
The Open Source rEvolution - A Pragmatic Approach to Making the Best of It

Terry White
EDS Fellow

26533 Evergreen, MS 1007
Southfield, MI 48076

001 248-262-7911

Terry.White@eds.com

Joel Goldberg
EDS Consultant Sr.

26533 Evergreen, MS 1007
Southfield, MI 48076

001 248-262-7097

Joel.Goldberg@eds.com

Lori Scharich
EDS Client Delivery Manager

5505 Corporate Drive, MS 5004
Troy, MI 48098

001 248-267-7841

Lori.Scharich@eds.com

1. Why Open Source?

When embarking on a computer systems development activity you
are faced some basic alternatives to get the job done:

1. Reuse existing software
2. Reuse and modify (to meet additional requirements)
3. Build to own (or sell)
4. Buy to license
5. Buy to own
6. Some combination of the above

It used to be that building your own was your only choice. As
companies built massive libraries of computer systems, and other
companies found that they could sell their computer systems for a
profit a whole industry was born. Most people would rather
borrow or reuse something that someone else already had than
build it themselves.

Sharing routine sets of computer instructions, computer programs
and computer software among programmers and users has been
around since the dawn of computer programming. Why would
anyone want to write a software solution from scratch when
someone else has probably already written it?

Arguments for reusing developed program code include:

��“its already written”
��“it works”
��“its less expensive or even free in some cases”
��“maybe they know something I don’t”

Arguments for not reusing developed program code include

��“I can make a better one”
��“it doesn’t do everything I need”
��“its not fast enough”
��“its not as efficient as I need”
��“I want something my competitors don’t have”
��“I need a guarantee it will work”.

The first set of arguments tends to come from pragmatic
programmers who just want to get the job done. They understand
the value of reusing existing code and would rather spend their
time on creating something truly new. The second set is
influenced by business realities and desires. The business is
concerned about ensuring efficient operations, competitive
differentiation and sustainability. Of course some of the views
may overlap, especially the build a better one. But, generally the
arguments against reuse are driven by a desire to be different in
some way – usually in a good way.

Software development has come a long way since computers were
first invented, and so has reuse. Today its possible to buy
software solutions in any shape and size, from low-level functions
to complete enterprise systems. Of course you can still build a
software solution yourself, and also use trusted pre-built software
components to help you quickly put it together. Reuse is still very
strong in the software community and what once was just a
handful of programmers sharing code with their friends is now
supported by technology - the Internet. This technology wonder
allows virtual communities of programmers to collaborate and
share their work from anywhere in the world.

2. Organizational Support

Organizations like Apache, Mozilla, GNU (GNU’s Not Unix),
and others have emerged to allow collaboration and sharing of
computer program logic and ideas among talented individuals
who want to build a better piece of software and share it with
anyone who wants it. These are “Open-Source” software
organizations. They provide a structure that enables everyone to
work together in an organized manner. Supported by the
Internet, collaboration & sharing tools such as SourceForge
(http://sourceforge.net/), and a governance structure that includes
a generally accepted work process, these developers are able to
build both simple and complex computer programs and then offer
them up to anyone.

In some instances Open Source software can be developed very
quickly because many people are continuously looking at it and
evolving it. It really depends on the size and skill level of the
participating developer group and the importance of the project to
the collective developers.

http://sourceforge.net/

Groups and individuals who decide to use their code can do so
free of charge but must agree to a very simple license agreement
that explains how it can be used and the fact that it comes without
any warranty. Open source software isn’t necessarily industry
standard software, although there are some implementations, such
as BIND software that allows Internet web sites to be referenced
with a name rather than a number, which have become a de facto
standard. Open Source software isn’t necessarily an off-the-shelf
product either. Open Source software is usually developed out of
a general need and can take the form of a complete system, a very
small component or utility, or even a set of foundation level
modules that can be used to develop larger solutions.

Examples of Open Source as complete systems are the Mozilla
browser, Linux Operating System and the Apache web server.
Examples of lower level components or foundational modules
include the Log4J logging library, and the Struts model-view-
controller framework for constructing web applications with
Servlets and Java Server Pages (JSP). It’s estimated that about
60% of the software that drives the Internet is based on Open
Source software. Many commercial software products have
embedded pieces of Open Source software or used Open Source
software as a starting point for a larger application.

