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Maintainability of the kernels of open-source operating systems:  

A comparison of Linux to FreeBSD, NetBSD, and OpenBSD 
____________________________________________________________________________________________ 

Abstract 

 

We compared and contrasted the maintainability of four open-source operating systems: 

Linux, FreeBSD, NetBSD, and OpenBSD.  We used our categorization of common coupling in 

kernel-based software to highlight future maintenance problems.  An unsafe definition is a 

definition of a global variable that can affect a kernel module if that definition is changed.  For 

each operating system we determined a number of measures, including the number of global 

variables, the number of instances of global variables in the kernel and overall, as well as the 

number of unsafe definitions in the kernel and overall.  We also computed the value of each our 

measures per kernel KLOC and per KLOC overall.  For every measure and every ratio, Linux 

compared unfavorably to FreeBSD, NetBSD, and OpenBSD.  Accordingly, we are concerned 

about the future maintainability of Linux. 

 

Keywords: Maintainability; Common coupling; Definition-use analysis; Open-source software; Linux. 

____________________________________________________________________________________________ 
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1.  Introduction 

The coupling between two modules is a measure of the degree of interaction between those 

modules and, hence, of the dependency between the modules.  Certain types of coupling, 

especially common (global) coupling, are considered to present risks for software development, 

especially for maintenance (Briand et al., 1988; Troy and Zweben, 1981).  Two modules are 

defined to be common coupled if they both reference the same global variable.  The open-source 

software development life-cycle model can best be described as continuous maintenance, as 

encapsulated in the dictum “release early and often” (Raymond, 2000).  Accordingly, it is 

important that open-source software should have as little common coupling as possible. 

In a longitudinal study of 400 successive versions of Linux (Offutt, 2002; Schach and Offutt, 

2002; Schach et al., 2002), we showed that the number of lines of code in each kernel module 

increases linearly with version number, whereas the number of instances of common coupling 

between each kernel module and all the other Linux modules grows exponentially.  Both results 

were significant at the 99.99% level.  In view of the deleterious effect of common coupling, we 

concluded that the resulting dependencies between modules had the potential of rendering Linux 

hard to maintain in the future. 

At conference presentations of our result (Offutt, 2002; Schach and Offutt, 2002), our 

conclusion was challenged on two grounds:  

 

1. Not all instances of common coupling are equally bad.  For example, if global variables 

can be changed in just a few places, Linux would be considerably more maintainable than 

if global variables can be changed in many places.   
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We responded to the first argument by performing a definition-use analysis of Linux.  Our 

results were based on a new categorization of common coupling in which certain forms of 

common coupling are safer than others from the viewpoint of maintainability (Yu et al., 2004). 

 

2. All operating systems have to use global variables to achieve efficiency, and there is no 

alternative to the widespread utilization of common coupling in Linux. 

 

This paper is our response to the second argument.  Specifically, we show that there is far 

more common coupling in Linux than in three other open-source operating systems, FreeBSD, 

NetBSD, and OpenBSD (in what follows, we refer collectively to FreeBSD, NetBSD, and 

OpenBSD as “the three BSDs”).  Furthermore, Linux has a higher proportion of unsafe forms of 

common coupling than the three BSDs.  This leads us to conclude that is possible to structure 

Linux (and other operating systems) in a way that would increase its maintainability without 

sacrificing efficiency. 
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2.  Kernel-Based Software 

In 1969, Per Brinch Hansen developed a multiprogramming operating system for the RC 

4000 computer.  The operating system consisted of a kernel (“nucleus”) that handled program 

execution, whereas input–output was performed by hardware-specific nonkernel modules 

(Brinch Hansen, 1970).  This concept was subsequently extended to the architecture of database 

management systems (Härden, 1986).  Today, the kernel–nonkernel architecture is widely used 

in the design of operating systems, database management systems, and other systems software, 

including games systems (Xbox365, 2004).  In this paper, we refer to software that is comprised 

of a kernel together with optional nonkernel modules as kernel-based software. 

The operating systems we consider this paper, Linux and the three BSDs, are all kernel-

based.  That is, every installation of the operating systems consists of all the kernel modules, 

together with a subset of the nonkernel modules specific to that installation.  A characteristic of 

all four open-source operating systems is that the kernel modules are under strict control, 

whereas users are encouraged to write nonkernel modules, for example, for specific architectures 

or hardware devices.   

