
 1

 Multi-Modal Modeling, Analysis, and Validation of Open Source Software
Development Processes

Walt Scacchi1, Chris Jensen1, John Noll1,2, and Margaret Elliott1

1Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

2Santa Clara University
Santa Clara, CA

Wscacchi@uci.edu
Previous version appeared in Proc. First Intern. Conf. Open Source Software, Genova, Italy, 1-8, July 2005.

Received Best Paper Award

Abstract

Understanding the context, structure, activities, and content of software development processes found in practice

has been and remains a challenging problem. In the world of free/open source software development, discovering

and understanding what processes are used in particular projects is important in determining how they are similar

to or different from those advocated by the software engineering community. Prior studies have revealed that

development processes in F/OSSD projects are different in a number of ways. In this paper, we describe how a

variety of modeling perspectives and techniques are used to elicit, analyze, and validate software development

processes found in F/OSSD projects, with examples drawn from studies of the software requirements process found

in the NetBeans.org project.

Keywords: Software process, process modeling, open source software development, requirements processes,

empirical studies of software engineering

1. Introduction

In the world of globally dispersed, free/open source software development (F/OSSD), discovering and

understanding what processes are used in particular projects is important in determining how they are similar to or

different from those advocated by the software engineering community. For example, in our studies of software

requirements engineering processes in F/OSSD projects across domains like Internet infrastructure, astrophysics,

networked computer games, and software design systems [25,26,27], we generally find there are no explicit

software requirements specifications or documents. However, we readily find numerous examples of sustained,

 2

successful, and apparently high-quality F/OSS systems being deployed on a world-wide basis. Thus, the process of

software requirements engineering in F/OSSD projects must be different that the standard model of requirements

elicitation, specification, modeling, analysis, communication, and management [22]. But if the process is different,

how is it different, or more directly, how can we best observe and discover the context, structure, activities, and

content software requirements processes in F/OSSD projects? This is the question addressed here.

Our approach to answering this question uses multi-modal modeling of the observed processes, artifacts, and other

evidence composed as an ethnographic hypermedia that provides a set of informal and formal models of the

software development processes we observe, codify, and document. Why? First, our research question spans two

realms of activity in software engineering, namely, software development and software process modeling. So we

will need to address multiple perspectives or viewpoints, yet provide a traceable basis of evidence and analysis that

supports model validation. Second, given there are already thousands of self-declared F/OSSD projects affiliated

with OSS portals like SourceForge.net, Freshmeat.net and Savannah.gnu.org, then our answer will be constrained

and limited in scope to the particular F/OSSD project(s) examined. Producing a more generalized model of the

F/OSS development process being studied requires multiple, comparative project case studies, so our approach

should be compatible with such a goal [25]. Last, we want an approach to process modeling that is open to

independent analysis, validation, communication, and evolution, yet be traceable to the source data materials that

serve as evidence of the discovered process in the F/OSSD projects examined [cf. 15].

Accordingly, to reveal how we use our proposed multi-model approach to model requirements processes in F/OSSD

projects, we first review related research to provide the foundational basis for our approach. Second, we describe

and provide examples of the modeling modes we use to elicit and analyze the processes under study. Last, we

examine what each modeling mode is good for, and what kind of analysis and reasoning it supports.

2. Related Research and Approach

There is growing recognition that software requirements engineering can effectively incorporate multi-viewpoint

[7,16,22] and ethnographic techniques [22,31] for eliciting, analyzing, and validating functional and non-functional

software system product requirements. However, it appears that many in the software engineering community treat

 3

the process of requirements engineering as transparent and prescriptive, though perhaps difficult to practice

successfully. However, we do not know how large distributed F/OSSD projects perform their development

processes [cf. 3].

Initial studies of requirements development across multiple types of F/OSSD projects [25,26] find that OSS product

requirements are continuously emerging [8,9,30] and asserted after they have been implemented, rather than

relatively stable and elicited before being implemented. Similarly, these findings reveal requirements practice

centers about reading and writing many types of communications and development artifacts as “informalisms” [25],

as well as addressing new kinds of non-functional requirements like project community development, freedom of

expression and choice, and ease of information space navigation. Elsewhere, there is widespread recognition that

F/OSSD projects differ from their traditional software engineering counterparts in that F/OSSD projects do not in

general operate under the constraints of budget, schedule, and project management constraints. In addition, OSS

developers are also end-users or administrators of the software products they develop, rather than conventionally

separated as developers and/versus users. Consequently, it appears that F/OSSD projects create different types of

software requirements using a different kind of requirements engineering process, than compared to what the

software engineering community has addressed. Thus, there is a fundamental need to discover and understand the

process of requirements development in different types of F/OSSD projects.

