
Theorizing Modes of Open Source Software Development

Aron Lindberg Xuan Xiao Kalle Lyytinen
Case Western Reserve University Harbin Institute of Technology Case Western Reserve University

aron.lindberg@case.edu xiaoxuanhit@gmail.com kjl13@case.edu

Abstract
Open Source Software (OSS) development is

distributed across actors and artifacts and involves
translating diffuse representations into distinct sets of
contiguous code artifacts. Despite the highly
distributed and dynamic nature of OSS development, it
is often described in unitary, monolithic terms – an
unfortunate situation which masks considerable
variance across OSS development processes. Therefore
we explore reasons for systematic variance in these
processes so as to enable more effective OSS
development practices. Drawing on theory of
distributed cognition, we develop a language of
cognitive translations, which occur within and across
distributed social arrangements and structural
conditions of sharing knowledge. This language
provides micro-foundations for understanding how
different modes of OSS development emerge. Through
examining how generative characteristics of social and
structural distributions in OSS shape distinct
development pathways, we propose a theoretically
derived typology explaining the characteristics,
dynamics, and conditions for success of different
modes of OSS development.

1. Introduction

OSS is increasingly becoming an important way of
organizing software development processes. However,
extant accounts often conceptualize OSS development
as a unitary, almost monolithic, mode of organizing
[20]. This is problematic because assuming a single
modus operandi results in simplistic understanding of
OSS development. Consequently, considerable
variance in OSS development processes is masked and
hidden away. Even though some research [19,24] has
been conducted that recognizes the diversity of OSS
organizing modes, they do not provide plausible
explanations of underlying mechanisms of how and
why different modes emerge.

In order to explain different modes of OSS
development, we propose that it is important to analyze

cognitive translation processes, which translate
ambiguous and distributed representations of OSS
requirements into definitive sets of artifacts expressed
in working code. Such translation processes are firmly
grounded in what we call the micro-foundations of
translation referring to distinct modes of cognitive
transference and transformation across social and
material actors. Understanding how such micro-
translations are configured differently across contexts
can help us distinguish between different modes of
open source organizing. In short, they show how
cognitive activities associated with OSS distribute and
configure themselves across time and space.

In order to understand the distinct ways in which
translation processes are configured, we explore two
dimensions - social distribution and structural
distribution. These distributions form the underlying
forces that shape the emergence of particular sets of
translations. Through examining how OSS translation
processes unfold differently as a function of their
underlying social and structural distribution, we can
identify distinct modes of OSS development and
recognize the specific conditions for success that each
distinct mode of OSS development entails.

The paper is organized as follows: we first explore
the micro-foundations of OSS development through
formulating a sociotechnical language for describing
distributed cognitive interactions across social and
structural distributions. We contend that these micro-
foundations consist of four types of translation - types
of transferring and transforming cognitive
representations across social and structural
distributions: 1) communicative-, 2) inscriptive-, 3)
retrieval-, and 4) automatic translation. Subsequently,
we conceptualize a typology of related OSS
development modes: four typical ways in which
variations in social and structural distributions lead to
distinct configurations of translation processes so as to
create working code. We conclude with discussing the
implications of our conceptual framework as well as
future research directions.

2. OSS Development

In this section, we review past research on OSS,
focusing especially on the emerging understanding of
variation across different forms of OSS development.
Further, we approach OSS as a distributed
sociotechnical cognitive system, which involves social
actors voluntarily participating in OSS development
and the material artifacts with which social actors
interact. The cognitive distribution of OSS
development can be characterized by describing the
underlying social and structural distributions. Hence,
distinct combinations of distributions configure
knowledge translation processes differently so as to
enable requirements to be iteratively translated into
code along distinct and varying pathways.

2.1. Past Research on OSS Development

In recent years, OSS has attracted an increasing
number of researchers to explore its various aspects
with respect to its development, such as motivations
[1,30], organizing and governance structures
[6,10,19,23,31], and evolution patterns [8,15]. Some
distinguishing features of OSS development include
voluntary developers [6,30] and use of artifactual
‘informalisms’ [27,29]. These features illustrate the
distributed and emergent nature of OSS projects.

The early groundbreaking and canonical work on
the OSS development employs the metaphor of
‘bazaar’ [24] to characterize the organizing type of
OSS development, which involves a great amount of
anonymous developers and users with distinct
expertise and viewpoints devoting to source code.
However, more recent accounts such as [16] and [19]
portray a different reality. These accounts provide rich
descriptions of the actual modus operandi of OSS
development by empirically examining various OSS
projects. Their findings suggest that OSS management
and organizing do not necessarily resemble a
Raymondian ‘bazaar’. Rather, many OSS projects are
driven by a core team composed of several highly
committed developers, often sponsored by corporate
entities, and assisted by a growing periphery of
developers and users who report bugs, suggest bug
fixes and, most importantly use the software and
provide feedback [5].

