Towards Understanding Twitter Use in Software Engineering: Preliminary Findings, Ongoing Challenges and Future Questions

Gargi Bougie, Jamie Starke, Margaret-Anne Storey, Daniel M. German
University of Victoria
{gbougie, jstarke, mstorey, dmg}@uvic.ca

ABSTRACT
There has been some research conducted around the motivation for the use of Twitter and the value brought by micro-blogging tools to individuals and business environments. This paper builds on our understanding of how the phenomenon affects the population which birthed the technology: Software Engineers. We find that the Software Engineering community extensively leverages Twitter’s capabilities for conversation and information sharing and that use of the tool is notably different between distinct Software Engineering groups. Our work exposes topics for future research and outlines some of the challenges in exploring this type of data.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Human Factors, Measurement

Keywords
Web 2.0, Social Media, Software Development

1. INTRODUCTION
The micro-blogging phenomenon began in 2005 with “tumblelogs”, the most notable of which was Christian Neukirchen’s Anarchaia [2]. The communication medium took off in the latter half of 2006 with the introduction of services like Twitter [7] and Jaiku [4]. To date, there are several platforms for exchanging short messages with friends, colleagues or strangers, including Free and Open Source Software (FOSS) versions, such as Identi.ca [3].

What we seek to build upon in this research is our understanding of the way in which the Software Engineering community has itself embraced these forms of media, with a specific focus on Twitter. Social networks are, in many arenas, replacing more traditional forms of communication, such as email [1, 27, 24]. This trend is reinforced by a comment from an active Twitter user and member of the Eclipse community with whom we were able to have a brief email correspondence:

Many teams will “tweet” when they publish new technologies, tutorials, blog posts, etc. and Twitter provides me with an easy way to scan this information. This information is often published in other mediums, but it’s usually repeated on Twitter – so instead of subscribing to a variety of mailing lists, I can simply “watch twitter”. -E1

This paper takes an exploratory approach to examining the use of micro-blogging tools by Software Engineers and their effect on communication within respective Software Engineering groups. Through archival and qualitative analysis, we examine the conversation and community of Software Engineers on Twitter by building up an understanding of their usage characteristics and discussion topics.

1.1 Motivation and Exploratory Questions
This research aims to add pieces to the larger puzzle of how Software Engineers employ social media in their development and communication activities. We begin our preliminary work with the following broad questions relating to Twitter:

- How do Software Engineers make use of Twitter to support communication in their community?
- What do Software Engineers talk about over Twitter?

1.2 What We Know About Twitter Use by the Masses
Zhao et al. examine the reasons behind a person’s choice of tools like Twitter over other forms of social media, such as blogs [28]. They introduce a framework for studying the benefits of informal communication and examine the features of Twitter according to these guidelines. The authors conclude that the inherent brevity of micro-blogs “reduces the cost of sharing”. In addition, many people now turn to Twitter for news and information updates because of its real-time nature and because the sources are people they’ve come to know and trust. In other words, micro-blogs act as “people-based RSS feeds”.

Java et al. explore the intentions of users when they post to Twitter and identify four main categories: daily chatter, conversations (indicated by use of the directed messages), sharing information (indicated by the inclusion of a link),
and reporting news [21]. The authors also outline the user roles of information seeker and information source, where a source tends to have more followers than followees (people they follow). In addition, Java et al. touch on the idea of communities being detectable based on the key words they use in their posts.

Research by Honeycutt et al. examine the duration and coherency of interactive Twitter exchanges [19]. The study begins by using a grounded theory approach to analyze a corpus of public Twitter messages. From this, the authors categorize the messages and the use of the ‘@’ sign, discovering that though there are various uses for the symbol, its major function is to direct messages to specific individuals. In terms of conversation attributes, the findings indicate that most conversations consist of three to five messages exchanged between two people over less than a half hour. Honeycutt et al. also produce evidence that conversation and collaboration involving several people does occur via Twitter. However, these conversations are complex, as several sub-threads are seen to develop initially before the communication becomes more centrally focused.