All four open-source operating systems are written in the programming language C.  In this 

study, a module is defined to be a source code file (“.c” file or “.h” file).  The size of the product 

is measured in thousands of lines of code (KLOC), excluding comments. 
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Data regarding the number and total number of lines of code of kernel and nonkernel 

modules in the four operating systems are provided in Table 1.  A key point is that the Linux 

kernel is far smaller than the kernels of the three BSDs, both with regard to the number of 

modules and the total number of lines of code. 

Table 1.   
The kernel and nonkernel structure of four open-source operating systems. 
 

Version Number of 
kernel modules 

Number of 
nonkernel modules 

Size of kernel 
(KLOC) 

Total size (KLOC) 

Linux 2.4.20 26 9,407 14.230 4,260.445 
FreeBSD 5.1 131 3,353 108.475 1,793.294 
NetBSD 1.6 85 11,527 64.554 3,329.809 
OpenBSD 3.3 81 4,569 55.969 1,825.733 

 

3.  Module Dependencies 

As stated in Section 1, the coupling between two units of a software system is a measure of 

the degree of interaction between those units and, hence, of the dependency between the units.  

Many different categorizations of coupling have been published  (Offutt et al., 1993; Page-Jones, 

1980; Schach, 2005; Stevens et al., 1974), but all agree that common coupling is undesirable. 

In this paper, we consider the classical coupling category common coupling.  It has been 

shown that, for a variety of coupling metrics, the stronger (more undesirable) the coupling, the 

greater the fault-proneness (Briand et al., 1988; Troy and Zweben, 1981).  A major reason 

underlying this phenomenon is that dependencies within the code lead to regression faults. 

Coupling has not yet been explicitly shown to be related to maintainability.  However, there 

is as yet no precise definition of maintainability, and therefore there are no generally accepted 

metrics for maintainability.  Nevertheless, if a module is fault-prone then it will have to undergo 

repeated maintenance, and these frequent changes are likely to compromise its maintainability.  
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Furthermore, these frequent changes will not always be restricted to the fault-prone module 

itself; it is not uncommon to have to modify more than one module to fix a single fault.  Thus, 

the fault-proneness of one module can adversely affect the maintainability of a number of other 

modules.  In other words, it is easy to believe that strong coupling can have a deleterious effect 

on maintainability (Yu et al., 2004). 

We consider common coupling in this paper for four reasons: 

• In a case study on multiversion real-time software, we showed that the vast majority of 

the strong coupling introduced during the maintenance phase was common coupling 

(Wang et al., 2001).   

• As previously stated, there are many categorizations of coupling.  In addition, there is 

controversy as to what precisely constitutes weak or strong coupling.  However, every 

categorization we have seen includes a form of coupling that corresponds to classical 

common coupling, and it is unanimously agreed that common coupling is undesirable.   

• The number of instances of common coupling between a module P and the other modules 

can change dramatically, even if module P itself never changes, an effect that has been 

called clandestine common coupling (Schach et al., 2003).  For example, if modules P 

and Q both reference global variable global_var, then there is one instance of common 

coupling between module P and the other modules.  But if 100 new modules that 

reference global variable global_var are written, then the number of instances of 

common coupling between module P and the other modules increases to 101, even 

though module P itself is unchanged.   

• The effect of clandestine common coupling can be especially severe in the case of kernel-

based software.  For every other form of coupling, the only way that coupling can be 
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introduced between an existing kernel module and a new nonkernel module is to 

explicitly change the kernel module.  But where there is common coupling, a new 

nonkernel module can be coupled to an existing kernel module simply by including a 

reference to a global variable in that new nonkernel module.  Consequently, it is possible 

for common coupling within a kernel-based module to increase without the knowledge of 

the developers responsible for the kernel, that is, in a clandestine way.  

4.  Definition-Use Analysis 

Suppose that a variable yyy is declared in a program.  Every occurrence of that variable can 

then be categorized as either  

(a) A definition (or def) of that variable, that is, an assignment of a value to that variable (for 

example, read (yyy) or yyy = 3); or  

(b)A use of that variable, that is, an access to the current value of that variable (for example, 

x = yyy + 3 or if (yyy > 7) return).   