Hence, the contemporary OSS literature is
increasingly recognizing different ways in which OSS
development processes vary. For example, it has been
shown that the ways in which codebases change follow
multiple patterns such as linear [25], superlinear [8]
and punctuated equilibria [3]. Further, the organization
of developer communities also demonstrates variation
around the generic core-periphery model proposed by
Mockus and his colleagues [19].

Taken together, there seems to be ample evidence
that the ways in which the social and structural
dimensions of OSS projects are arranged exhibit
considerable variance, and therefore we can expect that
the ways in which OSS development processes unfold
under these conditions also show similar degrees of
variance.

2.2. Social and Structural Distribution

As informed by the previous research, variances of
OSS development processes are highly associated with
varying configurations of and interactions between
actors participating in OSS development as well as the
artifacts they use. Therefore, we draw on theory of
distributed cognition [12] and approach OSS
development as a process through which distributed
sets of actors and artifacts work in concert to translate
abstract representations into tangible, working code.
This lens helps to recognize not only the presence of
actors and artifacts, but also the processes through
which they interact to develop OSS.

The theory of distributed cognition explains how a
feasible solution to a collaborative task emerges from
computation of representational states over time [12].
The representational states could be internal
representations residing in individual minds or external
representations embodied in artifacts and physical
environment [22,26]. Consequently, cognition is
distributed across social and structural boundaries with
cognitive workload shouldered upon actors and
artifacts involved in a specific task [11,13]. To capture
these forms of distribution and the dynamics between
them, we identify two such forms: social- (i.e., the
distribution of cognition among actors), and structural
(i.e., the distribution of cognition across artifacts)
distribution [14]. Both of these distributions play vital
roles in understanding how collaborative tasks, such as
OSS development, are carried out.

In OSS development, social distribution indicates
that cognitive workload is distributed across multiple
and varied participants of an OSS community. It has
been observed that OSS development is carried out
through diverse volunteers playing specific roles [5,33]
with significant diversity of knowledge [21,28]. For
instance, Crowston and Howison [5] claim that OSS
communities are hierarchical, onion-like organizations.
At the center of the onion, a core of developers takes
charge of the overall design. As developers move away
from the center towards the outer layers of the onion,
the engagement level tends to decrease [5, 32].
Interactions of multiple actors who devote diverse
cognitive resources and technical expertise to write
code, report bugs, and give suggestions provide an
important impetus for OSS development.

Consequently, the social distribution denotes the
complete set of human actors involved with a specific
OSS project.

Structural distribution captures how cognitive
workloads are supported by sets of artifacts that the
OSS community uses. Hence, the structural
distribution identifies the complete set of artifacts
involved with a specific OSS project. Given the dearth
of formal control in OSS, development depends on ad
hoc artifacts, often labeled ‘informalisms’ [29], such as
mobilized webpages (e.g., project Wiki pages, Readme
profiles), various tools users work with (e.g., Internet
Relay Chat, project mailing lists, or project testing
suites) and bug tracker/code hosting platforms (e.g.,
GitHub, SourceForge), which serve as archives for
OSS development. It is these heterogeneous forms of
artifacts and their affordances that help shoulder and
disseminate cognitive workload in OSS projects
[27,29] so as to push OSS development processes
forward.

3. Micro-Foundations of OSS: Translation
Processes

The forms of interactions within and across social
and structural distributions of OSS development
communities lead to a number of distinct translation
processes that work towards computing requirements
through collating and instantiating distributed and
abstracted requirements into distinct sets of contiguous
software artifacts. Translation processes exhibit the
ways in which software related knowledge is
transferred and transformed as it moves across actors
and artifacts [34]. Each translation process has a mode
of transference (how knowledge moves across
actors/artifacts), and a mode of transformation (how
knowledge changes as it is transferred). These different
forms of translation processes mediate between and
across actors and artifacts in several ways which we
call: communicative-, automatic-, inscriptive- and
retrieval translation. Below, we will discuss each
translation process in detail (see Table 1 for a
summary).

Table 1. Translation processes
Type of translation Mode of

transference
Mode of
transformation

Communicative
(Human-to-human)

Talking about
code

Negotiation

Automatic
(Artifact-to-artifact)

Running code Computation

Inscriptive
(Human-to-artifact)

Writing code Materialization

Retrieval
(Artifact-to-human)

Reading code Cognition

3.1. Communicative Translation

Communicative translation refers to a process
where social actors transfer knowledge representations
using dialogical or conversational practices so that
knowledge can be exchanged with other social actors
(i.e. human actors). Quite simply, this is humans
talking to other humans about code or software
functions (mode of transference), so as to negotiate
(mode of transformation) how the code should be
configured, and what a particular solution means in
particular contexts. In this process, the representational
states are transformed from intangible knowledge
forms residing in the minds of developers into
expressions that make up conversations or discussions
(which are often recorded and stored for future use),
aimed to negotiate a shared vision of what the software
is going to do, or how the code can be written, changed
and improved. For instance, core developers usually
have formal or informal meetings on the Internet
before taking next big step. In these meetings,
developers negotiate and mutually adjust to other’s
perspectives by means of conversation, discussion and
debate so that cognitive frames of how to develop OSS
will be aligned and disseminated across developer’s
boundaries. However, such a shared vision is not
limited to discussions of the overall direction of
software development, but can include a certain feature
comment or even a tiny bug patch, depending on the
communicative unit. Hence, communicative translation
reveals the underlying mechanisms of social
distribution whereby knowledge about developing OSS
flows across actors.