Huberman et al. examine the relationship of the number of followers a person has to how active he or she is on Twitter [20]. The results show that it is not so much followers that dictates activity, but rather interactions. Huberman et al. define a person’s “friend” as someone they have sent at least two direct posts to. By this definition, even though it is unidirectional, a much clearer relationship is seen between the number of friends a person has and their level of activity on Twitter. Ninety-eight percent of users involved in the study had fewer friends than followees. By these findings, the authors conclude that though an individual may have a seemingly large network of followers and followees, the friend network is the more influential social network and is much smaller.

Ehrlich et al. compare the use of an internal corporate micro-blogging tool with the public tool, Twitter, in order to understand the difference in information sharing and communication that arises [16]. The most notable difference between the two mediums is the use of the internal tool for soliciting information from and providing information to colleagues, despite their own use of and their colleagues’ presence on Twitter. Additionally, the findings of Zhao et al. [28] and Skeels et al. [25] are supported in this study by the fact that participants used status updates to promote and maintain “ambient awareness”, especially to signal a change in availability, such as returning from vacation. Another interesting finding of Ehrlich et al. is the frequency of brief “conversations” that arose in the internal tool as compared to Twitter. Short conversations comparable to an email thread with brief messages passed back and forth occurred significantly more frequently over the internal tool than through Twitter, possibly due to an implied common ground and smaller user group.

Agrifoglio et al. examined the role of intrinsic motivation in Twitter adoption [10]. Through structured surveys, the authors were able to determine that the more versatile Twitter is perceived to be, the more likely it is to be accepted. In other words, participants who associated Twitter use with enjoyment and personal use, in addition to work use, were more enthusiastic about it.

1.3 What We Know About Twitter Use by Software Engineers

Moving from what we know about the Twitter community and the value it provides for the general population, we look to examine the use of micro-blogging technologies by Software Engineers. There are already some research projects that explore the use of micro-blogging in an Integrated Development Environment (IDE) [23, 18]. However, these are mostly in the prototyping stages and have undergone little empirical evaluation.

Black et al. [12] used an online survey to explore whether social media tools are being used by Software Developers and whether their use has been successful. Participants were recruited through the first author’s Twitter feed. Though not a random sample, it is interesting to note that 91% of 31 respondents indicated they use social media to communicate with their colleagues. Twitter and Instant Messaging were found to be the most popular media. Respondents to the survey, who all worked in Software Systems Development, also stated that source code, specification and design information were commonly shared over social media. Additionally, social media was used by more than 50% of respondents to communicate new ideas. Black et al. followed the survey with unstructured interviews, through which they found that several interviewees left social media tools “running in the background”. This lends support to Cockburn’s theory of “osmotic communication,” whereby communication flowing in the background is overheard by other team members [14].

In a separate paper, Black et al. used email-based questionnaires to solicit information from Software Developers regarding their use of social media during software development and the resulting impact on software quality [13]. The advantages most commonly described relate to increased quality of communication, as well as increased visibility of activities across all levels of an organization.

2. METHOD AND DATA SOURCES

In this research, we use archival analysis to quantify some basic parameters of Twitter use by Software Engineers, such as the number of directed messages sent from one user to another. We compare this to prior findings by Java et al. [21] concerning the general population of Twitter users. We also use qualitative analysis to manually code 600 “tweets” from our sample set in order to learn what topics are being discussed by Software Engineers over Twitter.

For our exploratory purposes, we elected to use wefollow [9], a website that lists the most prominent Twitter users under specific tags. From this site, we selected the top 30 individuals for the topics Linux and Eclipse. We chose these two topics based on their potential to expose “tweeters” from a large operating system community as well as an IDE development community. We also decided to investigate a project for which all committers use Twitter. Through a colleague, we were informed that the MXUnit project lists the Twitter user names for all eight of its committers. The MXUnit project [5] is a small, open source ColdFusion test framework that is written as an Eclipse plug-in.