We need an appropriate mix of concepts, techniques, and tools to discover and understand F/OSSD processes. We

and others have found that process ethnographies must be empirically grounded, evidence-based, and subject to

comparative, multi-perspective analysis [3,7,10,15,22,25,28]. However, we also recognize that our effort to discover

and understand F/OSSD processes should reveal the experience of software development newcomers who want to

join and figure out how things get done in the project [27].

As participant observers in such a project, we find that it is common practice for newcomers to navigate and browse

the project’s Web site, development artifacts, and computer-mediated communication systems (e.g., discussion

forums, online chat, project Wikis), as well as to download and try out the current software product release. Such

traversal and engagement with multiple types of hyperlinked information provide a basis for making modest

 4

contributions (e.g., bug reports) before more substantial contributions (code patches, new modules) are offered, with

the eventual possibility of proposing changing or sustaining the OSS system’s architecture. These interactive

experiences reflect a progressive validation of a participant’s understanding of current F/OSSD process and product

requirements [1,19]. Thus, we seek a process discovery and modeling scheme that elicits, analyzes, and validates

multi-mode, hypertext descriptions of a F/OSSD project’s requirements process. Furthermore, these process

descriptions we construct should span informal through formal process models, and accommodate graphic, textual,

and computationally enactable process media. Finally, our results should be in a form open to independent analysis,

validation, extension, and redistribution by the project’s participants.

3. Multi-Mode Process Modeling, Analysis and Validation using Ethnographic Hypermedia

An ethnographic hypermedia [4] is a hypertext that supports comparative, cross-linked analysis of multiple types of

qualitative ethnographic data [cf. 28]. They are a kind of semantic hypertext used in coding, modeling,

documenting, and explaining patterns of social interaction data and analysis arising in contemporary

anthropological, sociological, and distributed cognition studies. The media can include discourse records,

indigenous texts, interview transcripts, graphic or photographic images, audio/video recordings, and other related

information artifacts. Ideally, they also preserve the form and some of the context in which the data appear, which is

important for subsequent (re)analysis, documentation, explanation, presentation and validation.

Ethnographic studies of software development processes within Web-based F/OSSD projects are the focus here.

Ethnographic studies that observe and explain social action through online participant observation and data

collection have come to be called “virtual ethnography” [12]. Virtual ethnography techniques have been used to

observe the work practices, compare the artifacts produced, and discover the processes of F/OSSD projects found

on and across the Web [5,6,13,14,23,25,26,27]. In particular, an important source of data that is examined in such

studies of F/OSSD projects is the interrelated web of online documents and artifacts that embody and characterize

the medium and continuously emerging outcomes of F/OSSD work. These documents and artifacts constitute a

particular narrative/textual genre ecology [29] that situate the work practices and characterize the problem solving

media found within F/OSSD projects.

 5

We have employed ethnographic hypermedia in our virtual ethnographic studies of F/OSSD projects. What does

this mean, and what challenges or opportunities for requirements elicitation, analysis, and validation have emerged

along the way? These questions are addressed below through examples drawn from a case study of the

NetBeans.org OSSD project [13,14], which is one of the largest F/OSSD projects we have studied. The

NetBeans.org project is a corporate sponsored OSSD project [13] focused on the development of an interactive

development environment (IDE) for constructing application systems using Java enterprise beans technology. It is

similar is size and scope to the Eclipse project (formerly) sponsored by IBM, which is also developing a Java-based

IDE.

As noted, the F/OSSD projects we study are found on the Web. Web sites for these projects consist of a network

of hyperlinked documents or artifacts. Samples of sites we have studied include NetBeans.org, Mozilla.org,

Apache.org, and GNUenterprise.org among others [5,6,13,14,25,26]. A team of 2-5 researchers examines a project

site (via browsing, search, download, and cross-linking) over a period of 4-6 weeks initially, then periodically

thereafter. The artifacts we examine include Web pages, email discussion lists, bug reports, project to-do lists,

source code files and directories, site maps, and more. These artifacts are an important part of the data we collect,

examine, study, code, and analyze in order to identify F/OSSD work practices and development processes that arise

in a given project.

