
Describing the Software Forge Ecosystem

Megan Squire, David Williams
Elon University

 {msquire, dwilliams22}@elon.edu

Abstract
Code forges are online software systems that are
designed to support teams doing software
development work. There have been few if any
attempts in the research literature to describe the
web of people, projects, and tools that make up the
free, libre, and open source (FLOSS) forge
ecosystem. The main contributions of this paper are
(1) to introduce a classification of FLOSS-oriented
forges according to their characteristics; (2) to
describe the forge-level and project-level data and
artifacts currently available at each FLOSS forge;
(3) to show various patterns already discovered in
the FLOSS forge ecosystem, such as timelines of
creation or arrangements by size or feature; (4) to
make some recommendations to forge providers and
data collectors about how to expose the structure and
information in the forges; and (5) to describe the
effort needed to extend our publicly- available
information about the FLOSS forge ecosystem into
the future.

1. Introduction

A software forge provides various tools and
facilities to distributed development teams, such as
source code control systems, mailing lists and
communication forums, bug tracking systems, web
hosting space, and the like. Because of the
decentralized and public nature of free, libre, and
open source (FLOSS) projects, many software forges
were created with the needs of FLOSS teams in
mind. However the concept of a forge is now used in
numerous non-FLOSS projects, as well as in projects
not designed for public participation.

Researchers who study the FLOSS phenomenon
are often interested in public forges because of the
relative ease of data gathering (access to lots of
projects, all formatted similarly, making them easier
to compare to one another). The purpose of this paper
is threefold: to extend existing work on describing
similar collaborative software development virtual
spaces, to initiate a discussion about the current state
of FLOSS forges, and to propose a way to expose the

information inside of FLOSS forges to facilitate
further study. We wish to provide an overview of the
entire FLOSS forge ecosystem, including lesser-
known forges, and the projects and users that inhabit
them. Knowing basic facts about the forges, and
being able to compare and contrast them will help
open source researchers in several ways. First, when
we use a common vocabulary for describing forges,
we will be able to better explain why we choose to
collect or use data from a certain forge versus
another. Next, when we gain knowledge about what
artifacts and data points are available in the different
forges, we will be able to more efficiently put
together a study with projects or developers from
multiple forges. Finally, by exposing the data hidden
in lesser-known forges, we will tap into a source of
more varied and interesting research questions.

In Section 2 we give a brief review of work on
software forges and collaborative development
environments more generally. Section 3 describes our
work to collect and store relevant facts about the
forge ecosystem, including basic descriptions of the
forge, project, and user entities. In Section 4 we
attempt to draw comparisons between forges based
on their characteristics, and we show it is possible to
combine forge and project metadata to further
describe the forge ecosystem. We also describe ways
that forge operators could expose the information in
their systems so that the data gathering for research
would be easier and more effective. In Section 5 we
discuss some of the limitations of our work, and we
also present our plan for keeping this information
current and for extending it to be more relevant.

2. Background and motivation

Despite the popularity and ubiquity of forges in
the FLOSS development communities (and
increasingly among teams engaged in making
proprietary software too), among academics there
have been relatively few efforts to study the forges
themselves: what features are provided, how the
projects use the forges, and what artifacts are
available to study about the projects and users of the

Megan Squire
Pre-Print

Megan Squire

forge. In fact, most academic work in this area does
not use the term “forge” at all. There is something of
a disconnect between the description of a
“collaborative development environment” (or CDE,
the closest relative of the forge as described in the
academic literature), and the “code forge” as
described in practitioner parlance. In this section, we
first discuss the academic notion of a CDE, and then
we discuss the reality of code forges as a facet of
common FLOSS development practices.

2.1. Collaborative development environments

The notion of a CDE for software development

was initially positioned in the literature as a Web-
enabled and virtualized extension of the traditional
developer desktop IDE (integrated development
environment) [1]. Well-known IDEs include software
packages such as Eclipse, Activestate Komodo, or
Microsoft Visual Studio. The IDE typically provides
features such as a text editor, shell, file uploads,
compiler integration, interactive debugger,
integration with bug tracking systems, integration
with version control systems, etc. With the
commercialization of the Internet in the mid- to-late
1990s, and the concurrent rise of FLOSS as a highly
visible, viable model for software development,
software development teams continued to become
more geographically dispersed and dependent upon
Internet-based tools for collaboration. The CDE was
described by Booch and Brown [1] as “a virtual space
wherein all the stakeholders of a project...labor
together to ...create an executable deliverable and its
supporting artifacts.” A software CDE is, then, a set
of tools that facilitates the same tasks as a software
IDE (writing code, writing documentation, finding
and fixing bugs, distributing releases) but does so in a
way that meets the needs of distributed (over time
and space) groups of developers.