3.2. Automatic Translation

Automatic translation is an automated and
independent computational process that artifacts carry
out to enable a knowledge flow from one
representational state to another representational state.
In such knowledge flows, formalized cognitive frames
are transmitted through APIs and other standardized
computational mechanisms through which different
artifacts communicate with each other (mode of
transference). As cognitive frames are transmitted, they
are also transformed; their previous latent state is made
explicit so as to reveal information that is relevant in
different contexts (mode of transformation). This
process assumes a particular way of structuring a set of
artifact or services so as to enable transfer and
transformation across artifacts. For example, in OSS
development, testing code involves an automatic
translation process. It transforms potential bugs within
the OSS code into explicit warnings or error messages,

therefore, enabling representational states of errors and
defects that are latently stored to be seen. The
automatic translation process occurs autonomously
without any intervention of human during the
computation. Hence, automatic translation facilitates
the dissemination of representational states across
artifacts and reveals the underlying mechanisms of
structural distribution whereby artifacts engaged in
OSS development afford new workflows for
knowledge distribution.

3.3. Inscriptive Translation

Inscriptive translation constitutes a process where
individual actors materialize knowledge residing in
human minds into external artifacts so that certain
cognitive frames get inscribed into literal, graphical
and code artifacts. Often this simply occurs through
writing code (mode of transference), in such a way that
socially held cognitive content is materialized (mode of
transformation). Examples of such inscriptive
translation may also include the ways in which bugs
identified by developers are inscribed into a bug
tracker, such as Github or Bugzilla, or how plans for an
envisioned future are laid down in roadmaps on project
websites. Inscriptive translation indicates that
knowledge is transferred and transformed as it moves
from social distribution to structural distribution.
Hence, inscriptive translation distinguishes itself from
communicative translation in that inscriptive
translation emphasizes that cognition traverses the
boundary between the social and the structural, and is
materialized, while communicative translation focuses
on formation of shared visions originating from
interactions among social actors. Even though some
communicative translation processes may lead to
shared visions finally being situated in external
artifacts, this last step cannot happen without the
materialization that inscriptive translation affords.

3.4. Retrieval Translation

Retrieval translation refers to a process where
implicit knowledge embedded in external artifacts is
extracted and transformed by individual actors so as to
ensure ensuing communicative, automatic or
inscriptive translation processes. Essentially, humans
read code and associated artifacts (mode of
transference), in order to understand their significance,
and hence retrieve relevant meanings stored in artifacts
(mode of transformation). In OSS development, the
retrieval activities can either relate directly to a certain
artifact establishing basic constraints to which the
project must conform (e.g. a C interpreter must

conform to the C programming language), or may
involve interplay of different artifacts acting as
constraints [32]. Take forking for example; the forking
project inherits the majority of requirements and source
code from the forked OSS, which sets fundamental
parameters for developing one’s own, alternative,
project. The developer has to understand existing
functionalities and features of the forked project so as
to modify the forked project with respect to his/her
purpose. In so doing, retrieval translation transfers the
implicit knowledge embedded in the forked project
into the developer’s mind. In addition, retrieval
translation entails retrieval of the aforesaid archived
knowledge inscribed in various artifacts for
formulating new knowledge to develop OSS. Inverse
to inscriptive translation, retrieval translation indicates
knowledge flows from the structural distribution to the
social distribution.

4. Four Modes of OSS Development

Translation processes form the micro-foundations
of distinct modes of OSS development that emerge as
particular configurations of translation processes,
driven by the underlying social and structural
distributions of a particular project. In this section we
will show how the underlying social and structural
distributions act as ‘generative motors’ that shape the
emergence of discrete modes of OSS development
processes, that characterize typical ways in which
distributed cognitive processes are carried out in a
certain project.

4.1. Distributions as Generative Motors

The particular ways in which OSS development
processes unfold is deeply intertwined with the
hierarchical form of the community and the set of
artifacts they engage with. This mangle of social actors
and material artifacts, each having distinct
characteristics, produces an emergent stream of
activities that we can capture as typical modes of OSS
development. Such modes denote the ways in which
distributed and abstract ideas are sourced, modified,
integrated and made tangible over time in a distinct set
of material artifacts, especially working code.