Suppose that modules M1 and M2 are common coupled because they both reference global 

variable global_var.  There are three possible situations:  

(1) Only M1 can change the value of global_var.  That is, global_var is defined in M1 but 
only used in M2.   

 
(2) Only M2 can change the value of global_var.  That is, global_var is defined in M2 but 

only used in M1. 
 
(3) Both M1 and M2 can change the value of global_var.  That is, global_var is defined in 

both M1 and M2.   
 

Situations (1) and (2) pose less risk for maintenance than (3) because there are fewer 

dependencies between the two modules when only one can change the value of global_var.  The 

dependencies are localized, thus effects of changes can be easily determined.  When only one 
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module can define global_var, changes to the other module cannot affect the defining module.  

Furthermore, within a given module that can change global variable global_var, fewer places 

that can change global_var is better. 

In def-use analysis, each instance of a variable is labeled as either a definition or a use of that 

variable.  The next section describes how def-use analysis can be utilized to characterize 

common coupling in kernel-based software. 

5.   Categorization of Common Coupling in Kernel-Based Software 

This section provides an overview of our categorization of common coupling in kernel-based 

software and the associated graphical notation.  There are five separate categories, which are 

fully described in a previous paper (Yu et al., 2004). 

5.1.  Category-1 Global Variables 

Consider Figure 1.  It depicts two modules, M1 and M2.  The outer rectangle denotes the 

kernel, so M1 is a kernel module and M2 is a nonkernel module.  The arrow from M1 to M2 

denotes that M1 defines gv_1 (at least once) and M2 uses gv_1 (at least once).   

A category-1 global variable is defined in one or more kernel modules, but is not used in any 

kernel modules.  (It is used in one or more nonkernel modules, but that is not important here.) 

  
gv_1: 

 
Figure 1: A category-1 global variable gv_1. 

 
The key point is that a change to gv_1 inside the kernel cannot affect the rest of the kernel in 

any way.  That is, a category-1 global variable is kernel-to-kernel safe, that is, a change to a 

kernel module cannot affect the kernel. 

1 M   M2 
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Now consider gv_1 from the viewpoint of a nonkernel module.  Global variable gv_1 is not 

used in any kernel modules, so a change to gv_1 in a nonkernel module cannot affect a kernel 

module in any way.  That is, a category-1 global variable is nonkernel-to-kernel safe, that is, a 

change to a nonkernel module cannot affect the kernel.  

5.2.  Category-2 Global Variables 

Next, consider Figure 2, which depicts two kernel modules, M1 and M2, and global variable 

gv_2, which is defined in kernel module M1 and used in kernel module M2.  A category-2 global 

variable is defined in one kernel module, and is used in one or more kernel modules.  Category-2 

global variables may be used in nonkernel modules, but that use is not important.  

gv_2: 
 

Figure 2: A category-2 global variable gv_2. 
 

As with category 1, a modification to a category-2 global variable in a nonkernel module 

cannot affect a kernel module because there are no definitions of a category-2 global variable in 

a nonkernel module.  That is, category-2 global variables are nonkernel-to-kernel safe.  

However, category-2 global variables are kernel-to-kernel unsafe because a change to the kernel 

module that defines the variable can affect the kernel module that uses it.  By definition, 

however, a category-2 global variable is defined in only one kernel module, and thus it is 

minimally kernel-to-kernel unsafe. 

 M2 M1 



Yu, Schach, Chen, Heller, Offutt DRAFT — NOT FOR PUBLICATION Page 11 of 36  

  

5.3.  Category-3 Global Variables 

Now consider Figure 3, which depicts three kernel modules, M1, M2, and M3, and global 

variable gv_3, which is defined in kernel modules M1 and M3 and used in kernel module M2.  A 

category-3 global variable is defined in more than one kernel module, and is also used in one or 

more kernel modules.  Category-3 global variables may be used in nonkernel modules, but that 

use is not important.  

     gv_3: 

Figure 3: A category-3 global variable gv_3. 
 