We create a hypermedia of these artifacts in ways that allow us to locate the originating source(s) of data within the

focal project’s Web site. This allows us to maintain links to the source data materials that we observe as evidence of

the process at hand, as well as to allow us to detect when these data sources have been updated or removed. (We

also archive a local copy of all such data). However, we create annotated and assembled artifacts that embed

hyperlinks to these documents as part of our ethnographic hypermedia. As a result, multiple kinds of ethnographic

records are created including annotated artifacts, rich hypermedia pictures, and ethnographic narratives. Juxtaposed

about these records are other kinds of models including a process meta-model, attributed directed graph model,

process domain ontology, and a formal, computationally enactable process model. Each is described next, and each

is hyperlinked into an overall ethnographic hypermedia that provides cross-cutting evidence for the observed OSS

requirements processes.

 6

Annotated artifacts

Annotated artifacts represent original software development artifacts like (publicly available) online chat transcripts

that record the dialogue, discussions, and debate that emerge between OSS developers. These artifacts record basic

design rationale in an online conversation form. The textual content of these artifacts can be tagged, analyzed,

hyperlinked, and categorized manually or automatically [24]. However, these conversational contents also reveal

much about how OSS developers interact at a distance to articulate, debate, and refine the continuously emerging

requirements for the software system they are developing. For example, Elliott and Scacchi [5,6] provide

conversational transcripts among developers engaged in a debate over what the most important properties of

software development tools and components to use when building free software. They provide annotations that

identify and bracket how ideological beliefs, social values, and community building norms constrain and ultimately

determine the technical choices for what tools to use and what components to reuse when developing OSS. The

following is an example of an excerpt of an online chat transcript found in a F/OSSD project where the developer

(here identified anonymously as “ByronC”) who is an outsider to the project lurking on the chat discussion, and

who advocates a strong belief for avoiding the use of non-free software when developing F/OSS, as indicated by the

(boldface) annotations we added.

<ByronC> Hello (Outsider Critique-1
<ByronC> Several images on the website seem to be made with non-free Adobe
software, I hope I'm wrong: it is quite shocking. Does anybody know more on
the subject?
<ByronC> We should avoid using non-free software at all cost, am I wrong?
(Extreme belief in free software (BIFS)-1)
<ByronC> Anyone awake in here? Outsider Critique-1)

Basic ethnographic data like this draws our attention to look for practices within F/OSSD efforts to see if such

beliefs do in fact constrain the choice of software tools used within F/OSSD processes.

Navigational rich pictures

Rich pictures [18] provide an informal graphical scheme for identifying and modeling stakeholders, their concerns

and beliefs, objects and patterns of interaction. We extend this scheme to form navigational rich pictures

constructed as a Web-compatible hypertext image map that denotes the overall context as the composition and

relationships observed among the stakeholder-roles, activities, tools, and document types (resources) found in a

 7

F/OSSD project. In the example figures that follow, we display the stakeholders/roles using human-like icons, their

concerns or beliefs as clouds associated to the icons, and the objects and patterns or interaction as hyperlinked

entities. Figure 1 displays such a rich picture constructed for NetBeans.org. Furthermore, associated with each

hyperlinked entity is a use case [2] that we have constructed to denote an observable activity performed by an actor-

role using a tool that consumes or produces a document/object type. An example use case is shown in Figure 2.

Each other type of data also is hyperlinked to either a descriptive annotation or to a Web site/page where further

information on the object type can be found.

Figure 1. A rich picture image map of the requirements and release process in the NetBeans.org F/OSSD project.

 8

Directed resource flow graph

A directed resource flow graph denotes a recurring workflow pattern that has been discovered in an F/OSSD

project. These workflows order the dependencies among the activities that actor-roles perform on a recurring basis

to the objects/resources within their project work. These resources appear as or within Web pages on an F/OSSD

project’s Web site. For example, in the NetBeans.org project, we found that software product requirements are

intertwined with software build and release management. Thus, the “requirements and release process” entails

identifying and programming new/updated system functions or features in the course of compiling, integrating,

testing, and progressively releasing a stable composition of source code files as an executable software build version

for evaluation or use by other NetBeans.org developers [5,6,23]. An example flow graph for this appears in Figure

3. The code files, executable software, updated directories, and associated email postings announcing the

completion and posting the results of the testing are among the types of resources that are involved. Last, the

rendering of the flow graph can serve as an image map to the online (i.e., on the NetBeans.org Web site) data

sources from where they are observed.

Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use case.