As structural distributions naturally vary across
projects, we consider the different degrees of
interpretative flexibility [2] of the set of material
artifacts that make up the structural distribution.
Interpretative flexibility describes the range of
interpretations that are possible, when working with,
and designing certain technological artifacts during the
process of technological development [2]. The level of

interpretative flexibility determines the degree to
which technological possibilities in OSS are many and
diverse, or few and focused. Therefore, low levels of
interpretative flexibility lead to projects being more
constrained by features of specific technologies and
standards which OSS must conform to, while high
levels of interpretative flexibility give communities
more freedom in how they combine and utilize
heterogeneous artifacts while developing OSS projects.
Granted, the set of standard artifacts that provide the
base of a certain project can be replaced by a different
set of standard artifacts that offers different technical
possibilities. But as long as a specific set of artifacts is
in place for a given project, it exercises a specific level
of material constraint viz-a-viz the project, based on
the level of interpretative flexibility of the structural
distribution of which the artifacts are part.

Hence, the generative motor of a certain structural
distribution is dependent on the interpretative
flexibility of the artifacts that make up the said
distribution. Lower levels of interpretative flexibility
tend to lead to an iterative recreation of the structural
distribution, whereas higher levels of interpretative
flexibility open up possibilities for emergent
combinations and development trajectories.

Further, OSS communities come together in
different ways to translate distributed and abstract
ideas into a specific set of software artifacts. Based on
how knowledge and control are differently distributed,
we can articulate how the social distribution of
communities are configured so as to work together
with a established structural distribution reflecting a
certain level of interpretative flexibility. Hence, we
propose that social distributions vary from oligarchy to
democracy. Oligarchy denotes a situation where
important knowledge is controlled and shared by
several core developers, but where knowledge and
control are highly concentrated and only part of them
extend to the entire community. In contrast, democracy
represents a situation where knowledge and control are
distributed widely across those who contribute to the
project. Therefore, the generative capacities of a social
distribution can be distributed in different ways. A
more centralized distribution will enable a few
developers to more directly determine the direction of
a project, whereas in more democratic distribution,
project ambitions emerge as the result of dynamics
between a large array of developers.

In Figure 1, an oligarchic social distribution is
illustrated on the left, and a more democratic social
distribution is illustrated on the right. From the figure,
we can clearly discern how the oligarchic community
clearly differentiates between core and periphery,
whereas the democratic community has a larger set of

connections extending across all parts of the
community.

Overall, a particular combination of social and
structural distributions will shape the ways in which
configurations of translations in OSS development
processes unfold. Therefore, modes of OSS
development capture the differing characteristics of
such unfolding streams of distributed cognition.
Below, we will discuss each mode of OSS
development in greater detail (see Table 2).

Table 2. Four modes of OSS development
 Social Distribution

Oligarchy Democracy
Structural
Distribution

Low levels of
interpretative
flexibility

Type A:
Technocracy

Type B:
Mechanical
Turks

High levels of
interpretative
flexibility

Type C:
Cathedral

Type D:
Bazaar

4.2. Type A: Technocracy (Low levels of
interpretative flexibility and Oligarchy)

Type A represents a mode of OSS development
where knowledge flows and computation are
centralized to a small number of developers and highly
dependent on the features of specific artifacts. We
choose to call this form of development technocracy,
because it represents a situation where a small elite
controls the software artifacts, not necessarily based on
vision or ideas, but rather on fulfilling the technical
promises of the underlying structural distribution.
Twitter Bootstrap (see
http://twitter.github.io/bootstrap/) is a typical such
project, where a tight leadership core (two people)
manages a product that largely capitalizes on stable
Internet standards such as HTML, CSS, and Javascript.
Hence, few people have decision-making power, and
even their decision making power is heavily
constrained by the aforesaid standards.

Due to the oligarchic social distribution,
communicative translations seem to be less
problematic in this form when compared to other

Figure 1. Social distributions

modes of OSS development. A consensus of OSS
development tactics tends to be achieved easier here by
a small number of developers. On the other hand, core
developers are expected to be experts in the OSS
related domain and standards are expected to sustain
the viability of the project. Therefore, expert
dominance and availability is a necessity for this type
of project to succeed. Although the small core takes
charge of the majority of the cognitive workloads
associated with OSS development, the size of the
periphery determines whether or not inscriptive
translation processes will take place and how often. If
the amount of peripheral developers is relatively large,
such as Bootstrap, inscriptive translation processes are
suggested by the periphery in the form of reported bugs
and submitted patches, so that leadership visions can
be easily inscribed into tangible artifacts (e.g.,
Bootstrap websites, roadmaps, issues) that help the
periphery catches up with the leaders.

At the same time, due to low levels of interpretative
flexibility, this mode of development aims to ensure
compatibility with state-of-the-art standards and
technology usage patterns. It may draw heavily on
testing the OSS code on existing artifacts, and thus
results in high frequencies of automatic translation. In
addition, this mode requires large amounts of retrieval
translation in order to exploit knowledge embedded in
standards-based artifacts.

