What Does It Take to Develop
a Million Lines of Open Source Code?

Juan Fernandez-Ramil', Daniel Izquierdo-Cortazar?, and Tom Mens®

' Université de Mons
Mons, Belgium
{j.f.ramil, tom.mens}@umons.ac.be
2 Universidad Rey Juan Carlos
Madrid, Spain
dizquierdo@gsyc.urjc.es
3 The Open University
Milton Keynes, U.K.
j.f.ramil@open.ac.uk

Abstract. This article presents a preliminary and exploratory study of the rela-
tionship between size, on the one hand, and effort, duration and team size, on the
other, for 11 Free/Libre/Open Source Software (FLOSS) projects with current
size ranging between between 0.6 and 5.3 million lines of code (MLOC). Effort
was operationalised based on the number of active committers per month. The
extracted data did not fit well an early version of the closed-source cost estima-
tion model COCOMO for proprietary software, overall suggesting that, at least to
some extent, FLOSS communities are more productive than closed-source teams.
This also motivated the need for FLOSS-specific effort models. As a first approx-
imation, we evaluated 16 linear regression models involving different pairs of
attributes. One of our experiments was to calculate the net size, that is, to remove
any suspiciously large outliers or jumps in the growth trends. The best model we
found involved effort against net size, accounting for 79 percent of the variance.
This model was based on data excluding a possible outlier (Eclipse), the largest
project in our sample. This suggests that different effort models may be needed
for certain categories of FLOSS projects. Incidentally, for each of the 11 indi-
vidual FLOSS projects we were able to model the net size trends with very high
accuracy (R? > 0.98). Of the 11 projects, 3 have grown superlinearly, 5 linearly
and 3 sublinearly, suggesting that in the majority of the cases accumulated com-
plexity is either well controlled or don’t constitute a growth constraining factor.

Keywords: Baselines, complexity, COCOMO, cost, economics, effort estima-
tion, effort operationalisation, empirical studies, large software, free software,
metrics, open source, productivity, software evolution.

1 Introduction

Software development productivity and cost estimation have been research topics for
more than three decades (e.g., [21] 3] [[18]). The vast majority of these studies involved
data from closed-source projects. Little seems to be known about effort models for

C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 170 2009.
(© IFIP International Federation for Information Processing 2009

What Does It Take to Develop a Million Lines of Open Source Code? 171

large, long-lived FLOSS projects. The present papeIE] presents our initial exploratory
results in the study of the relationship between size, effort, duration and number of
contributors in eleven large, long-lived FLOSS projects.

FLOSS communities do not use, in general, effort estimation models or other
measurement-based models [1]. As a research topic, the exploration and quantifica-
tion of effort and productivity may help in comparing FLOSS projects and proprietary
systems. This research may provide a basis for baselines, in order to evaluate the possi-
ble impact of changes of processes, methods and tools used by FLOSS communities. It
may also help, in some way, in understanding and better planning the future evolution
of FLOSS communities and their projects@.

Before presenting our approach and results, an important limitation of this type of
research must be mentioned. It has been pointed out (e.g., [L1] [13]]), that it is difficult
to measure effort accurately in FLOSS. This is so for several reasons: for example, we
do not know the degree of involvement of each contributor (Was it full-time? Was it
some level of part-time?) and contributors may have widely different roles. Despite our
best efforts to measure effort in a meaningful way, we are aware of the limitations of
our approach and this is why the results reported here must be seen as exploratory and
preliminary. Additional research is needed to achieve more reliable measures of effort
involved in FLOSS projects. We hope, however, that our contribution can help establish
FLOSS effort modelling as a line of research and, eventually, lead to scientific insights
and practical tools for the FLOSS communities and other interested stakeholders.

2 Selected Projects and Measurements

Our research question was how much effort would be required to develop (via evolution)
a FLOSS project of one MLOC (i.e., 1000 KLOC). We chose eleven projects, all of
which exceed 1 MLOC (one 0.6 MLOC project in our sample has achieved this size
at some point before decreasing) and have code repositories compatible with our data
extraction tools. Table[I]shows the names of the eleven FLOSS projects we considered,
the programming language(s) primarily used for each system, a short description and
the life span, that is, the time in years between the first publicly recorded commit to the
code repository (CVS or Subversion) and the data extraction date. This was October
2008, with exception of one system (Eclipse) for which it was April 2008.

The measurements extracted for this study are listed in Table[2l We used the SLOC-
Count tool] to measure lines of source code. It automatically identifies code developed
in a variety of programming languages and, for each of them, counts the lines of code
present in a directory. We used CVSAnalYH, which stores information extracted from
the version control log (CVS or Subversion) in a MySQL database. Specifically, we
indirectly used the data from CVSAnalY by downloading databases from the FLOSS-
Metrics projectﬁ.