As with category 2, category-3 global variables are nonkernel-to-kernel safe.  However, they 

are kernel-to-kernel unsafe.  They are not minimally kernel-to-kernel unsafe, because a category-

3 global variable is defined in more than one kernel module. 

5.4.  Category-4 Global Variables 

Consider Figure 4, which depicts kernel module M1 and nonkernel module M2, and global 

variable gv_4.  (Note that Figure 4 is the same as Figure 1, but with the direction of the arrow 

reversed).  A category-4 global variable is defined in one or more nonkernel modules, and used 

in one or more kernel modules.  As with category-2 and -3 global variables, uses in nonkernel 

modules are not important.  Figure 4 depicts a category-4 global variable gv_4.   

                         gv_4: 

Figure 4: A category-4 global variable gv_4. 
 

Category-4 global variables are highly undesirable.  They are kernel-to-kernel safe but 

nonkernel-to-kernel unsafe.  That is, a kernel module that uses a category-4 global variable is 

vulnerable to modifications to that global variable in a nonkernel module that defines the 

 M2 M1  M3 

1 M M2 
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variable.  The principle of “separation of concerns” tells us that changes to nonkernel modules 

should not be able to affect kernel modules. 

4.5.  Category-5 Global Variables 

Finally, consider Figure 5, which depicts kernel module M1 and nonkernel module M2, and 

global variable gv_5.  A category-5 global variable is defined in one or more nonkernel 

modules, defined in one or more kernel modules, and used in one or more kernel modules.  

Figure 5 depicts a category-5 global variable. 

gv_5: 
 

Figure 5: A category-5 global variable gv_5. 
 

Category-5 global variables are both kernel-to-kernel unsafe and nonkernel-to-kernel unsafe.  

That is, a kernel module that contains a category-5 global variable is vulnerable to modifications 

to both a kernel module and a nonkernel module in which that global variable is defined.  It is 

extremely difficult to minimize the impact of changes that involve category-5 global variables. 

In summary, all global variables are unacceptable, but some are more unacceptable than 

others.  Category-1 global variables are the least deleterious from the viewpoint of 

maintainability of the kernel, followed by categories 2 and 3, in that order.  However, category-4 

and category-5 global variables should be considered unacceptable.  In what follows, we use the 

term unsafe definition to refer to a definition of a global variable that can affect a kernel module 

if that definition is changed.  That is, an unsafe definition is a definition of a category-2, -3, or –5 

global variable in a kernel module, or a definition of a category-4 or –5 global variable in a 

nonkernel module. 

M1     M2   
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6.  Common Coupling In Open-Source Operating Systems 

We analyzed Linux and the three BSDs using our categorization of common coupling in 

kernel-based software. The Linux cross-referencing tool lxr was used to identify the global 

variables.  For each global variable, lxr was then used to determine in which modules the global 

variable appears, and extract the corresponding lines of code.  For each instance of a global 

variable, we manually checked whether it is a definition or use, a straightforward determination.  

To be sure that we had counted correctly, two researchers (Yu and Chen) performed the study 

independently.  There were only a few discrepancies, all of which were clerical errors and 

therefore easy to reconcile.   

An overview of our results is shown in Table 2.  As shown in the table, Linux has 99 distinct 

global variables.  Altogether, there are 1,022 instances of global variables in kernel modules.  

However, if multiple instances of a given global variable in a module are ignored, there are 193 

unique instances of a global variable in kernel modules.  The other entries are similar. 

The rightmost two columns of Table 2 reveal that Linux has a disproportionately large 

number of instances of global variables in both kernel and nonkernel modules.  The large number 

of instances of global variables in kernel modules, 1022, is surprising in view of the relatively 

small size of the Linux kernel, as shown in Table 1.  However, from the viewpoint of 

maintainability, what must be considered is not the total number of instances of global variables 

but rather the breakdown of those instances by definitions and uses in each of the five categories 

described in Section 5.  The data are given in Tables 3, 4, 5, and 6. 
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Table 2.   
Global variables in open-source operating systems. 
 