Nearly ten years later, we want to know how well
the actual implementation of CDEs has happened in
practice. Have code forges extended or obscured the
vision presented in early CDE papers? How can we
reconcile the initial vision with the practical reality of
a decade of FLOSS development in forges? Today,
most of the commercial software CDEs described in
the original Booch and Brown paper have either
disappeared or gone through enough changes that
they are no longer recognizable as originally
described. However, their description of the CDE as
“a hundred small things” rather than a monolithic
killer app is still apropos, and their list of CDE
features is still relevant (see especially Figure 7 in
[1], which serves as the framework for Section 3 of
this paper).

2.2. Code forges

Two recent events involving code forges also

served as catalysts for writing this paper. In 2010,
one of the keynote presentations at the International
Conference on Open Source Systems (OSS2010) was
about changes and developments over time in what
was being called the FLOSS forge ecosystem [2].
The speaker referenced a Wikipedia page about
software forges [12] and explained how the forges
had grown over time and how some had become
defunct or merged into others. Unfortunately, the list
of attributes used on the Wikipedia page to describe
forges was interesting but far from complete, and the
page gave no explanation of the methodology for
choosing which features to display. Like all of
Wikipedia, the page only gets updated as readers
choose to update it, so much of the data was
outdated. Yet this was the best reference source
available, and it was the only publicly-available,
comprehensive attempt at creating a current
classification of forges.

Following this presentation, we reviewed the
FLOSShub.org research news portal and paper
repository for information about how forges were
being used to study FLOSS development. This paper
repository includes bibliographic information (and
pre-prints in some cases) for approximately 1100
papers about open source software development from
various journals and conferences. We read through
the assembled FLOSS papers looking for (a) whether
forge data was being used, (b) whether the forge
projects or developers were being studied in the
aggregate, e.g. a multi-project study, or were single
projects being extracted from the forge, (c) what
artifacts were being studied (source code, bug
tracking histories, metadata such as programming
languages or license types, etc). We found and tagged
64 published research papers that had been written
using project or developer data gathered from
Sourceforge1. We observed that other FLOSS forges
have hardly been studied at all in the literature. For
comparison, among the FLOSShub papers, the next
highest source of multi-project data was the project
directory - not truly a forge - called Freshmeat, with
four papers that used its data. FLOSS papers that
focused on a single project (for example, case
studies, code reviews, or surveys) were dominated by
Apache with 55 papers, and Linux with 45 papers.
Clearly Sourceforge is a popular source of FLOSS
data, especially in multi-project studies or “breadth”

1 http://flosshub.org/category/tags/sourceforge

studies (such as those focusing on license choice [3]
or programming languages [4-6]).

Why do researchers turn to Sourceforge for
project data? Of the papers that explained their
rationale, the most common reasons given were (1)
because the authors needed or wanted to study a
comparatively large number of projects, and/or (2)
because the parameters of the given study required a
set of projects with predictable, exposed metadata
and/or artifact data. Sourceforge exposes certain
project and developer metadata in a format (HTML)
that is predictable and easy-to-find. It did this early
on in the history of forges (1999), it does so for all of
its projects, and for most of the 2000s it housed more
projects than any other forge. The implication is that
gathering that amount of project data from another
forge would be more difficult or impossible, because
those forges lack the numbers that Sourceforge has,
and because gathering that much project data by
visiting individual project web sites and locating the
variables needed to perform the study would be
inordinately time-consuming and error- prone. Even
papers that used semi-random sampling or that hand-
selected a small number of projects from within
Sourceforge relied on the fact that Sourceforge kept
all project and developer metadata and artifacts
exposed in a predictable way, making it a relatively
straightforward source of data.