! This is a revised and extended version of [7].

2 See [12] for a fuller justification for research into FLOSS effort models.
3

4

www . dwheeler.com/sloccount/
svn.forge.morfeo-project.org/svn/libresoft-tools/cvsanaly
5 data.flossmetrics. org

www.dwheeler.com/sloccount/
svn.forge.morfeo-project.org/svn/libresoft-tools/cvsanaly
data.flossmetrics.org

172 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

Table 1. FLOSS systems studied and some of their characteristics

name primary description life span
language in years
Blender C/C++ cross-platform tool suite for 3D animation 6
Eclipse Java IDE and application framework 6.9
FPC Pascal Pascal compiler 34
GCC C/Java/Ada GNU Compiler Collection 19.9
GCL C/Lisp/ASM GNU Common Lisp 8.8
GDB C/C++ GNU Debugger 9.5
GIMP C GNU Image Manipulation Program 10.9
GNUBIinUtils C/C++ collection of binary tools 9.4
NCBITools C/C++ libraries for biology applications 154
WireShark C network traffic analyser 10
XEmacs Lisp/C text editor and application development system 12.2

Table 2. Measured attributes for each system

abbreviation description extracted using
KLOC physical lines of source code (in thousands) SLOCCount
FILES total number of files in code repository CVSAnalY
EFFORT ‘contributor-years’ (based on active committers-month) CVSAnalY
DUR time length of ‘active’ evolution in years CVSAnalY
DEV number of distinct contributors CVSAnalY

In order to operationalise the effort variable, we proceeded as follows: first, we ran a
query to the CVSAnalY databases for each system to determine the number of different
person ids contributing to its repository over a given month. This value was assumed to
be the number of person-months in a given month. The total number of person-months,
added over the lifetime of the code repository, was divided by 12 in order to obtain the
equivalent to person-years, which is the value assumed to be the total effort spent into
a system since code commits recording started (EF FORT). As said in section[I} mea-
suring effort in FLOSS projects is notably difficult. Our effort measurement approach
is likely to be, in some cases, an overestimation, since not all the contributors are likely
to work full-time on a project (with exception of some company-supported projects).
Interestingly, in some projects one or several gate keepers submit code developed by
others. If present, this will turn our EFFORT values into an underestimation of the
real effort. This is clearly a topic for further research. We present our operationalisation
of effort as an starting point which can be improved in the future by using additional
information about, for example, the social networks and work patterns of contributors
in a given project, and eventually by advanced tools which eventually will register au-
tomatically the effort.

In 9 out of 11 projects studied — that is, excluding Eclipse and Wireshark — when
looking at the plot of the total number of files (F/LES) in the repository per month,
we observed a few, suspiciously large outliers or jumps. This is illustrated for one of
the systems (GCL) on the left part of Figure [Il It is unlikely that the team size or
the productivity of the team of contributors has increased so suddenly on a particular

What Does It Take to Develop a Million Lines of Open Source Code? 173

Get GcL
16000
2
14000 500
"
212000 § 2000
=
4510000 £ 1500
5 8000 5
‘£ 6000 2 1000
2 4000 2 500
2000
0 0
1 13 25 37 49 61 73 85 97 1 13 25 37 49 61 73 8 97
months months

Fig. 1. Trend in FILES (left) and netFILES (right) per month for GCL. The right-hand-side plot
corresponds to the central part of the left-hand-side plot, after major ‘jumps’ have been removed.

month. It could be that code added in a jump was created and evolved in a private
space (or as a branch separated from the main version or trunk) for which we have no
active committers information. It could also be that each jump corresponds to external
events such as when the repository receives chunks of externally generated code. An
additional hypothesis would be that many non-code files were added to the repository,
since FILES includes all files, code and non-codeﬁ Whatever the actual explanation,
the implication for our research is that measuring the total size, including jumps, may
lead to too optimistic estimates (the productivity may appear to be higher than it really
is). We filtered out the jumps by removing their corresponding size increments, that is,
calculating what we call the net size. We also subtracted the initial size value, since we
do not have any records of effort for this initial commit. Figure[Il on the right, shows
the result for GCL. On the left one can observe the trend for FILES with several large
jumps. The filtered trend, that we call net FILES, is shown on the right.