4.3. Type B: Mechanical Turks (Low levels of
interpretative flexibility and Democracy)

Type B OSS development consists of a large
number of developers who primarily conform to given
parameters of present artifacts. We choose to label this
form of development Mechanical Turks (inspired by
Amazon’s crowdsourcing service, and its namesake –
an 18th century chess-playing automaton), due to the
fact that in this mode a large group of people work in
concert to build OSS based on a relatively fixed and
constrained set of underlying material artifacts. VIM
scripts (see http://www.vim.org/scripts/) are typical
examples of this type of project. As the basic artifact,
the fundamental function and form of the VIM text
editor are largely fixed, a wide range of developers
create different sets of VIM scripts geared towards
enhancing the text and code editing functions of VIM.
Most of them add new functionalities to the current
version of the VIM text editor, even though their scope
is limited. Examples include scripts for debugging
code, syntax highlighting, and file managers accessible
from within the editor itself. While the VIM editor
does not allow for much flexibility in terms of what
can be created, a large amount of smaller contributions

reflecting the interests of diverse contributors in the
community have created a wide array of scripts useful
in various situations.

Because of the democratic distribution,
communicative translations work to negotiate common
images of the set of software artifacts that developers
intend to deliver. But communicative translations can
hardly dealt with the massive scale of knowledge flows
if inscriptive translations are missing. As cognition is
widely disseminated across a relatively large number
of developers, the knowledge within developers’ minds
has to be inscribed into artifacts to enable effective and
accurate sharing of information.

Low interpretative flexibility of the structural
distribution reflects conformity in relation to
standardized artifacts. It invites high levels of
automatic translations, analogous to the technocracy
mode described above, in order to maximize the
compatibility between the project and basic artifacts
upon which the project relies. As the role of
technology and standardized artifacts becomes more
pronounced, retrieval translations become increasingly
important. The retrieval activities not only deal with
certain standardized artifacts, but also invite retrieval
of the archived knowledge inscribed in literal,
graphical, and code forms.

4.4. Type C: Cathedral (High levels of
interpretative flexibility and Oligarchy)

Type C OSS projects are developed by a small
number of developers, but engage various
heterogeneous artifacts. Project evolves from the
visions of the leadership and may recombine artifacts
in novel ways. We choose to label this form of
development as a cathedral, based on Raymond’s [24]
classical fold to develop OSS. We argue that Linux
kernel can be regarded as an example of a cathedral.
Due to its clear management structure and self-
referential material structure, the Linux kernel (see
https://www.kernel.org/) shows how a leadership with
a clear vision can shape a flexible underlying structural
distribution into a valuable set of software artifacts.
While many individuals contribute with ideas and
suggestions to the Linux kernel, the actual decisions
with regards to what code to implement is highly
centralized to a small group, and eventually lies with
the project founder himself. Since the Linux kernel
relates directly to hardware, it is largely undetermined
by other software artifacts. Therefore, there are many
possible technical pathways that the project could
proceed along, but the strict governance wielded by the
project leadership corrals the project to stay on track
within the boundaries of a particular pathway.

Communicative and inscriptive translation
processes are at the forefront of the cathedral mode.
Communicative translation processes help to ensure
that a core leadership group agrees on fundamental
principles of design and development, and facilitates to
propagate such ideas throughout the community.
However, communicative translation itself is
insufficient for developers to trace the development
trajectory given the high levels of uncertainty resulting
from high levels of interpretative flexibility. Unless
inscribing ongoing flows of knowledge in artifacts,
project leadership can hardly control the overall
development and anticipate various technological
possibilities.

However, the possibility of either computing
knowledge automatically via software artifacts or
retrieving knowledge from basic artifacts is lower than
in previous modes described above, in that a cathedral
project lends the leadership more freedom in
describing what the project should be, and what should
or should not do during the development process.
Therefore, such a process relies less on testing or on
being compatible with the basic artifacts that the
project draws upon (e.g. the CPU features that Linux
bases its OS kernel upon provide a wide range of
possibilities, and thus do not constrain the project
excessively). Nevertheless, retrieval translations often
occur in response to inscriptive translations by means
of extracting archival knowledge that has been
inscribed into artifacts.

4.5. Type D: Bazaar (High levels of
interpretative flexibility and Democracy)

The most complex form of OSS is Type D where
the social distribution is democratic and the structural
distribution can be flexibly interpreted. We choose to
call this form of OSS development a bazaar, because
of its likeness with the ideal development process
proposed by Raymond [24]. This mode of development
is complex, and emerges from interactions of
empowered developers who act on local concerns, with
heterogeneous artifacts offering diverse technical
opportunities. Rubinius (see http://rubini.us/), a Ruby
Virtual Machine, represents a typical bazaar. While
having a clear leadership team, control is effectively
distributed through giving commit rights to anyone
who has had a patch accepted. Further, the Ruby
programming language is in constant flux, and multiple
interpretations are possible, thus giving Rubinius a
potential trendsetter role within the Ruby community.