The lure of using Sourceforge as a data source is
therefore very strong. This is the case despite the
existence of multiple other publicly-available sources
of collected data from standalone projects and forges
[7,8], and despite the existence of publicly-available
made-for-research collections of Sourceforge data
[9], and despite warnings about the potential pitfalls
in using Sourceforge data to begin with [10]. To
complicate matters, many of the papers using
Sourceforge data appeared to have collected their
own data by writing web spiders to crawl the forge
website instead of using one of the public collections
[8,9]. But because that collection process was often
troublesome to sustain over time, some of these
papers were based on data that had been collected
once at the beginning of a research study and never
updated; indeed, some of the data sets were seven or
eight years out of date (or more) by the time the
papers were finally published in a journal. Very few
of the papers donated the data they did collect to the
FLOSSmole data repository for others to use after the
fact, and very few of them provided their data for
download at their own sites. Even fewer provided
enough details to perform a useful secondary analysis
or replication by other teams [11]. Our observation is
that Sourceforge has become the “common fruit fly”
of FLOSS research - accessible, inexpensive, and

approachable - but is it the only organism in the
ecosystem worth studying?

In the next section we discuss our efforts to
collect data on the rest of the FLOSS forge
ecosystem, the forge data collection process, and the
model we use to organize our data.

3. Describing FLOSS forges and data

The CDE literature gave lots of ideas for ways to
study CDEs in general, including CDEs developed
for workers at different locations inside individual
companies, and CDEs developed for non-software
domains. However, we elected to keep this study
relevant to software forges, and to FLOSS forges
specifically. In this section we discuss the
terminology we use to describe the forges, the
method of gathering data about the forges, and the
way we modeled and cleaned the data that we
collected.

3.1. Forge entities

We elected to concentrate on three main entities

within the FLOSS forge ecosystem: the forge itself,
the projects hosted by the forge, and the people
working on or using the projects. Some
characteristics of each of these entities are as follows.

A software project is the term for the
collaborative effort of designing and producing
software artifacts to be used by people. A forge acts
as a hosting service for projects. The forge provides
different support functions to the project or to users
in order to facilitate collaborative software
development. Some of the features that a forge might
provide could include communication features
(mailing lists, discussion boards), collaboration
features (revision control, bug tracking), or project
metrics (activity ranking, statistics). The forge may
specialize in some types of software projects (FLOSS
only, certain programming languages, certain spoken
languages).

Forges can have their own operating policies,
their own set of features that they offer, and their own
definitions of what types of projects and people they
want to host. The artifacts created by a project may or
may not be exposed to public view by the forge
hosting that project. The metadata that a forge
collects about the projects and people using it may or
may not be exposed to public view. Each forge can
decide what features to offer, how those features will
be used by the projects that are hosted there, and
what artifacts and metadata will be exposed about its
projects and people.

The forge will usually give each project a unique
URL so that it can be located. Projects usually have a
name that is chosen at the time it is added to the
forge. They may have lists of external URLs that
represent other places on the Internet where this
project lives. They may have an owner or someone in
charge of them. They are often given a textual
description. Projects may have various keywords or
terms that further describe the usage of the software
or the purpose of the project. These terms could
include the programming language used, the license
applied, the intended audience of the software, its
latest release date, the activity level of the project,
and any number of other facts about the project.

People in the forge ecosystem can be (1) directly
affiliated with a project as part of the project team, or
(2) users of a forge but unaffiliated with a project.
Typically in the FLOSS ethos, users of a project do
not have to be known (i.e. you do not typically have
to register to download an open source project), but
developers or members of a project will usually be
known or their contributions will be listed
somewhere. However, forges may differentiate
between ‘users’, ‘members’, ‘contributors’,
‘administrators’, ‘owners’, ‘developers’, and any
number of other roles or levels of participation.

3.2. Gathering forge data

To investigate the forges, projects and people in

the FLOSS forge ecosystem, we used three main
sources [12-14] to develop a list of several dozen
candidates for our forge list. For the purposes of this
paper, in order to be considered a FLOSS-oriented
software forge, the Web site for the forge had to have
a few key characteristics that were based on a
modification of the description of a CDE given in [1].
Our minimum standards are as follows. The forge…

1. Must be designed to facilitate the process of
software development by providing at least one
software development tool and preferably multiple
tools (e.g. group communication software, bug
tracking system, revision control system) for use by
geographically distributed teams over the Internet;
and

2. Must provide a way for teams to identify
themselves and their project(s), update and
administer their own project, and distribute their own
artifacts or product; and

3. Must have some sort of connections to the
FLOSS community (either explicitly stated or
implicit in forge policy); and

4. Must be, at the time of this writing, accepting
new projects and actively maintaining the site for the
projects hosted there.