We measured project duration DUR as the time between the earliest and most recent
commit. We excluded periods with no commits or with a number of commits much
lower than during other clearly active periods. We did this in order not to penalise
projects with periods of inactivity, when modelling the relationship between size and
duration. This filtering operation determined the value of DUR that we assumed for the
GCL project (4.3 years instead of 8.8 years, as can be seen on the right of Figure[T)). We
did a similar filtering for GCC, with a resulting value for DUR of 11.2 instead or 19.9
years.

For calculating the number of contributors DEV we obtained the number of people
having made at least one commit since the start of the repository. We computed two
variants, one measuring all the contributors, called DEV[100], and one measuring the
number of developers which provided at least 80% of the effort in contributor-months,
called DEV[80]. We did this in order to try to distinguish the core team, generating
and evolving most of the code, from other less active contributors which may have
contributed with only a few items (e.g., defect fixes) over the lifetime of the project.

6 SLOCCount automatically discards non-code files but we applied this tool purely to measure
the size of the latest repository for each system. It would have been convenient to apply the
tool to obtain monthly measurements of size but this was beyond our capability.

174 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

3 Results
3.1 Growth Models

We modeled the net FILES, the filtered growth trends, over months. We found a very
good fit to linear, quadratic or exponential models, with R? valued] ranging from 0.98
to 0.99, as can be seen in Table[3 It is worth noting that for GCC and GCL, the growth
model is fitted only over the period of active evolution). Five of the systems have trends
that follow linear models, three follow sublinear (quadratic) models and three superlin-
ear models (2 quadratic and 1 exponential). The high goodness of fit suggests that work
in these FLOSS communities happens at a regular, very predictable rate.

Table 3. Best fit models for monthly growth trends in net FILES

system best growth trend model R2

Blender linear 0.99
Eclipse linear 0.99
FPC linear 0.98
GCC superlinear 0.99
GCL sublinear 0.98
GDB linear 0.99
GIMP sublinear 0.99
GNUBIinUtils linear 0.99
NCBITools superlinear 0.98
WireShark superlinear 0.99
XEmacs sublinear 0.98

The net growth trends can be used as a simple estimation model of the amount of
new functionality implemented per month, assuming that there are no radical changes
such as, for example, the departure of key members in the core team, or an important
architectural restructuring. Careful projection of these growth trend models into the
future could be helpful for a given project and can be the basis for project specific effort
models. In the next sections we examine possible generic models, that are based on the
data from the 11 FLOSS projects studied and may have potential to be generalised, that
is, used across systems.

3.2 Comparison of FLOSS Data with the COCOMO Model

The COnstructive COst MOdel (COCOMO) is a classic estimation model developed
by Barry Boehm and colleagues, based on data from closed source systems. Some of
its assumptions are described in [[12]]. As a starting point, we used here its earliest and
possibly simplest version [3]], called COCOMO 81, published in 1981. Given that the

7 In this paper we used R2, the coefficient of determination, as our exploratory measure of good-
ness of fit, where a value of 1 indicates a perfect fit and a value of 0 indicates no fit. Further
work should evaluate other measures such as the adjusted-R2, the mean (or median) magnitude
of relative error (MMRE) or the Akaike Information Criterion (AIC).

What Does It Take to Develop a Million Lines of Open Source Code? 175

2000
EFFORT (contributor-years) vs KLOC

1800 - y= 0.2x105
=== COCOMO

1600 -
1400 - [J FLOSS data
1200 -

1000 -

800
y =0.086x + 29.909
600 1 R? - 0.340
S .-
---------- a--- D
200 -
a
0 ‘ E | ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000

Fig. 2. EFFORT vs KLOC: FLOSS data (N=11) and COCOMO model

87 DUR (years) vs KLOC

16 -
——COCOMO o
#7110 FLoSs data

12 1 Q i y = 0.0003x + 8.3082
. R?=0.01292

1 I

---------------- y = 0.2906x%3%°
3

0 1000 2000 3000 4000 5000 6000

Fig. 3. DUR vs KLOC: FLOSS data (N=11) and COCOMO model

COCOMO model has itself several variants, we used the default COCOMO predic-
tions generated by default by the SLOCCount tool. In this comparison, we are assum-
ing that COCOMO will be representative in the range of size values similar to those
of the studied FLOSS systemﬁ Figures [2] to [3] show the studied FLOSS systems as
squares, and the COCOMO model as a solid line. In the four figures, the x-axis repre-
sents size in KLOC and the y-axis represents EF FORT,DUR, DEV[100] and DEV [80],
respectively. For illustration purposes and as an initial exploration, we superimposed a
linear regression model to the FLOSS data, shown as a dashed line. The figures dis-
play the mathematical expressions for COCOMO (power models) and for the linear

8 Unfortunately we could not check this when finalising this paper. There is a risk that in our
analysis we used COCOMO 81 beyond its range of validity.