Operating 
system 

Total 
number of 

global 
variables 

Number of 
unique 

instances of 
a global 

variable in 
kernel 

modules  

Number of 
unique 

instances of a 
global 

variable in 
nonkernel 
modules 

Total number 
of instances 

of global 
variables in 

kernel 
modules 

Total number 
of instances 

of global 
variables in 
nonkernel 
modules 

Linux 99 193 2,808 1,022 14,088 
FreeBSD 75 166 338 483 770 
NetBSD 66 112 411 378 1,222 
OpenBSD 75 122 268 343 521 
 

Table 3.  
 Definitions and uses of global variables in Linux 2.4.20. 
 
Category Number Kernel modules Nonkernel modules 
number of global 

variables  
Number 

of unique 
instances 

of a 
global 

variable  

Number 
of 

instances 
of 

definitions  

Number  
of 

instances 
of uses 

Number 
of unique 
instances 

of a 
global 

variable 

Number 
of 

instances 
of 

definitions  

Number 
of 

instances 
of uses 

1 23 25 35 – 220 0 389 
2 28 76 36 208 1,041 – 4,437 
3 4 10 25 15 91 – 302 
4 24 27 – 65 66 40 171 
5 20 55 180 458 1,390 1,627 7,122 

Overall 99 193 276 746 2,808 1,667 12,421 
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Table 4.  
Definitions and uses of global variables in FreeBSD 5.1. 
 
Category Number Kernel modules Nonkernel modules 
number of global 

variables  
Number 

of unique 
instances 

of a 
global 

variable  

Number 
of 

instances 
of 

definitions  

Number  
of 

instances 
of uses 

Number 
of unique 
instances 

of a 
global 

variable 

Number 
of 

instances 
of 

definitions  

Number 
of 

instances 
of uses 

1 22 23 53 – 73 0 87 
2 35 104 74 251 172 – 504 
3 8 18 23 28 36 – 70 
4 4 8 – 25 24 22 21 
5 6 13 6 23 33 24 42 

Overall 75 166 156 327 338 46 724 
  

Table 5.   
Definitions and uses of global variables in NetBSD 1.6. 
 
Category Number Kernel modules Nonkernel modules 
number of global 

variables  
Number 

of unique 
instances 

of a 
global 

variable  

Number 
of 

instances 
of 

definitions  

Number  
of 

instances 
of uses 

Number 
of unique 
instances 

of a 
global 

variable 

Number 
of 

instances 
of 

definitions  

Number 
of 

instances 
of uses 

1 19 22 34 – 159 0 336 
2 28 57 49 162 129 – 547 
3 0 0 0 0 0 – 0 
4 4 6 – 18 33 31 76 
5 15 27 38 77 90 50 182 

Overall 66 112 121 257 411 81 1,141 
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Table 6.  
Definitions and uses of global variables in OpenBSD 3.3. 

 
Category Number Kernel modules Nonkernel modules 
number of global 

variables 
Number of 

unique 
instances of 

a global 
variable 

Number of 
instances of 
definitions 

Number 
of 

instances 
of uses 

Number of 
unique 

instances 
of a global 

variable 

Number of 
instances of 
definitions 

Number 
of 

instances 
of uses 

1 22 22 31 – 63 0 107 
2 27 61 49 148 71 – 131 
3 6 14 18 20 10 – 18 
4 10 11 – 25 75 29 111 
5 10 14 14 38 49 55 70 

Overall 75 122 112 231 268 84 437 
  

7.  Results and Statistical Analyses 

Critical aspects of Tables 1 through 6 are summarized in Table 7 and depicted in Figures 6 

and 7.  From the rightmost two columns of the table, we see that Linux has far more unsafe 

definitions of global variables than any of the BSDs.  Specifically, there are 241 unsafe 

definitions in the Linux kernel, which is only 14.230 KLOC in size, as opposed to 103, 87, and 

81 definitions in FreeBSD, NetBSD, and OpenBSD, despite the fact that the kernels of the three 

BSDs are 7.6, 4.5, and 3.9 times larger than the Linux kernel.  

Turning to nonkernel modules, the Linux nonkernel modules contain 1,667 unsafe 

definitions, as opposed to just 46, 81, and 84 for the three BSDs.  The results of this and the 

previous paragraph are summarized in Table 8 and depicted in Figure 8. 
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Table 7.   
Key aspects of Tables 1 through 6.  