Requirements 1 and 2 were added in order to
remove the free software directories (e.g. Freshmeat,
FSF Directory) and module repositories or archive
networks (e.g. CPAN). Requirement 1 also meant
removing the “open content” forges (such as
KnowledgeForge), which were interesting but
stretched the limits of this paper. Requirement 1 also
specifically removes a number of “revision control
only” hosting facilities (such as repo.or.cz, one of the
first git hosts). Requirement 3 removes from the list
those forges that are purely commercial in nature and
have no substantive connection to any FLOSS
community. Requirement 4 requires removing from
the list any forges that were no longer operational or
were in the midst of shutting down. (For example, at
the time of this writing Project Kenai has been
merged into Java.Net, MozDev is, according to their
web site, in the midst of a “wind-down”, and
LuaForge is not accepting any new projects.)

For each forge we also recorded its parent
company or organization, if any, and the self-reported
date that the forge was established, if available. If the
date of establishment was not readily available on the
forge’s own main web site, we attempted to find this
date through news stories, press releases, or the like.
Some additional information we gathered about the
forges was liable to change over time: we also
collected the number of users of the forge (self-
reported) and the number of projects on the forge
(self- reported or gathered from the web site’s
directory of projects). The final list of 24 forges we
studied is shown in Table 1 in Appendix A. The SQL
to build this list is shown in Appendix B, Listing 1.
(The SQL statements needed to build the all the
tables and figures in this paper are based on a data
model shown in Appendix A, Figure 1, described
further in 3.3. All SQL is given in Appendix B. The
reason we give the SQL and data model is so that
users who wish to access this data and run their own
queries on our database located at FLOSSmole.org
can get started quicker and understand what they are
looking at.)

We understand that trying to identify and describe
active software forges is something of a moving
target, so our list of forges is never going to be
complete or finished. However, in Section 5 we
discuss some of the actions we are taking to keep the
list current and relevant, and we list some of the
limitations of the forge list we chose.

After making the list of forges, we then visited the
web site of every forge and created an initial list of
characteristics that forges seemed to have. We asked
questions like: Does it have a browsable project
directory? Are there standard guessable URLs for
each project? What are the criteria for a project

joining this forge? (Is it FLOSS-only? Are there
requirements about certain licenses? Can anyone
create a project or is there approval required?) What
collaboration features/tools are available? Does the
forge offer paid accounts or upgrades? What is the
general ethos of the place? (Is it FLOSS-friendly,
business-friendly, affiliated with a larger umbrella
organization?) Do many projects consider this forge
to host their home page, or are they using this page to
link to a different place where the real work is done?

While we visited each forge, we viewed projects
hosted on that forge to learn about them. We asked
questions like: What metadata is available about each
project? Is this is a predictable location on each page?
Is there an API to extract information from the forge
about a given project? Which artifacts are available
about the project?

We also thought about what we could learn about
people on each forge: What metadata is available
about people who use this forge? Can we discern an
affiliation between users and projects? Can we
discern the various roles of the different people in the
forge or working on a project? Some forges also
support the idea of a team of people, or teams of
teams. As discussed in Section 3.1, forges differ
wildly in the terminology available to describe the
people involved, and projects differ in their
application of those terms to the people (for example,
on some projects everyone is given a title of
‘developer’).

Once we had this long initial list of
characteristics, we went back through the list of
forges and revisited each of them in turn, trying to
find out whether or not each forge could be described
(“tagged”) as having that characteristic or not.
Sometimes this was easy to discern, other times it
was not. Finally, we created parent categories of
characteristics to try to group similar tags together.
All the tags having to do with project metadata were
grouped together, all the artifact tags were grouped
together, etc. (We knew that each individual revision
control system offered by a forge should be classified
as a feature tag, but we broke them out into a separate
category on their own because there are so many of
them, and because the choice of revision control
system is so central to the way a project is
developed.) We also decided to focus most of our
efforts on describing the forges and projects rather
than the people, for various reasons we describe
further in Section 5 (Limitations and Future Work).