176 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

0 DEV[100] (number of contributors) vs KLOC

400
= COCOMO Q

350
J FLOSS data
300

y =0.03x + 88.54
250 J R2=0.10

200

oSty

150 y = 0.6883x0-651

100
50

0
0 1000 2000 3000 4000 5000 6000

Fig.4. DEV[100] vs KLOC: FLOSS data (N=11) and COCOMO model

250
DEV[80] (number of contributors) vs KLOC

=== COCOMO = 0.651
200 y = 0.6883x

[J FLOSS data

150

100

50

0
0 1000 2000 3000 4000 5000 6000

Fig.5. DEV[80] vs KLOC: FLOSS data (N=11) and COCOMO model

models based on the FLOSS data. Examining figures 2] to[3] one can identify the follow-
ing observations:

e 10 out of 11 projects display EF FORT that is less than the one predicted by CO-
COMO, overall suggesting higher productivity (as KLOC per contributor-month)
in FLOSS than in closed-source. Only the project with smallest KLOC in the sam-
ple (GIMP) is close to COCOMO’s prediction. There is evidence in [10] that GIMP
grew up to 1 MLOC in the past and then shrinked to its current size (646 KLOC).
This could explain why GIMP is the project with the smaller productivity in the
sample.

e 8 out of 11 projects display values of DUR which are higher than COCOMO pre-
dictions. This may be explained by the fact that the FLOSS projects are evolv-
ing systems over multiple releases while COCOMO represents software built from

What Does It Take to Develop a Million Lines of Open Source Code? 177

scratch to achieve its first release. The FLOSS projects do not have, in general, a
fixed schedule and budget and they continue to evolve as long as there is interest
and motivation in their communities.

e 6 out of 11 projects show values of DEV[100] which are higher than COCOMO.
When looking at DEV[80], however (i.e., our approximation to the number of peo-
ple in the core team), only 1 out of 11 projects (namely GIMP) exceeds the team
size predicted by COCOMO.

e Overall, COCOMO 81 isn’t a good model for FLOSS data.

e The goodness of fit of the linear models fitted to the FLOSS data is poor. The best
linear model is the one between EF FORT and KLOC with R? value of 0.34. This
means that only 34 percent of variance in the data is accounted for in the linear
model.

3.3 FLOSS-Based Estimation Models

In search for possible simple FLOSS-based generic estimation models we explored fur-
ther the linear correlation between size (measured not only in KLOC but also as FILES)
and EFFORT, DUR and DEV . We also defined net KLOC = KLOC "} [LE% and eval-
uated whether the net size values (net FILES and netKLOC) provided an improvement
in the regression results obtained using KLOC and FILES.

Tables] and [§] show the parameters of linear models of the form y = (a* size) + b
and the corresponding R? values, for all the systems and excluding Eclipse, respectively.
Parameters a and b are not reported when R is less than 0.1 because they are consid-
ered as not meaningful. Figure |6l shows a scatter diagram and one of the linear models
superimposed as a line. In this Figure, it is possible to appreciate that Eclipse, which
is represented by the square closest to the right side of the plot, is one of the possible
outliers. 13 out of 16 models improved, in terms of R?, when Eclipse was excluded from
the dataset. In Tables[d and[3] best models are indicated in bold. The best linear model,
shown in Figure [7] is the one involving EFFORT as a linear function of netFILES,
excluding Eclipse (R* value of 0.797).

Table 4. Linear regression results - parameters a, b and R* values

EFFORT DUR - duration
a,b,R? a,b,R?
including Eclipse
KLOC 0.086, 29.909, 0.339 -,-,0.012
FILES 0.0039, 119.58, 0.390 -, -, 0.001
netKLOC 0.076, 110.39, 0.326 -,-,0.048
netFILES 0.0035, 156.61, 0.313 -,-,8.8E-05
excluding Eclipse
KLOC 0.1327, -53.323, 0.387 0.0015, 6.1233, 0.153
FILES 0.0093, 3123, 0.66 -,-,0.06

netKLOC 0.1699, 14.247, 0.499 0.0032, 5.4474, 0.525
netFILES 0.0139, 51.455, 0.797 -,-,0.094

178 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

Table 5. Linear regression results -results for DEV metric

DEV[100] DEV[80]
a,b,R? a,b,R?
including Eclipse
KLOC 0.027, 88.54, 0.101 0.0095, 29.57, 0.133