 
Operating 

system 
Total 

number of 
global 

variables 

Total number of 
instances of global 

variables 

Number of instances 
of category-4 and -5 

global variables 

Percentage of 
instances of category-

4 and -5 global 
variables 

  Kernel 
modules 

Nonkernel 
modules 

Kernel 
modules 

Nonkernel 
modules 

Kernel 
modules 

Nonkernel 
modules 

Linux 99 1,022 14,088 703 8960 69% 64% 
FreeBSD 75 483 770 54 109 11% 14% 
NetBSD 66 378 1,222 133 339 35% 28% 
OpenBSD 75 343 521 77 265 22% 51% 

 
 
 

 
Figure 6: Instances of global variables per KLOC.  
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Figure 7: Instances of category-4 and –5 global variables per KLOC.  

 
 
Table 8.   
Unsafe definitions of global variables. 

 
Operating 

system 
Total 

number of 
global 

variables 

Size of 
kernel 

(KLOC) 

Total size 
(KLOC) 

Number of unsafe 
definitions 

Number of unsafe 
definitions per 

KLOC 

    Kernel 
modules 

Nonkernel 
modules 

Kernel 
modules 

Nonkernel 
modules 

Linux 99 14.230 4,260.445 241 1,667 16.936 0.393 
FreeBSD 75 108.475 1,793.294 103 46 0.950 0.027 
NetBSD 66 64.554 3,329.809 87 81 1.348 0.025 

OpenBSD 75 55.969 1,825.733 81 84 1.447 0.047 
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Figure 8.  Number of unsafe definitions per KLOC. 
 

Our results show that Linux has many more instances of global variables and far more 

instances of unsafe definitions than the three BSDs.  In order to quantify these differences, we 

performed two sets of statistical tests.  First, we tested differences between the three BSDs, in 

order to be able to pool the results.  On finding that the BSDs were statistically different, we had 

to compare Linux with each of the BSDs separately; these constituted our second set of statistical 

tests. 

In more detail, first we tested the following two null hypotheses: 

• H01: There is no significant difference between the distribution of the total number of 

instances of global variables in the three BSD-based open-source operating systems and 

the distribution of the size (in KLOC) of those operating systems. 
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• H02: There is no significant difference between the distribution of the total number of 

unsafe definitions in the three BSD-based open-source operating systems and the 

distribution of the size (in KLOC) of those operating systems. 

 

We constructed the relevant contingency tables and performed the chi-square test of 

independence.  In both cases, the corresponding P-value was less than 0.0001, so we rejected the 

corresponding null hypotheses at the 99.99% level of significance.  Accordingly, we could not 

pool the BSD data, but had to compare Linux separately with each BSD.  

In our second set of statistical tests, we compared Linux pairwise with each BSD.  First we 

considered FreeBSD.  We tested the following four null hypotheses: 

 

• H03: There is no significant difference between the distribution of the total number of 

instances of global variables in Linux and FreeBSD, and the distribution of the size (in 

KLOC) of those two operating systems. 

 

• H04: There is no significant difference between the distribution of the number of instances 

of global variables in the Linux and FreeBSD kernels, and the distribution of the size (in 

KLOC) of the two operating system kernels. 

 

• H05: There is no significant difference between the distribution of the total number of 

unsafe definitions of global variables in Linux and FreeBSD, and the distribution of the 

size (in KLOC) of those two operating systems. 
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• H06: There is no significant difference between the distribution of the number of unsafe 

definitions of global variables in the Linux and FreeBSD kernels, and the distribution of 

the size (in KLOC) of the two operating system kernels. 

 

We constructed the relevant contingency tables and performed the chi-square tests.  In each 

case, the P-value was less than 0.0001, so we rejected all four null hypotheses at the 99.99% 

level of significance.  We concluded that there are significant differences between Linux and 

FreeBSD with respect to: 

• The total number of instances of global variables per KLOC; 

• The number of instances of global variables in the kernel per KLOC; 

• The total number of unsafe definitions of global variables per KLOC; and 

• The number of unsafe definitions of global variables in the kernel per KLOC.   