3.3. Data model

Because we knew that the information about

forges would change over time, we needed a

persistent way to store multiple versions of this data.
We decided that we would expand the forges table
that already existed in the FLOSSmole database and
add enough tables to describe the rest of the forge
ecosystem characteristics. We thus developed the
simple data model shown in Figure 1 of Appendix A.
The two main entities in the model are forges and
tags, and we used the join table of forge_trove to
classify which forge had which tags. If the forge has
a tag, there is a record in this join table. This table
supports being changed over time, via the
datasource_id column (a unique identifier referring to
when the collection took place).

3.4. Data cleaning and checking

After compiling the list of tags and categories and

searching the forges for evidence of these
characteristics, we then looked for obvious errors,
especially in tag combinations that didn’t make
sense. Things that made us suspicious included a
forge listed as having mailing list archives as an
artifact tag but without the corresponding mailing list
feature tag, or several flossonly forges not requiring
the license as part of the standard project metadata.
We also looked for unintentional differences between
forges known to be running the same underlying
architecture (for example, inconsistencies between all
the forges running variants of Gforge, Kforge and
FusionForge). We removed tags that turned out to be
uninteresting, or which lacked evidence in the
population. For example, we removed a difficult-to-
discern tag called ad-supported and instead used a tag
called ad-free, which is much easier to observe in the
forge population; we also combined tags for MySQL
and PostgreSQL into a single tag called dbms.

As we found anomalies, we added our notes and
caveats to a central list. For example, we were
interested in knowing that not all FLOSS-only forges
required the project to list its FLOSS licenses as
metadata on its project page. Another surprise was
that some forges provided almost no public-facing
metadata about projects (typically these were the few
forges that provided a wiki for free-form text as the
home page). We also noticed that some forges
allowed the projects to configure which metadata and
artifacts were available, and which level of
authentication was required to view these, with the
result that a project might have a feature (such as
mailing lists) but the associated artifact (the mailing
list archive) was only viewable by certain registered
users.

As we observed in our previous discussion of the
popularity of Sourceforge data collection in FLOSS
research (Section 2), the amount and quality of the

public-facing data in a forge will greatly affect our
ability to use that forge for research. In the next
section, we explore the forges in terms of their
usefulness as sources of data for FLOSS research.

4. Exploring FLOSS forge ecosystem data

After gathering, storing, and cleaning the data as
described in Section 3, we next developed a simple
Web interface to better display the data2. The Web
interface has two main sections: (1) a page with a
grid showing basic forge facts and tags (as well as the
anomalies and caveats we found when collecting the
data), and (2) a page of simple example patterns
discovered after organizing the data in this way. Our
overall goal in exploring the data is to discover which
forges hold the most promise for data collection.

4.1. Grid of forge tags

Because the classification data was both binary

(yes/no) and categorized hierarchically, and because
we had a large number of attributes and rows, we
somewhat reluctantly decided to use a series of data
tables to show the data collected. The tables we made
are far too large to be reproduced in this paper, and
may have been corrected or altered for better
viewing, so we encourage readers to look at the data
grid and our collection notes in the online format.

Organizing the data in this way means it is
relatively easy for a research team to pinpoint forges
based on some set of characteristics, for example
“We are interested in FLOSS-only CVS forges that
have more than 1,000 projects and which also have
mailing list archives and bug tracker archives. The
forge(s) must have a directory of projects and a
predictable internal URL for each.” (See Appendix B,
Listing 2.)

4.2. Simple forge patterns

It is also fairly straightforward to highlight some

simple patterns about the forge ecosystem itself. The
first visualization we made was a timeline of forge
creation, shown in Figure 2 (Appendix A). We used the
established column in the main forges table to generate
this diagram. We also wanted to know if older forges
would necessarily be larger (numProjects column), and
whether the very large forges have approval policies for
new projects. The corresponding table and SQL are
shown in Table 3 (Appendix A).

2 Found at http://flossmole.org

4.3. Best forges for general data collection

As we explained in Section 2, our most pressing

question is which forges will expose the best FLOSS
research data. “The best” could be defined here in a
number of ways depending on any given research
agenda, so here we propose a list of forge attributes
that would probably make for successful general-
purpose data collection effort:
• Easy to find the entire list of projects (a

browsable directory or other means to get a list
of all projects); or

• A large number of projects to pick from; or
• Lots of exposed metadata for each project; or
• Lots of exposed artifacts for each project.