FILES 0.0017, 103.97, 0.219 0.0006, 35.14, 0.285
netKLOC 0.0287, 106.56, 0.139 0.0105, 35.38, 0.196
netFILES 0.0016, 119.2,0.185 0.006, 40.07, 0.258

excluding Eclipse
KLOC -,-,0.088 -,-,0.07
FILES 0.004, 62.831, 0.391 0.0012, 24.787, 0.367

netKLOC 0.0626, 71.879, 0.196 0.0183, 27.401, 0.185
netFILES 0.0143, -19.009, 0.565 0.002, 25.998, 0.506

EFFORT vs netFILES

800
700 —————————— &y =0.0035x+ 156.61

600 R2=0.31387

500
400
300 +

200 +—HB-

100 +—g<
o

0 20000 40000 60000 80000 100000 120000

]

]

Fig. 6. EFFORT vs netFILES: FLOSS data (N=11) and linear regression model

EFFORT vs netFILES,
excluding Eclipse

800
700 -
600 _—
y =0.0139x + 51.455
500 R?2=0.79725
400
300 =) —
100 a_.z'ﬂ, =
0+ ;
0 10000 20000 30000 40000 50000

Fig.7. EFFORT vs netFILES: FLOSS data, excluding Eclipse (N=10) and linear regression
model

These results suggest that it may be helpful to have a separate set of models for
FLOSS systems with particular characteristics (e.g., very large systems, such as those
greater than 5 MLOC, or systems based on different variants of the FLOSS processes

What Does It Take to Develop a Million Lines of Open Source Code? 179

— company-led as opposed to community-led projects, — or particular technology, since
Eclipse was the only Java-based system in the sample).

Contrary to what was expected, the removal of jumps in the monthly growth of the
studied systems did not lead to visible improvements in the goodness-of-fit of the linear
models. The best models involved EFFORT vs size but still with a low R? value of
around 0.3. The worst models were obtained for DUR. As shown in Figure[3] the studied
FLOSS projects do not seem to have achieved its current size at similar rates.

3.4 Calculating the ‘Cost’ of 1 MLOC in FLOSS

In order to address our research question given in the title of this paper and, more pre-
cisely, in Section 2] we present some simple calculations, based on the best models
identified in the previous section. Since our best model is based on file counts, we need
to convert 1 MLOC into number of files. For the 11 FLOSS studied, the file size varied
between 50 and 284 lines of code, with an overall average of 125 lines of code per file.
Using this averageﬁ, we assume that 1 MLOC will be equivalent to some 8,000 code
files. Taking this value and using our best model, the model ‘EFF ORT vs netFILES ex-
cluding Eclipse’, we obtain an estimate of 162.6 contributor years. Applying the model
‘DUR vs netKLOC excluding Eclipse’, we calculate an estimate duration of 8.6 years.
Dividing 162.6 by 8.6 gives a core team size of 18.8 contributors. Alternatively, if we
use the model ‘DEV[80] vs netFILES’ excluding Eclipse, we obtain a team size of 41.9
core developers. Dividing 162.6 by 41.9 gives an estimated duration of 3.8 years. The
two values of DEV and DUR can be seen, respectively, as lower and upper bounds of the
estimate. These values differ from COCOMO 81 estimates. For a 1 MLOC project, CO-
COMO 81 predicts the need for 283 contributor-years (higher than FLOSS estimates),
with 62 developers (also higher than FLOSS) working during 4.6 years (within range,
towards lower end). Our simple models are in line with section suggesting that
FLOSS projects require less total effort and a smaller number of developers (core con-
tributors) than closed-source. Our primitive analysis also suggests that closed-source
would perform comparatively better for duration than FLOSS.

4 Related Work

In recent years, researchers have increasingly extracted data from FLOSS artefacts,
code repositories, defect databases and mailing lists in order to find interesting facts
(e.g., [17] [20]). To our knowledge, there have been no previous similar studies of large
FLOSS software, attempting to quantify the relationships between size, effort, duration
and team size. In a position paper, Amor et al. [1] have discussed the problem of effort
estimation in a FLOSS project and how classical estimation models may be improved
to be applicable to FLOSS projects. Liguo Yu [23] presented an indirect approach to
estimate maintenance effort in FLOSS, based on data from NASA SEL closed-source
and on Linux. He indirectly measured effort by looking at the number of lines of code

9 This is a simple calculation for illustration. In general, average values of software metrics
should either be used with care or not used because data distributions may be highly skewed
and in that case averages will not be meaningful [5].