Our unit of analysis in this paper is a single “tweet”, a message posted by a Twitter user that can consist of up to 140 characters. We collected a total of 11,679 tweets that were made by or referenced Twitter users in our sample set. Table 1 shows the two time periods during which tweets were
Table 1: The communities selected for our research along with the number of users in our sample and the number of tweets collected (numbers indicated in brackets represent the number of tweets normalized over days)

<table>
<thead>
<tr>
<th>Community</th>
<th>Number of users</th>
<th># tweets collected in June/July 2010</th>
<th># tweets collected in January 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclipse</td>
<td>30</td>
<td>541 tweets over 6 days (90/day)</td>
<td>812 tweets over 7 days (116/day)</td>
</tr>
<tr>
<td>Linux</td>
<td>30</td>
<td>7244 tweets over 15 days (482/day)</td>
<td>2545 tweets over 7 days (363/day)</td>
</tr>
<tr>
<td>MXUnit</td>
<td>8</td>
<td>400 tweets over 12 days (33/day)</td>
<td>137 tweets over 7 days (19/day)</td>
</tr>
</tbody>
</table>

collected, along with the number of tweets collected for each of the three Software Engineering communities during these time periods. We collected data at two different time periods to minimize the possibility of any date-sensitive phenomena dominating our findings.

At the time of this work, the basic Twitter API states that it only allows for the retrieval of the most recent 1,500 tweets for any given search. In addition, data older than one to two weeks is often not available programatically. Therefore, we collected data in a continuous fashion. Custom Perl scripts, as well as a free program called The Archivist, [6] were used to collect tweets approximately once every two days over the indicated time periods.

For the qualitative analysis, we selected the first 100 tweets from our sample for each community and each time period listed in Table 1, for a total of 600 tweets. We did this, as opposed to sampling tweets randomly, in order to preserve the coherency and context of discussion over time. We first used an open coding process [17, 26, 15] on a subset of 300 tweets, 100 from each June/July group, to develop a set of codes for the major topics being discussed. These were: Software Engineering, gadgets and technology, current events, and chatter. Following this, we used these codes to perform closed, or fixed, coding on the full sample set of 600 tweets described above. This allowed us to obtain the proportions of tweets relating to each major topic, which we discuss later. A second round of open coding allowed us to “deepen” the Software Engineering category through the development of more specific codes for the tweets assigned to this category. We present these “subcodes” in our preliminary findings section.

3. PRELIMINARY FINDINGS

Our archival and qualitative analysis produced mutually supporting results in several areas. In this section and in our discussion, we are able to build on the existing preliminary understanding of the Software Engineering Twitter culture. Names of Twitter users are anonymized by appending an assigned number to the first letter(s) of the community name in which a user belongs.

3.1 Use of Twitter

Conversation and Information Sharing. We found that the amount of conversation (as determined by directed messages indicated with the ‘@’ symbol) is drastically higher (by approximately 50% - 67%, as seen in Table 2) for all three Software Engineering communities studied than was reported for the 2007 Twitter corpus collected by Java et al. [21]. Information sharing (as determined by URLs) is also more frequent by Software Engineers (by approximately 6% - 24%, as seen in Table 2) than was seen in the findings of Java et al.

Table 2: The percentage of conversation (@) and information sharing (URLs) seen in the three communities at the two different time periods, compared to the 2007 Twitter corpus of Java et al.

<table>
<thead>
<tr>
<th>Group</th>
<th>% @</th>
<th>% URLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter corpus collected by Java et al.</td>
<td>12.5</td>
<td>13.5</td>
</tr>
<tr>
<td>Linux June/July 2010</td>
<td>79.7</td>
<td>37.3</td>
</tr>
<tr>
<td>Linux January 2011</td>
<td>68.8</td>
<td>34.3</td>
</tr>
<tr>
<td>Eclipse June/July 2010</td>
<td>76.3</td>
<td>27.5</td>
</tr>
<tr>
<td>Eclipse January 2011</td>
<td>62.1</td>
<td>31.9</td>
</tr>
<tr>
<td>MXUnit June/July 2010</td>
<td>76.5</td>
<td>23.8</td>
</tr>
<tr>
<td>MXUnit January 2011</td>
<td>72.3</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Retweets. In their research on blog communities, Lin et al. [22] showed that discovering communities is highly dependent on mutual awareness throughout a social network. As such, we examined “retweets” (tweets reposted by someone other than the original poster, with credit to the original poster) to determine whether they are a common means of promoting awareness among Software Engineers on Twitter. However, the number of retweets in our sample set was quite low (ranging from approximately 6% to 22% of tweets, as seen in Table 3). In most cases, retweets were used to spread interesting or important announcements relating to current events or technology. For example:

L2: RT @[L1]: Even as SCO dies, the company lies http://bit.ly/dvdS6m Ack! Yet more unfounded SCO #IBM #Unix copyright claims against #Linux

Table 3: The percentage of retweets and hashtags seen in the three communities at the two different time periods

<table>
<thead>
<tr>
<th>Group</th>
<th>% Retweets</th>
<th>% Hashtags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux June/July 2010</td>
<td>21.8</td>
<td>23.6</td>
</tr>
<tr>
<td>Linux January 2011</td>
<td>21.5</td>
<td>23.1</td>
</tr>
<tr>
<td>Eclipse June/July 2010</td>
<td>22.9</td>
<td>18.9</td>
</tr>
<tr>
<td>Eclipse January 2011</td>
<td>21.4</td>
<td>16.1</td>
</tr>
<tr>
<td>MXUnit June/July 2010</td>
<td>6.5</td>
<td>13.8</td>
</tr>
<tr>
<td>MXUnit January 2011</td>
<td>13.9</td>
<td>23.4</td>
</tr>
</tbody>
</table>

Hashtags. The occurrence of hashtags, a convention developed informally among Twitter users for categorizing the content of posts [8], was again low. Hashtags are made up of a single word that begins with the ‘#’ symbol and are
placed anywhere in a 140-character post. Tweets containing at least one hashtag ranged from approximately 13% to 23%, as seen in Table 3. In the instances where hashtags were used by Software Engineers, it seemed clear that they were attempting to reach a broader community. For example, #fifa was a common hashtag during the 2010 FIFA World Cup.

As illustrated in Figure 1, the percentages of tweets containing conversation, information sharing, hashtags, and retweets are not significantly different between the June/July 2010 and January 2011 data sets.

![Figure 1: The change in percentage of conversation (@), information sharing (URLs), retweets, and hashtags seen from June/July 2010 to January 2011.](image)

3.2 Topics of Discussion on Twitter

From our manual qualitative analysis of the messages posted by Software Engineers in our sample set, the following four categories of messages emerged:

1. Software engineering-related (often also work-related) topics (e.g., projects being worked on, seeking or providing technical help)
2. Gadgets and technological topics (e.g., iPhone 4, product news from Microsoft)
3. Current events outside of technical topics (e.g., FIFA World Cup, Ottawa earthquake in summer of 2010)
4. Daily chatter (e.g., family, weekend activities)

The Software Engineering categories we found overlap with those of Java et al.[21] in the daily chatter category and the current events category (in the case of Java et al., reporting news). However, the other two categories identified by Java et al. were conversation and information sharing, respectively. As outlined in the previous section, a significant portion of tweets made by Software Engineers fell into these two categories. Since Java et al. did not develop topic-related categories that were specific enough for comparison to our findings, we cannot draw distinctions between Twitter discussion among the general population of Twitter users and Twitter discussion among the Software Engineers in our sample set. We simply conclude that the communities of Software Engineers in our study tweet often about topics relating to Software Engineering and technology, as described below.

Software Engineering-related topics. In support of Honeycutt et al. [19], we found evidence of coherent conversations taking place over Twitter, specifically around Software Engineering topics. Software Engineering-related tweets accounted for about 23% of the tweets that were qualitatively analyzed. These cases included discussion of the current tasks developers are working on, and in several cases, attempts to find solutions to pertinent issues they encounter.

The subtopics that we discovered within this category are **Problem Solving, Self-promotion, Complaints**, and the **Use of a Specific Tool for Work**. The percentages of each for the three project groups we examined are shown in Table 4. There is some overlap between categories.