Because of its emergent and unpredictable nature, a
bazaar project requires a balanced and integrated
configuration of communicative, automatic, inscriptive

and retrieval translations. If such integration is
achieved, the resulting development processes
capitalize both on the needs and visions of a
democratically distributed community, and the
technical possibilities offered by structural distribution
with a high level of interpretative flexibility.

5. Discussion

In response to the received notion of a monolithic
and unitary mode of OSS development, we have
proposed a taxonomic framework of OSS development
modes and their micro-foundational translation
processes. Such translation processes unfold
differently, reflecting the underlying social and
structural distributions that generate different cognitive
activity patterns. Distinct combinations of different
social and structural distributions, and the translation
activities they execute, allow us to conceptualize four
modes of OSS development. These modes constitute
particular sociotechnical arrangements that translate
requirements from distributed, uncertain and abstracted
representations to functional and instantiated software
artifacts. Below, we will discuss the implications of the
proposed framework for the study and practice of OSS
development, focusing on under what conditions a
certain type of OSS project may succeed and how
network- and sociotechnical scholars can make
contributions to the understanding of a wide range of
OSS development.

5.1. Governance Imperatives

The ways in which different projects are socially
and structurally distributed and how such distributions
shape the emergence of OSS development modes,
create distinctly different conditions for ongoing
success for each type of project (see Table 3 for a
summary). We label these conditions governance
imperatives, which are leadership, management, and
organizational practices that need to be in place in
order to increase the chances of successful computation
of OSS requirements and therefore the overall success
of the project. The logic of governance imperatives is
that the ways in which activities are organized and
supported, needs to match rather than contradict the
ways in which social and structural resources are
distributed. Below we will explain how each mode of
OSS development has distinct governance imperatives.

Technocracy projects require a tight fit between the
technological possibilities of the underlying structural
distribution and the visions of its centralized
leadership. If such a fit fails to realize, the project will
try to achieve something very difficult, given the

underlying structural distribution. Therefore, it is likely
to fail in its code development, or at least perform at
suboptimal levels in relation to set goals.

Mechanical Turk projects are often fragmented and
consist of individual developers who exchange
development ideas based on their own, local concerns
and perceived benefits, to arrange parts of the project
in particular ways. However, such efforts are
consistently constrained by the relevant artifacts at
hand. In order to coordinate a large number of
localized concerns, these projects require high levels of
modularity in order to succeed. Such modularity
ensures that a large number of developers can work
simultaneously on multiple functionalities provided by
the structural distribution, either because they are
disconnected, or because their interfaces are conform
to commonly available templates.

Cathedral projects are relatively unconstrained by
their structural distribution, and therefore material
constraints do not provide a clear direction. Therefore,
cathedral projects require core developers to leverage
exploration capabilities to search for better solutions
among technical possibilities. Such dynamic activities
are dependent on hierarchical governance and
visionary leadership in order to maintain a certain
direction despite diverse technological possibilities
offered by structural distributions exhibiting high
levels of interpretative flexibility.

Bazaar projects are fragile and prone to
breakdowns (or rather, forking into several competing
projects), since they have multiple possible
development paths that are not necessarily restricted by
either an underlying set of standards and artifacts or by
a clear leadership vision. Therefore, they require expert
project facilitation and consensus building processes so
as to maintain cohesion and prevent splintering.
Perhaps such projects are mostly valuable for
exploration that lead to continuous splintering into
smaller, more focused projects.

As we can see above, the first three modes (i.e.,
technocracy, mechanical Turks, and cathedrals) all
have either low interpretative flexibility, or an
oligarchic social distribution. Therefore their
governance imperatives tend to derive mostly from the
most constraining dimension (i.e. low interpretative
flexibility or oligarchy), or through demanding a tight
fit between possibilities offered by the structural
distribution and the visions of the leadership (as is the
case in technocratic projects). The most complex cases
are the bazaar projects, which we argue require adept
community leadership to manage the myriad
technological possibilities offered by a flexible
structural distribution, in concert with a widely
empowered social distribution.

In summary, the governance imperatives described
above suggest a wide range of conjectures that need to
be explored further, both theoretically and empirically.
Beginning to explore the various modes of OSS
development, and the various conditions under which
each can be successful, would represent a fruitful path
forward for OSS research.

Table 3. OSS development modes and
governance imperatives

Type Description Governance
Imperative

Technocracy Elitist core specifies
a narrow technical
vision

Fit between
technological
possibilities and
leadership visions

Mechanical
Turks

An evenly
distributed
community iterates
on a technical base

Modularity and local
benefits

Cathedral Hierarchical
organization
working to stabilize
sets of artifacts

Hierarchical
governance and
visionary leadership

Bazaar Self-organized
exploration of
technical
possibilities

Facilitating
community
consensus

5.2. Implications and Future Research

As we have argued in this paper, there are multiple
modes of OSS development processes, and we urge
scholars to stop seeing OSS as a unitary, monolithic
mode of organizing software development. Rather,
OSS projects can be characterized by underlying social
and structural distributions. Such distributions shape
emerging configurations of translation processes,
which in turn shape the unfolding of distinct modes of
OSS development. If we can recognize which mode of
OSS development we are dealing with, we can more
closely identify patterns in data and associations
between characteristics of development processes and
important outcome variables such as community
growth and IS success [4]. Rather than searching for an
elusive ‘OSS mode of organizing’, we can then more
clearly discern the different factors that impact OSS
processes and outcomes. Such inquiry into the different
modes of OSS organizing can take the form of
examining: 1) the underlying forces that generate
different OSS processes, 2) how these processes differ,
and 3) how they result in different outputs.