We remark that we could not directly test any of the above four ratios, because the chi-square 

test can be applied to only counts (numbers) like number of global variables and number of lines 

of code, and not to ratios like the number of global variables per KLOC. 

We then compared Linux with NetBSD and OpenBSD, and obtained identical results.  That 

is, we rejected the corresponding sets of null hypotheses at the 99.99% level of significance.  

These differences are due to the fact that Linux has many more instances of unsafe definitions of 

global variables than FreeBSD, OpenBSD, or NetBSD both in kernel and nonkernel modules, as 

reflected in Table 8. 

There are some clear threats to the validity of our results.  First, as with any study of four 

software systems, there is an external threat in that these results cannot be guaranteed to apply to 

other software systems.  However, our goal (as expressed at the end of Section 1) was to decide 
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whether Linux is less maintainable than the three BSDs.  We can think of no reason why equally 

credible results will not be obtained when our method is applied to other kernel-based software 

systems. 

There are also two internal threats to validity.  Our results rely on counting various data 

definitions and uses, and then categorizing them.  We used an automated tool to reduce the threat 

from inaccurate counting.  The categorization is somewhat more problematic because it was 

done by hand using judgment that is inherently subjective.  To ameliorate this internal threat, the 

categorization was performed by two different individuals and the results were then reconciled, 

as described in Section 6.  

8.  Conclusions 

This paper is an application of a new classification of common coupling.  The classification 

is based on the definition-use characteristics of global variables in kernel and nonkernel modules. 

Our results show there is considerably more common coupling in Linux than in FreeBSD, 

NetBSD, and OpenBSD.  In particular, Linux contains far more unsafe definitions of global 

variables, especially definitions of category-4 and -5 global variables.  Consequently, from the 

viewpoint of common coupling, we are concerned that Linux will be more difficult to maintain 

in the future than the three BSDs. 

Linux compares unfavorably to the three BSDs with respect to every measure we considered, 

including: 

• Total number of global variables 

• Total number of instances of global variables in the kernel and overall 

• Total number of instances of global variables per KLOC in the kernel and overall 
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• Number of unsafe definitions of global variables in the kernel and overall 

• Number of unsafe definitions of global variables per KLOC in the kernel and overall 

• Number of instances of category-4 and -5 global variables in kernel and nonkernel 

modules 

• Number of instances of category-4 and -5 global variables per KLOC in the kernel and 

overall 

• Percentage of instances of category-4 and -5 global variables in kernel and nonkernel 

modules 

We are also concerned that maintainability is not being sufficiently considered by the Linux 

development team.  The size of Linux is continuously growing (version 2.4.40 comprises over 4 

million lines of code), yet there has not yet been a large-scale restructuring.  

As we noted in Section 1, this paper is a response to the claim that the widespread usage of 

global variables in Linux is necessary for efficiency.  Our results show that the three open-source 

BSDs have far fewer instances of global variables than Linux, and that it therefore is possible to 

design an efficient operating system without a plethora of global variables.  As we have pointed 

out, common coupling in general and category-4 and category-5 global variables in particular, 

are potential threats to the maintainability of the kernel.  We believe that Linux developers need 

to consider controlling the use of global variables in order to balance maintainability and system 

efficiency. 
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Figure Captions 

Figure 1: A category-1 global variable gv_1. 

Figure 2: A category-2 global variable gv_2. 

Figure 3: A category-3 global variable gv_3. 

Figure 4: A category-4 global variable gv_4. 

Figure 5: A category-5 global variable gv_5. 

Figure 6: Instances of global variables per KLOC.  

Figure 7: Instances of category-4 and –5 global variables per KLOC.  

Figure 8.  Number of unsafe definitions per KLOC. 
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Figure 1: A category-1 global variable gv_1. 
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Figure 2: A category-2 global variable gv_2. 
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gv_3: 

 
 
 

Figure 3: A category-3 variable gv_3. 
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Figure 4: A category-4 variable gv_4. 
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gv_5: 
 
 
 
 
 
 

Figure 5: A category-5 global variable gv_5. 
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Figure 6: Instances of global variables per KLOC.  
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Figure 7: Instances of category-4 and –5 global variables per KLOC.  
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Figure 8.  Number of unsafe definitions per KLOC. 
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