<table>
<thead>
<tr>
<th>Community</th>
<th>Problem Solving</th>
<th>Self-promotion</th>
<th>Complaints</th>
<th>Use of a Specific Tool for Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXUnit</td>
<td>62%</td>
<td>14%</td>
<td>27%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Eclipse</td>
<td>20%</td>
<td>34%</td>
<td>24%</td>
<td>28%</td>
</tr>
<tr>
<td>Linux</td>
<td>16%</td>
<td>84%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 4: Tweets related to Software Engineering broken down into subtopics (some overlap between categories exists)

Problem solving refers to using Twitter as a medium for finding solutions to configuration or implementation issues. For example, we found that MX1 tweeted about a piece of code that identifies the current time on a system. After looking at the code, MX2 tweets “@MX1 almost positive you’re right,” and a few minutes later adds “@MX1 my quickie test comparing it with the Java way of doing it shows that getTickCount() works as you expect: now().getTime()”. MX3 then joins the conversation, identifying that the time returned by this piece of code might be offset by the local time zone. MX4 adds his voice, with the comment that the getTickCount() function they are using is documented as having “... no meaning”.

Self-promotion is the idea of using Twitter to tout one’s skill or knowledge. This may be by way of referencing something they are working on or learning, or by mentioning a conference or training session they are attending. A few examples are below:

MX6: RT @MX5 learning new cfm1 stuff. Trying #CFWheels. Very good docs. Uncommon for open source. #coldfusion

MX2: Heading to Rockville MD today for 3 days of Agile training starting tomorrow. I shall be assimilated.

L3: If you’re interested in speaking at Puppet Camp EU (in Amsterdam) then ping me or @L3 for more details! #puppet #devops #puppet-camp

Several of the tweets collected also contained or consisted of complaints and criticism, or “venting”, about various tools and technologies. For example, E2 begins a tweet by asking,
“Who would have guessed that something as simple as changing the vendor would cause the VM to crash?” E3 responds with, “I imagine the talk over that design decision went like this: ‘don’t worry guys, Sun will never go out of business.’”

Additionally, a number of the Twitter users we sampled would tweet periodically about a tool they are using for their work. Often the comment would be positive and enthusiastic. For example:

E2: CDT makes it remarkably easy to browse C source code #eclipse

Gadgets and technology topics. Technology-related tweets accounted for about 30% of the tweets analyzed. These tweets consisted of tweets related to high-tech devices, topics and events (e.g., the release of a new product) that did not seem to directly relate to the Software Engineering work or activities of the Twitter user. For example, in July 2010, Apple made an announcement about the poor reception on the iPhone4 and how the company would give customers a protective case called a Bumper to reduce the reception issues. Discussion on this topic crossed all three communities in our sample set, with one Software Engineer asking, “what is the [****] is a Bumper” (MX2). Much criticism of this as an acceptable solution followed.

Current events. Current events accounted for only 8% of the tweets we analyzed. These tweets were composed primarily of discussions covering politics, or major world events (e.g., B.P. Oil Spill, World Cup, etc.).

Chatter. The chatter topic accounted for about 36% of the tweets we analyzed. Java et al. described daily chatter as “talk about daily routine or what people are currently doing” [21]. We use our chatter topic in a slightly different manner, as it refers to all tweets that don’t fit into our other three categories. In most cases, this topic consisted of mentions of what developers do or think about besides work, such as “Heading out for an evening sail with family” (E4), or suggesting that today should be an “early beer day” (MX2). This “chatter” brings the personality of individuals into the community. It also provides an “ambient awareness” [28, 25] of a given developer’s availability. He or she may mention, for example, that it’s a “short work day for me today” (MX2). These findings support those of Agrifoglio et al. in that micro-blogging allows users to “balance their work and social life,” and promotes “sharing ideas, coordinating activities, and improving the relationships both with colleagues and friends” [10]. The Eclipse developer whom we quoted in the introduction to this paper stated that he feels Twitter adds a “watercooler-like atmosphere” to the Eclipse community:

Most of the existing mediums we use are strictly ‘work related’ (newsgroups, mailing lists, etc.), however, twitter brings a personal element to the whole thing. Reading about what hockey team someone cheers for, or what beer someone likes to drink provides an almost ‘watercooler-like atmosphere’ to the Eclipse community – and in a distributed team, this is very important. -E1