3. “Standards”

Open Source is “Open” because it is available to anyone who
wants to contribute and be a part of any of the efforts that are in
progress. The Open Source software is freely distributable and
can be further changed or enhanced by those who use it. Open
Source is free from adhering to a direction coming from
companies seeking proprietary gain. Some involved feel that it’s
a case of the underdog and underprivileged standing up against
threats from corporate monopolies. It’s not open because it’s a
standard and it’s not an Open Standard.

If a piece of Open Source software becomes wildly popular it may
eventually find its way to being a standard implementation. Many
pieces of Open Source software are clever tools that make
developing computer software easier. It is important to note that
many Open Source developers do follow industry standards when
developing their Open Source software, and that Open Source
software is subject to a peer review process.

Still, Open Source software is without warranty, and maintenance
and support is not included. The hope and goal is that “Open
Source promotes software reliability and quality by supporting
independent peer review and rapid evolution of source code. To
be OSI certified, the software must be distributed under a license
that guarantees the right to read, redistribute, modify, and use the
software freely.” (from OpenSource.org)

4. Decision Factors
People choose to use Open Source implementations for a variety
of reasons. The least of which should be that “its Free”. The real
questions to ask are:

��How does the open source software compare to its
commercial and proprietary counterparts?

�� Is it widely adopted?
�� Is the participating developer community large? (or just

one person?)
��Can I find people who know about it and therefore can

it be supported over time?

It should also be evaluated against traditional software selection
tests in order to ensure it meets the necessary requirements.
Consideration also needs to be given to the expected life cycle of
the software – is this a short-lived activity or is a large investment
being made that requires a payback over time?

Furthermore, when choosing Open Source software to be used as
the basis for a commercial product or service offering it is
important to outline a strategy for its selection, use, upgrade and
support. Open Source software should be treated as if you wrote
it. There is no other party that will be held responsible if it does
not perform as expected or something goes wrong.

5. Strategies

Different strategies may be needed for software that forms the
basis for a system, and software that is used as the system. Some
Open Source software can be treated and used as a “black-box”
which contains all the required functionality. Other Open Source
software provides functions that contribute to a larger system. In
both cases upgrades, maintenance and support must be
considered.

In the case where the Open Source software provides a foundation
it is likely that modifications will be made to the original Open
Source software over time. These need to be carefully managed to
ensure that they do not diverge from the Open Source software
project charter and direction. Straying from the original charter
may prevent the ability to take advantage of enhancements to the
base software.

Release schedules for Open Source software is often very
frequent, and can be as frequent as daily. These releases will
contain new features and will likely contain bug fixes. Open
Source software is still developed by people and people make
mistakes. Don’t assume that all of the code has been tested and
tested in a manner that exercises all of the features that you will
use. There is no substitute for testing your implementation of the
Open Source and testing your finished product.

Finally, if you or your company decides to use Open Source
software, it is a good idea to become a member of the organization
or foundation you are obtaining the software from. This will put
you on the mailing lists for enhancements and bug fixes, allow
you to see the feature wish-lists and provide the means for you to
influence the direction of the Open Source projects that you have
an interest in.

6. Conclusion

Open Source seems like a Revolutionary concept. Upon closer
examination it’s an Evolution of good software development
citizenship that has leveraged, and exploited, the available
technology to expand beyond the boundaries of a person’s
workplace or intimate circle of friends.

It’s the freedom from constraining schedules and deadlines, and
traditional ROI models that permit the Open Source developers to
be a little more creative than their business alter egos.

It’s the expansion of software developer capacity to collaborate
on, design, and build software while keeping pace with the
competition created by for-profit businesses that make Open
Source a viable direction.

The real threats to Open Source are the business realities of
competition, risk, profit, and loss.

Businesses need to take a pragmatic approach to using Open
Source software by comparing it to the competition, judging it on
its capabilities, and understanding both the benefits and the risks
that it brings.

	Why Open Source?
	Organizational Support