First, we have proposed ways in which social and
structural distributions generate different modes of
OSS development. While our argument is grounded in
the literature, we also urge scholars to empirically
examine the effects of these distributions. Further, we

also encourage scholars to uncover a larger array of
other generative mechanisms that underlie OSS
development processes and shape their unfolding.

Second, we have theorized that the ways in which
OSS development processes unfold are varied. In
doing so, we make a few first tentative steps towards
providing a way of conceptually understanding this
variation through proposing a typology. Going
forward, scholars need to consider the ways in which
OSS processes are conceptualized and contextualized,
rather than assuming about a standard Raymondian
process that all OSS projects follow.

Third, we have argued that there are good reasons
to expect that the outcomes of different OSS processes
will differ and that the conditions under which such
outcomes are successful may vary. Therefore, OSS
scholars need to think deeply about what the generative
mechanisms inside of work processes are, that help to
create desirable outcomes.

Noting the importance of the generative
characteristics of not only social actors, but also
artifacts, theorizing around concrete forms of material
agencies is brought into focus. While scholars such as
Leonardi [18] and Latour [17] have shed lights on the
ways in which social and material agencies are
imbricated or hybridized, the IS field still lacks a
sophisticated theory of material agency on a par with
those of social agency within sociology [7]. Careful
theorizing of the generative capacities of material
agencies would provide insight into how various
structural distributions take part in the unfolding of IS
development processes at large.

To enable scholars to understand how distinct
modes of development differ in terms of antecedents,
process characteristics, and associations with outcome
variables, we specifically urge two camps of scholars
to turn their attention to OSS phenomena: those who
study networks and those who study sociotechnical
systems. Combining the sociotechnical perspective
with network methodologies would allow us to depict
and analyze how particular combinations of structural
and social distributions shape development processes
differently, and create different associations with
important covariates such as technical and social
success [9].

We are keen to see both quantitative and qualitative
studies of the evolution of sociotechnical networks in
OSS, so as to understand how differently configured
structural forms participate differently in unfolding
OSS practices. Through using the large amounts of
digital trace data available on OSS projects, interesting
patterns could be uncovered. And deep ethnographic
accounts may disclose the generative mechanisms
behind these patterns, which then could be
corroborated using quantitative network studies that

show how relational practices evolve differently across
various sociotechnical/material networks.

6. Conclusion

As scholars increasingly recognize the considerable
variation present in OSS modes of organizing, it is
critical to examine how such different modes emerge.
Our paper takes initial steps in this direction through
formulating micro-foundations consisting of translation
processes and revealing configurations of underlying
social and structural distributions. Future empirical
work needs to expand the proposed theoretical model
with careful analysis of the distributive and processual
dynamics of different development processes, and how
different forms of participation in these processes are
subject to different conditions of success.

7. References

[1] R.R.P. Bagozzi, and U.M. Dholakia, "Open Source
Software User Communities: A Study of Participation in
Linux User Groups". Management Science, 52(7), 2006, pp.
1099–1115.

[2] W.E.Bijker, T.P. Hughes, and T.J.Pinch, The social
construction of technological systems: New directions in the
sociology and history of technology, MIT Press, 1987.

[3] A. Capiluppi, A. Faria, and J. Ramil, "Exploring the
Relationship between Cumulative Change and Complexity in
an Open Source System", Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering
(CSMR’05), 2005.

[4] K. Crowston, J. Howison, and H. Annabi, "Information
systems success in free and open source software
development: theory and measures", Software Process:
Improvement and Practice, 11(2), 2006, pp. 123–148.

[5] K. Crowston, and J. Howison, "The social structure of
free and open source software development", First Monday
2, 2005.

[6] K. Crowston, Q. Li, K. Wei, U.Y. Eseryel, and J.
Howison, "Self-organization of teams for free/libre open
source software development", Information and Software
Technology, 49(6), 2007, pp. 564–575.

[7] M. Emirbayer, and A. Mische, "What Is Agency?",
American Journal of Sociology, 103(4), 1998, pp. 962–1023.

[8] M. Godfrey, "Evolution in open source software: a case
study", In Proceedings International Conference on Software
Maintenance (ICSM-94), 2000, pp. 131–142.

[9] R.Grewal, G.L. Lilien, and G. Mallapragada, "Location,
Location, Location: How Network Embeddedness Affects

Project Success in Open Source Systems", Management
Science, 52(7), 2006, pp. 1043–1056.