Table 1 (see Appendix A) confirms why
Sourceforge endures as a popular choice for data
collection. It has a high number of projects, lots of
exposed metadata and artifacts. It appears that other
good choices would be Google Code, Launchpad,
Rubyforge, and CodePlex. Of these, the FLOSSmole
data repository already regularly collects data from
all but CodePlex. FLOSSmole has also collected
from Github in the past, although that became
significantly more difficult when they removed their
project directory.

There are several other characteristics of forges,
mostly determined by forge policy, that typically
make automated data collection easier:
• If the forge provides an API into its data and/or

RDF or DOAP (means less “spidering” of
HTML pages, and all the risk and annoyance
therein [10]);

• If the forge has an un-complicated user / team /
project structure (minimal recursion); and

• If several forges are running the same underlying
software (means opportunity for re-usable
collection software and easily-comparable data
models).

Some of the forges already have these
characteristics, but others do not. One possible
recommendation we can make to forge providers who
wish to make their data more accessible in a very
low- stakes way is that they should expose data
following the model of the project directory
Freshmeat, which releases project metadata regularly
in RDF format. Or, follow the model of Sourceforge
and Launchpad, which have an API into their data so
that developers can directly request information on
projects or users.

We also identified six forges running Gforge/
Kforge/FusionForge variants (these are viewable in
Table 1), so it may be that a collection architecture
written for one of these could be easily extended to
the others. (FLOSSmole already collects from two of

these: Objectweb and Rubyforge.) Or, modifications
of the open source Gforge/Kforge/FusionForge
codebase itself could introduce new features that
allows forge operators to publish their data, for
example as RDF.

5. Limitations and future work

We are hopeful that the findings we describe in
this paper will be the start of an ongoing discussion
about the forge ecosystem. Here we outline a few
limitations, and we make some suggestions for our
own future work, as well as that of related studies.

One limitation of this study is that we defined
software forges in such a way that we excluded some
very interesting “forge-like” sources of high quality
data. The Apache project, for instance, is an obvious
source of FLOSS data that should probably be
included on a future list of forges. But because all its
sub- projects are part of one overall parent project, it
escaped our initial definition of a forge. (Similar sites
would be Funambol, Drupal, or JoomlaCode.)

A second limitation of our study is that we ran
into difficulties with collecting and describing data
about the people in the forge ecosystem. We were
stymied by the vast differences between forges and
between projects in describing the people associated
with each. Launchpad provides an excellent example
of the difficulties herein: Launchpad has users, users
can be contributors to a project, projects have
registrants, contributors, drivers, and maintainers (all
of which can be users, contributors, or teams), teams
have members, and members can be other teams.
Other forges use completely different vocabularies to
describe the roles of people in their system. We
finally settled on two simple but flawed tags:
memberlist and administratorlist. With these we can
indicate whether it is possible to figure out who the
members of a project are and who is in charge of the
project. A more robust and accurate set of tags is
certainly necessary to continue this work in the
future.

An important practical limitation to this study,
and especially to the statements made in Section 4
about “best” forges to collect from, is that we have
not always investigated the exclusions specified by
the forges in their robots.txt files or other site usage
policies. We know that Sourceforge, for instance, has
both a robots.txt and an additional site usage policy3.
Launchpad provides an API into their data but also
has certain requests they make about usage of that

3 See http://sf.net/robots.txt and http://sf.net/apps/
trac/sitelegal/wiki/Crawler%20policy

API4. These policies should be closely watched by
anyone deciding to collect data from a forge, as they
present practical limitations that may impact any
perceived benefit of collecting from that source.

Other future work on this project should of course
include updating the three online sources that we
used to derive our initial forge listing, especially the
Wikipedia page [12]. We corrected a few items on
that page as we went along in this study, but more
work can be done to keep the page current and
organized.

Our own forge study can be updated at any time,
following the same procedure outlined in Section 3.
The items that can be updated include the initial list
of forges, the tags used, and the parent categories.
The data model already requires a unique identifier
for the date, time, and person collecting the new data.
Researchers wishing to complete a new or updated
version of this study can add their results into the
FLOSSmole database right alongside the existing
data. All the data is available at any time to users of
the FLOSSmole.org database.