4. DISCUSSION AND FUTURE WORK

Although this research has provided significant insight into how Software Engineers use Twitter, it is far from finished, as many new questions and challenges have been discovered. The main challenges and threats to validity within our study have to do with how we decided which data sets to examine. Through the use of wefollow, we were able to quickly locate communities of users discussing specific topics, such as Eclipse and Linux. However, the size of these communities differs greatly. For instance, the Eclipse wefollow list contains 141 users, whereas the Linux wefollow list contains 1,756 users. Additionally, the members of the Linux community tended to greatly “out tweet” the Eclipse users. When the number of tweets are normalized over days, the Linux tweets outnumber the Eclipse tweets by a factor of 4 on average (see Table 1). By reading the public profiles, we also discovered that although many of the top 30 Eclipse users appear to be Software Engineers or members of the Eclipse Foundation, the top 30 Linux users appear to include several Linux enthusiasts rather than developers. This raises an important question: How do we identify a Software Engineer? In other words, can Software Engineers be distinguished on Twitter from other users based on their topics of discussion or how they present themselves? Also, can these users be identified in an automated fashion? These are still open and challenging questions.

We may be able to avoid some of these challenges and develop more in-depth and accurate findings by concentrating our analysis of tweets within a single, known working group of Software Engineers, similar to the MXUnit group. It would be necessary, however, for the majority of members in the working group under study to be fairly active Twitter users.

While performing qualitative analysis of Twitter conversations, it is important to be able to rebuild the context of conversations by way of exploring several previous messages that form the conversation threads. The tools currently available for exploring and analyzing Twitter data have proved frustrating. In many cases, accessing tweets that are several weeks or months old is difficult, both programmatically and manually, whether through the Twitter site or via current Twitter tools. Without a good set of tools, it will be difficult to use qualitative methods to increase our knowledge of how different groups communicate through mediums like Twitter.

This paper explores micro-blogging usage by Software Engineers through Twitter alone. However, during our exploration, we became aware of a similar tool called Identi.ca, which is a micro-blogging service based on the free software tool StatusNet[3]. Our search on wefollow found 1,756 Twitter users who tweet about Linux. In contrast, the Linux group on Identi.ca contains 11,921 users. This raises additional questions, such as why the Linux community has chosen to adopt Identi.ca in greater numbers than was seen on Twitter. Does the fact that Identi.ca is free and open source cause users from the FOSS community to gravitate towards it as opposed to a closed source alternative?

Previous studies have identified the existence of social hierarchies among OSS participants on developer mailing lists [11]. There are many open questions about the structures of communication within communities on micro-blogs and how they may also be affected by some form of “status”. For example, we wonder what types of structures might define Software Engineering communication through micro-blogs, and whether these structures would vary from community to community. Additionally, are the communication and social structures seen in the micro-blogging communities similar to those found in other forms of communication used by the
same groups? These structures are of interest because, for example, if the Linux community has a similar communication structure on Twitter as it does on its mailing lists, this might suggest that a communication structure is defined by the community. However, if the structures of the two mediums differ greatly, it may imply that communication structures are influenced by the tools being used. Furthermore, future work should also consider how a Twitter user’s role (e.g., a consultant versus a developer) might influence their motivation to tweet.

Finally, there are yet further questions relating to how Twitter might fill gaps that exist in other communication tools. These gaps relate to the value brought by social and informal communication, as discussed by Agrigoglio et al. [10] and supported in our findings.

5. CONCLUSION

We have used both archival and qualitative analysis to understand the conversation and community of three Twitter groups related to Software Engineering. We first compared some basic parameters of Twitter usage by Software Engineers to those of “average” Twitter users. Then we manually analyzed a selection of 600 tweets to learn about the types of conversation and discussion taking place among Software Engineers over Twitter. We have also presented the challenges we faced in investigating the use of Twitter by a specific, interest-sharing population. Furthermore, this paper identifies a number of interesting questions and areas of future research that remain open. Our preliminary findings indicate that Software Engineers make up a highly interactive microblogging population, with distinct sub-communities based around specific topic areas. Further collection and analysis of tweets made by individuals involved in Software Engineering projects may help us develop a more in-depth understanding of their use of micro-blogging technologies. This knowledge has the potential to influence social media-enabled tool support to meet the needs of Software Engineers in a variety of settings.

6. REFERENCES