[10] E. von Hippel, and G. von Krogh, "Open Source
Software and the “Private-Collective” Innovation Model:
Issues for Organization Science", Organization Science,
14(2), 2003, pp. 209–223.

[11] E. Hutchins, and T. Klausen, "Distributed Cognition in
an Airline Cockpit", In Y. Engeström, and D. Middleton,
eds., Cognition and Communication at Work, Cambridge
University Press, 1996, pp. 15–34.

[12] E.Hutchins, Cognition in the Wild, MIT Press,
Cambridge, MA, 1995.

[13] E. Hutchins, "How a Cockpit Remembers Its Speeds",
Cognitive Science, 288, 1995, pp. 265–288.

[14] E. Hutchins, "Distributed Cognition. In International
Encyclopedia of the Social and Behavior Sciences", Elsevier,
2001, pp. 2068–2072.

[15] S. Koch, "Evolution of open source software systems–a
large-scale investigation", Proceedings of the First
International Conference on Open Source Systems, Genova,
11th-15th July, 2005, pp. 148–153.

[16] S. Krishnamurthy, "Cave or Community?: An Empirical
Examination of 100 Mature Open Source Projects", First
Monday, 2, 2002.

[17] B.Latour, We Have Never Been Modern, Harvard
University Press, Cambridge, Massachusetts, 2012.

[18] P. Leonardi, "When Flexible Routines meet Flexible
Technologies: Affordance, Constraint, and the Imbrication of
Human and Material Agencies", MIS Quarterly, 35(1), 2010,
pp. 147–167.

[19] A. Mockus, R.T. Fielding, and J.D. Herbsleb, "Two case
studies of open source software development: Apache and
Mozilla", ACM Transactions on Software Engineering and
Methodology, 11(3), 2002, pp. 309–346.

[20] N. Bezroukov, "Open Source Software Development as
a Special Type of Academic Research (Critique of Vulgar
Raymondism)", First Monday, 4(10), 1999.

[21] J. Noll, and W.-M. Liu, "Requirements Elicitation in
Open Source Software Development", Proceedings of the 3rd
International Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and
Development, ACM Press, 2010, pp. 35–40.

[22] M. Perry, "The Application of Individually and Socially
Distributed Cognition in Workplace Studies: Two Peas in a
Pod?", Proceedings of European Conference on Cognitive
Science, 1999, pp. 87–92.

[23] E. Raymond, "The cathedral and the bazaar",
Knowledge, Technology & Policy, 12(3), 1999, pp. 23–49.

[24] E.Raymond, The cathedral and the bazaar: musings on
Linux and Open Source by an accidental revolutionary,
O’Reilly, 2001.

[25] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, I.
Herraiz, U. Rey, and J. Carlos, "Evolution and Growth in
Large Libre Software Projects", Proceedings of the 2005
Eighth International Workshop on Principles of Software
Evolution (IWPSE’05), 2005, pp. 1–10.

[26] Y. Rogers, and J. Ellis, "Distributed Cognition: An
Alternative Framework for Analysing and Explaining
Collaborative Working", Journal of Information Technology,
9(2), 1994, pp. 119–128.

[27] W. Scacchi, "Understanding the requirements for
developing open source software systems", IEE Proceedings
Software, 149(1), 2002, pp. 24-39.

[28] W. Scacchi, "Socio-Technical Interaction Networks in
Free/Open Source Software Development Processes", In S.
Acuña, and N. Juristo, eds., Software Process Modeling,
Springer, 2005, pp. 1–27.

[29] W. Scacchi, "Understanding Requirements for Open
Source Software." In Lyytinen, K., Loucopoulos, K.,
Mylopoulos, J., and Robinson, B., eds., Design Requirements
Engineering: A Ten-Year Perspective, Springer, Berlin,
Germany, 2009, pp. 467–494.

[30] S.K. Shah, "Motivation, Governance, and the Viability
of Hybrid Forms in Open Source Software Development",
Management Science, 52(7), 2006, pp. 1000–1014.

[31] S. Valverde, and R. Solé. "Self-organization versus
hierarchy in open-source social networks", Physical Review
E, 76(4), 2007, pp. 1–8.

[32] D. Wegner, "Transactive memory: A contemporary
analysis of the group mind" In Mullen, B., Goethals, G. R.,
eds., Theories of Group Behavior, Springer, New York,
1987.

[33] Y. Ye, and K. Kishida, "Toward an Understanding of
the Motivation of Open Source Software Developers",
Proceedings of the 25th International Conference on
Software Engineering", 2003, pp. 419–429.

[34] Y. Yoo, K. Lyytinen, and R.J. Boland, "Distributed
Innovation in Classes of Networks", Proceedings of the 41st
Annual Hawaii International Conference on System
Sciences, 2008.

	Theorizing Modes of Open Source Software Development
	Theorizing Modes of Open Source Software Development.2

