Professor of Information and Software Engineering at George Mason

University. His current research interests include software testing, analysis and testing of web

applications, object-oriented program analysis, module and integration testing, formal methods,

and software maintenance. He has published over eighty research papers in refereed computer

science journals and conferences. Offutt was program chair for ICECCS 2001 and is on the

editorial boards for the IEEE Transactions on Software Engineering, the Journal of Software

Testing, Verification and Reliability, the Journal of Software and Systems Modeling, and the

Software Quality Journal. He received the Best Teacher Award from the School of Information

Technology and Engineering in 2003. Offutt received a PhD degree in Computer Science from

the Georgia Institute of Technology, and is a member of the ACM and IEEE Computer Society.

E-mail: ofut@ise.gmu.edu.