Aside from the basic data collection updates,
probably the most important contribution of future
forge studies would be to find a way to facilitate
cross- forge project comparisons. This paper provides
an initial collection of data about forges, projects, and
people (to some degree), but matching these entities
across forges is still an elusive goal [15,16]. How can
we use the data in the forges to tell whether Project A
on one forge is the same as Project B listed on
another forge? Just like most people don’t live in the
same house their entire lives, software projects move
locations too. Projects, like people, change their
names, change their affiliations and dependencies,
and spawn offspring. Forges are littered with the
detritus of deceased, missing, and relocated projects,
and the projects that are there often do not keep
information current. To tell the story of a software
project over time requires that we are able to track a
project across forges, and across these many changes.

6. Conclusion

Our goal in this study was to collect enough basic
information about FLOSS-oriented software forges to
be able to describe them using a common vocabulary,
compare them to one another, and ultimately identify
which ones might hold data of interest to FLOSS
researchers. To accomplish our goal, we established a
list of forges, collected a host of metadata and
statistics about each forge, designed a system to store

4 https://help.launchpad.net/TermsofUse

the data and accept new data donations into the
future, created a web interface to display the data,
wrote queries to display some basic summaries and
statistics about each forge, and made some
recommendations for the research community
interested in using data collected from FLOSS-
oriented forges. The entire corpus of data, including
our collection notes and our web interface, is
available via the FLOSSmole web site.

12. References

[1] Booch, G., Brown, A. W. (2003). Collaborative

development environments. Adv. in Comp. (59).1-27.
[2] Oostendorp, N. (2010). The OSS forge ecosystem:

Today and Tomorrow. 6th International Conference
on Open Source Systems (OSS2010). Notre Dame, IN,
USA. May 31, 2010. Retrieved from http://www.
ustream.tv/recorded/7356043

[3] Lerner, J. and Tirole, J. (2005). The scope of open
source licensing. J. Law, Econ. & Policy, 21(1).20-56.

[4] Delorey, D.P., Knutson, C. D., Giraud-Carrier, C.
(2007). Programming language trends in open source
development: An evaluation using data from all
production phase SourceForge projects. 2nd Wkshp on
Public Data about Software Development
(WoPDaSD2007). Limerick, IE. June, 2007.

[5] Krein, J.L., MacLean, A.C., Knutson, C.D., Delorey,
D.P., Eggett, D.L. (2010). Impact of programming
language fragmentation on developer productivity: A
SourceForge empirical study. Int. J. Open Source
Software and Processes, 2(2). 41-61.

[6] Krein, J.L., MacLean, A.C., Knutson, C.D., Delorey,
D.P., Eggett, D.L. (2009). Language entropy: A metric
for characterization of author programming language
distribution. 4th Workshop on Public Data about
Software Development (WoPDaSD2009). Skovde,
Sweden. June, 2009.

[7] Gonzalez-Barahona, J.M., Izquierdo-Cortazar, D.,
Squire, M. (2010). Repositories with public data about
software development. Int. J. Open Source Software
and Processes, 2(2). pp. 1-13.

[8] Howison, J., Crowston, K., Conklin, M. (2006).
FLOSSmole: A collaborative repository for FLOSS
research data and analysis. Int. J. Information
Technology and Web Engineering, 1(3). 17-26.

[9] Gao, Y., Van Antwerp, M., Christley, S., Madey, G.
(2007). A research collaboratory for open source
software research. Intl. Wkshp. Emerging Trends in
FLOSS Res. & Dev.t. Minn., MN, May 2007.

[10] Howison, J., Crowston, K. (2004). The perils and
pitfalls of mining SourceForge. Workshop on Mining
Software Repositories (MSR2004). Edinburgh,
Scotland, UK. May, 2004. 7-11.

[11] Robles, G. (2010). Replicating MSR: A study of the
potential replicability of papers published in the
Mining Software Repositories proceedings. 7th IEEE
Working Conference on Mining Software Repositories
(MSR2010). Cape Town, S. Afr. May, 2010. 171-180.

[12] Comparison of open source software hosting facilities.
(n.d.) In Wikipedia. Retrieved June 1, 2011 from
http://en.wikipedia.org/wiki/Comparison_of_open_sou
rce_software_hosting_facilities.