180 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

(and modules) added, deleted and modified. His work focused on the amount of effort
for individual maintenance tasks and, for this reason, is not directly comparable to ours,
which focused on total effort at system level. Koch [11]] [13] studied the impact of
tool usage on the efficiency of 30 FLOSS projects from SourceForge.net find-
ing, in most of the cases, an intriguing negative relationship. In a different paper, the
same author [12] reported on the testing of two hypotheses involving different types
of effort models, including COCOMO, in a sample of more than 8,000 projects from
SouceForge.net. Differences in approach and the fact that the vast majority of projects
in this study were small (involving less than 10 developers), make this study difficult to
compare to ours, which focused on larger projects.

The majority of software estimation research has been conducted for closed-source
software and initial development(e.g., [18]]). One frequently cited software estimation
model, based on closed-source software, is COCOMO [3]]. We have compared CO-
COMO 81 - the earliest and simplest version — to our FLOSS data, and found that it is
not appropriate to model the productivity of our subset of large FLOSS projects. Much
more research needs to be done (e.g., repeat the comparison using COCOMO 1II [4]] and
other more recent models), but our initial finding suggests that FLOSS-specific models
are advisable. This is not surprising if one considers the particular characteristics of
FLOSS (e.g., [19]).

The proportion of linear, superlinear and sublinear growth trends (cf. Table[3)) is gen-
erally in agreement with some previous empirical studies of FLOSS growth trends [9].
The predominance of linear and superlinear trends might be questioning the assumed
role of accumulated complexity [13] [L6] as a growth constraining factor. An alternative
hypothesis to be studied is that linearly and superlinearly growing projects are effective
at controlling complexity.

As far as we know, our work is the first that explore the impact of removing outliers
or jumps in the monthly growth trends. In future work this type of outlier detection
needs to be done more systematically than our simple visual detection.

5 Threats to Validity

Our empirical study is subject to many threats to validity. A list of threats that are likely
to apply in general to empirical studies of FLOSS is given in [8]]. In general, one can
identify three set of threats: threats to construct, internal and external validity.

5.1 Construct Validity

Our estimation of effort is far from perfect. Accurately measuring effort in open source
projects is difficult. We have counted the number of active committers (i.e., developers
who have checked in code into the repositories in a given month) and assumed that
each contributed with a ’contributor-month’. Many developers are part-time volunteers
and others may be paid employees of sponsoring companies working part-time or full-
time on a given FLOSS project. It is known that in some cases, code is committed to
the repository by a gate keeper, not by the actual developer. This may also bias the ef-
fort measures. One way to improve measuring effort would be to conduct a survey of

SourceForge.net

What Does It Take to Develop a Million Lines of Open Source Code? 181

FLOSS contributors to know better their work patterns and use this knowledge to ad-
just our measurements. Surveys, however, may require considerable research time and
resources, including the willingness of FLOSS contributors to participate. Our effort
measurement may be more accurate for FLOSS projects like Eclipse, where a portion
of contributors are full-time employees of a sponsoring company (in this case, IBM).

Our measures of size (KLOC and FILES) may include automatic generated code that
may have biased the results: the system will be bigger than it should have been if all
the code were generated and evolved manually. The measured repositories may include
external libraries with or without any modification. Code may be ported in FLOSS
communities from one project to another biasing productivity measures. We were not
able to quantify how many lines of code have been ported, as opposed to generated
from scratch. In addition to this, our FILES measure includes all files in the repository.
We plan, in the future, to measure the amount of code files only and check whether the
modelling results improve. Cloning, or code duplication within the same project [2], is
also a phenomenon present in open source. Code cloning may increase productivity but
may have the opposite effect as simultaneously evolving many clones may slow down
progress.

5.2 External and Internal Validity

The sample of projects that we studied is very small when compared with the total num-
ber of open source projects. A popular open source hosting website, sourceforge.
net, lists currently more than 300,000 projects. However, only a small fraction of the
total number of open source projects can be considered successful [6]. Even smaller is
the number of projects that have reached 1 MLOC. The sample we studied is not truly
random. We selected projects that were feasible to analyse, based on their availability
in the FLOSSMetrici% project database.

The tools we used in this study to extract and analyse the data may contain defects
that may have affected the results. We collected, analysed and plotted the data using
spreadsheet software which, despite our best efforts, is also error-prone. Unfortunately
we did not have enough time for an independent data extraction and analysis but we
hope that other researchers will replicate and extend this work in the future. We were
not aware of any other possible threats to internal validity apart from the measurement
issues already mentioned.

6 Further Work

This research could be continued in a number of ways. For example, our FILES mea-
surement considers all files in the repository (e.g., code, configuration, data, web pages).
It is likely that better results will be achieved by considering code files only. Better re-
sults may be also be achievable by using robust regression [[14]. Modelling techniques
different to regression have been tried in classical (i.e., closed-source or proprietary)
cost estimation (e.g., [[18]]) and these could also be applied to FLOSS data. We also
would like to exclude any automatically generated files since they will bias the results

10 £15ssmetrics. org

sourceforge.net
sourceforge.net
flossmetrics.org

182 J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

(e.g., productivity may appear higher than it is). Another further topic is the experi-
mentation with different approaches to extract the outliers in growth trends. In Figure[I]
(right) one can identify ‘jumps’ that were not apparent when looking at the unfiltered
data (left). One question is how to define formally what is a growth outlier, identify
its nature and how frequent they happen in FLOSS evolution. It wouldn’t be surpris-
ing if the presence of jumps is typical for FLOSS processes, where external code is
‘borrowed’ and re-used.

By measuring the amount and type of refactoring work (e.g., [22]), code transfor-
mations that preserve functionality and decrease complexity, in FLOSS projects and
combining this data with effort measures, we may be able to understand better the im-
pact of accumulated complexity and why the size of some projects has been growing
linearly or superlinearly.

In order to improve this research (e.g., increase the validity of the findings), one
should analyse an additional number of FLOSS projects. The linear models we used
are simple and do not reflect any theory about FLOSS. Theories based on a deeper
understanding of FLOSS (e.g., [19]) and new metrics (e.g., [10]) may lead to more
accurate and helpful effort models.

7 Conclusions

Getting people to develop (via evolution) software systems of one million lines of code
(1 MLOC) or more, at no cost, as a hobby or leisure activity, is an impressive achieve-
ment of a number of FLOSS communities. Rather than studying motivational factors,
in this paper, we took a strictly quantitative point of view by gathering data on elevent
large FLOSS systems and studying relationship between size, on the one hand, and ef-
fort, duration and team size. Productivity, for large FLOSS systems like these is a topic
which does not seem to have been empirically studied.

The comparison between data from 11 FLOSS projects and an early version of CO-
COMO [3]] suggested that FLOSS might be more effective than closed-source projects.
It also suggested that FLOSS-based effort estimation models are needed. Our best
model to date, using simple linear regression, leaves still much room for improvement
(R*> =0.79). Better models may be obtained by exploring theory-based models, improv-
ing the measurement approach, adding more FLOSS systems to the sample and using
more advanced techniques than linear regression.

One of the most interesting findings of our study was that, when removing suspi-
ciously large jumps in the growth trend of FLOSS projects over time (i.e., calculating
the net size), simple regression trends can model this ‘net’ growth very well. In agree-
ment with previous studies [9]], these trend models revealed either linear, sublinear or su-
perlinear growth (depending on the system studied). These regular growth trends could
be a surprise to FLOSS community leaders and stakeholders and may motivate them to
quantitatively examine the evolution of their projects.

We showed how our best models could be used to estimate effort, duration and team
size for the development (via evolution) of a 1 MLOC system. Since FLOSS projects
seek mainly to attract volunteers and not to hire paid professionals, the current prac-
tical use of effort models will be very limited. In the future, however, this type of

What Does It Take to Develop a Million Lines of Open Source Code? 183

measurements and models may find their way into helping FLOSS communities to
achieve their goals in a more satisfactory manner, probably in a yet unforeseen way.

Acknowledgements

We are grateful to Andrea Capiluppi for comments on an early draft of this paper. We
thank the anonymous reviewers for their helpful comments. This work has been funded
in part by the European Commission, under the FLOSSMETRICS (FP6-1ST-5-033547)
and QUALOSS (FP6-IST-5-033547) projects, and by the Spanish CICyT, project So-
breSalto (TIN2007-66172). The research reported here was carried out in the context
of the Action de Recherche Concertée AUWB-08/12-UMH 19 funded by the Ministere
de la Communauté francaise - Direction générale de I’Enseignement non obligatoire et
de la Recherche scientifique. We are grateful to the Belgian FR.S.-EN.R.S. for funding
the work of one co-author (JFR) through postdoctoral scholarship 2.4519.05.