[13] Open Source Project Hosting. (n.d.) In Open Directory
Project. Retrieved June 1, 2011 from http://www.
dmoz.org/Computers/Open_Source/Project_Hosting/

[14] Public Git hosting sites. (n.d.) In GitHosting Wiki.
Retrieved June 1, 2011 from https://git.wiki.
kernel.org/index.php/GitHosting

[15] Conklin, M. (2007). Project entity matching across
FLOSS repositories. 3rd International Conference on
Open Source Systems. Limerick, IE. June, 2007.45-57.

[16] Howison, J. (2008). Cros-repository data linking with
RDF and OWL: Towards common ontologies for
representing FLOSS data. 3rd Workshop on Public
Data about Software Development (WoPDaSD2008).
Milan, IT. September, 2008.

Appendix A. Figures and Tables

Figure 1: Data Model

Figure 2: Timeline of Forge Creation

Table 1: Forges studied (SQL shown in Appendix B, Listing 3)

Table 2: Average num. new projects / year at forges,
and approval policy (SQL shown in App. B, Listing 4)

Table 3: Factors contributing to the relative benefit
of collecting from forges (SQL in App. B, Listing 5)

Appendix B. SQL Statements (for interacting with this data on FLOSSmole.org)

Listing 1: SQL used to build Table 1
SELECT f.forge_long_name,
substring(f.established,1,4) as 'year',
f.organization, fs.poweredby,
fs.numProjects, fs.numUsers

FROM forges f
NATURAL JOIN forge_stats fs
WHERE is_forge = 1
ORDER BY 1;

Listing 2: SQL used to build list of projects meeting example criteria specified in section 4.1
SELECT f.forge_id, f.forge_long_name
 FROM forges f
NATURAL JOIN forge_trove ft
 WHERE ft.trove_tag = 'flossonly'
AND f.forge_id
IN (SELECT forge_id
 FROM forge_trove
 WHERE trove_tag = 'cvs')
AND f.forge_id
IN (SELECT forge_id
 FROM forge_stats
 WHERE numProjects >1000)
AND f.forge_id
IN (SELECT forge_id

 FROM forge_trove
 WHERE trove_tag = 'mailinglistarchive')
AND f.forge_id
IN (SELECT forge_id
 FROM forge_trove
 WHERE trove_tag = 'bugtrackerarchive')
AND f.forge_id
IN (SELECT forge_id
 FROM forge_trove
 WHERE trove_tag = 'directory')
AND f.forge_id
IN (SELECT forge_id
 FROM forge_trove
 WHERE trove_tag = 'internalURL');

Resulting forges from this query: Sourceforge, Rubyforge, Savannah, Berlios, Gna.

Listing 3: SQL used to build Figure 2
SELECT f.forge_long_name, substring(f.established,1,4) as 'year'
FROM forges f
WHERE f.is_forge = 1
ORDER BY 2;

Listing 4: SQL used to build Table 2
SELECT ft.forge_id, f.forge_long_name,
substring(f.established,1,4)
 as 'year',
ROUND(fs.numProjects/(2011-
substring(f.established,1,4)),0)
 as 'projPerYear',
ft.trove_tag as 'approval?'
FROM forges f
NATURAL JOIN forge_trove ft
NATURAL JOIN forge_stats fs
WHERE ft.trove_tag = 'approval'
UNION
SELECT distinct(ft1.forge_id),
f1.forge_long_name,

substring(f1.established,1,4)
 as 'year',
ROUND(fs1.numProjects/(2011-
substring(f1.established,1,4)),0)
 as 'projPerYear',
"" as 'approval?'
FROM forges f1
NATURAL JOIN forge_trove ft1
NATURAL JOIN forge_stats fs1
WHERE ft1.forge_id NOT IN(
SELECT forge_id FROM forge_trove WHERE
trove_tag = 'approval')
ORDER BY 4 DESC;

Listing 5: SQL used to build Table 3
SELECT forge_long_name,
numProjects,
count(if(trove_tag = 'directory',
1,NULL)) as 'directory',
count(if(trove_tag IN(
SELECT trove_tag
FROM forge_trove_defs
WHERE tag_category = 'project
metadata'), 1, NULL)) as 'metadata',
count(if(trove_tag IN(

SELECT trove_tag
FROM forge_trove_defs
WHERE tag_category = 'artifact'), 1,
NULL)) as 'artifacts'
FROM forge_trove
NATURAL JOIN forge_stats
NATURAL JOIN forges
GROUP BY 1, 2
ORDER BY 2 DESC;