References

1. Amor, J.J., Robles, G., Gonzalez-Barahona, J.M.: Effort estimation by characterizing de-
veloper activity. In: EDSER 2006: Proceedings of the 2006 international workshop on eco-
nomics driven software engineering research, pp. 3-6. ACM, New York (2006)

2. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.M.: Comparison and evaluation

of clone detection tools. IEEE Trans. Software Engineering, 577-591 (2007)

. Boehm, B.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981)

4. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Engle-
wood Cliffs (2000)

5. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-laws in a large object-oriented software
system. IEEE Trans. Software Engineering 33(10), 687-708 (2007)

6. Feitelson, D.G., Heller, G.Z., Schach, S.R.: An empirically-based criterion for determin-
ing the success of an open-source project. In: Proc. Australian Software Engineering Conf.
(ASWEQC), p. 6 (2006)

7. Fernandez-Ramil, J., Izquierdo-Cortazar, D., Mens, T.: Relationship between size, effort, du-
ration and number of contributors in large floss projects. In: Proc. of BENEVOL 2008, 7th
BElgian-NEtherlands software eVOLution workshop. Technical Report, Eindhoven, Eind-
hoven University of Technology, The Netherlands (2008)

8. Fernandez-Ramil, J., Lozano, A., Wermelinger, M., Capiluppi, A.: Empirical studies of
open source evolution. In: Mens, T., Demeyer, S. (eds.) Software Evolution, pp. 263-288.
Springer, Heidelberg (2008)

9. Herraiz, 1., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Ramil, J.E.: Comparison
between SLOCs and number of files as size metrics for software evolution analysis. In: Proc.
European Conf. Software Maintenance and Reengineering (CSMR), Bari, Italy, pp. 206-213
(2006)

10. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.: Using software ar-
chaelogy to measure knowledge loss in software projects due to developer turnover. In: Pro-
ceedings of the Hawaii International Conference on System Sciences (HICSS-42), Hawaii,
USA (2009)

(9%}

184

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens

Koch, S.: Exploring the Effects of Coordination and Communication Tools on the Efficiency
of Open Source Projects using Data Envelopment Analysis. In: Open Source Development,
Adoption and Innovation. IFIP International Federation for Information Processing, vol. 234,
pp- 97-108. Springer, Boston (2007)

Koch, S.: Effort modelling and programmer participation in open source software projects.
Information Economics and Policy 20(4), 345-355 (2008)

Koch, S.: Exploring the effects of SourceForge.net coordination and communication tools on
the efficiency of open source projects using data envelopment analysis. Empirical Software
Engineering (forthcoming, 2009), doi:10.1007/s10664-008-9086-4

Lawrence, K.D., Arthur, J.L.: Robust Regression: Analysis and Applications. CRC Press,
Boca Raton (1990)

Lehman, M.M., Belady, L.A. (eds.): Program Evolution: Processes of Software Change. Apic
Studies In Data Processing. Academic Press, London (1985),
http://w3.umh.ac.be/evol/publications/books.html

Lehman, M.M., Ramil, J.F., Sandler, U.: An approach to modelling long-term growth trends
in software systems. In: Proc. Int’l. Conf. Software Maintenance (ICSM), pp. 219-228
(2001), doi:10.1109/ICSM.2001.972735

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of Open Source software de-
velopment: Apache and Mozilla. ACM Transactions on Software Engineering and Method-
ology 11(3), 309-346 (2002)

Molokken, K., Jorgensen, M.: A review of surveys of software effort estimation. In: ISESE
2003: Proceedings of the 2003 International Symposium on Empirical Software Engineering,
Washington, DC, USA, pp. 223-230. IEEE Computer Society, Los Alamitos (2003)
Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding free/open
source software development processes. Software Process: Improvement and Practice 11(2),
95-105 (2006)

Van Rysselberghe, F., Rieger, M., Demeyer, S.: Detecting move operations in versioning
information. In: Proc. European Conf. Software Maintenance and Reengineering (CSMR),
pp. 271-278. IEEE Computer Society Press, Los Alamitos (2006)

Wolverton, R.W.: The cost of developing large-scale software. IEEE Trans. Computers C-
23(6), 615-636 (1974)

Xing, Z., Stroulia, E.: Refactoring practice: How it is and how it should be supported - an
eclipse case study. In: Proc. Int’l. Conf. Software Maintenance (ICSM), pp. 458—468. IEEE
Computer Society Press, Los Alamitos (2006)

Yu, L.: Indirectly predicting the maintenance effort of open-source software. Journal of Soft-
ware Maintenance and Evolution: Research and Practice 18(5), 311-332 (2006)

http://w3.umh.ac.be/evol/publications/books.html

	What Does It Take to Develop a Million Lines of Open Source Code?
	Introduction
	Selected Projects and Measurements
	Results
	Growth Models
	Comparison of FLOSS Data with the COCOMO Model
	FLOSS-Based Estimation Models
	Calculating the `Cost' of 1 MLOC in FLOSS

	Related Work
	Threats to Validity
	Construct Validity
	External and Internal Validity

	Further Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