Test Builds
• The QA team tests the latest nightly

builds every Friday
• QA team executes a set of manual

tests on the builds as well as some
sanity checks

• Test results are categorized as
Š Bug Types

• User Constraint:
Š The tests depend on the manual

tests specification
• System Constraint:

Š Not all bugs may be identified

 9

Figure 3. An attributed directed graph of the resource flow for the NetBeans.org requirement and release process. Boxes
denote tasks/actions, ellipses denote resources/objects, dashed lines denote resource flows, and solid lines and labels

denote agent/stakeholder roles performing tasks that transform input resources into output resources.

Process domain ontology

A process ontology represents the underlying process meta-model [17,20] that defines the semantics and syntax of

the process modeling constructs we use to model discovered processes. It provides the base object classes for

constructing the requirements process (domain) taxonomies of the object classes for all of the resource and relation

types found in the rich picture and directed resource flow graph. However, each discovered process is specific to an

F/OSSD project, and knowledge about this domain is also needed to help contextualize the possible meanings of the

processes being modeled. This means that a process domain entails objects, resources or relations that may or may

not be have been previously observed and modeled, so that it may be necessary to extend to process modeling

constructs to accommodate new types of objects, resources, and relations, as well as the attributes and (instance)

values that characterize them, and attached methods that operationalize them.

 10

We use an ontology modeling and editing tool, Protégé-2000 [21] to maintain and update our domain ontology for

OSS requirements processes. Using Protégé-2000, we can also visualize the structure of dependencies and relations

[11] among the objects or resources in a semantic web manner. An example view can be seen in Figure 4.

Furthermore, we can create translators that can transform syntactic form of the modeling representations into XML

forms or SQL schema definitions, which enables further process modeling and tool integration options [cf. 14].

Figure 4. A view of the process domain ontology for the NetBeans.org software requirements and release process.

 11

Formal process model and its enactment

A formal process model denotes a syntactically precise and semantically typed specification of the resource objects,

flow dependencies, actor-roles, and associated tools that specifies an enactable (via interactive process-guided user

navigation) hypertext representation we call an organizational process hypertext [20]. This semantic hypertext, and

its supporting run-time environment, enables the ability to walkthrough or simulate enactment of the modeled

F/OSSD process as a process-guided, navigational traversal across a set of process linked Web pages. The semantic

hypertext is automatically rendered through compilation of the process models that are output from the ontology

editor in a process modeling language called PML [20]. A PML-based model specification enables automated

consistency checking at compile-time, and detection of inconsistencies at compile-time or run-time. An example of

an excerpt from such a model is shown in Figure 5. The compiled version of the PML produced a non-linear

sequence of process-linked Web pages, each one of which corresponds to one step in the modeled process. An

example showing the result of enacting a process (action) step specified at the bottom of Figure 5 appears in Figure

6.

...
sequence Test {
 action Execute automatic test scripts {
 requires { Test scripts, release binaries }
 provides { Test results }
 tool { Automated test suite (xtest, others) }
 agent { Sun ONE Studio QA team }
 script { /* Executed off-site */ } }
action Execute manual test scripts {
 requires { Release binaries }
 provides { Test results }
 tool { NetBeans IDE }
 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
 script { /* Executed off-site */ } }
iteration Update Issuezilla {
 action Report issues to Issuezilla {
 requires { Test results }
 provides { Issuezilla entry }
 tool { Web browser }
 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
 script {

Navigate to Issuezilla

Query Issuezilla

Enter issue } }
...

Figure 5. An excerpt of the formal model of the Netbeans.org requirements and release process
coded in PML.

 12

Constructing an ethnographic hypermedia narrative for process validation

An ethnographic narrative denotes the final view ethnographic hypermedia. This is an analytical research narrative

that is structured as a document that is (ideally) suitable for dissemination and publication in Web-based and printed

forms. It is a composite derived from selections of the preceding representations in the form of a narrative with

embedded hyperlinked objects, and hyperlinks to related materials. It embodies and explains the work practices,

development processes, resource types and relations, and overall project context as a narrative, hyperlinked

ethnographic account that discovered at play within a given F/OSSD project, such as we documented for the

NetBeans requirements and release process [23]. In printed form, the narratives we have produced so far are

somewhere between 1/4 to 1/15 the number of pages compared to the overall set of project-specific data

(documents) at the first two levels of hyperlink connectivity; said differently, if the ethnographic report is 30 or so

printed pages (i.e., suitable for journal publication), the underlying ethnographic hypermedia will correspond to a

hypermedia equivalent to 120-450 printed pages.

The narrative is in a form intended for external review and validation by those not involved in the collection,

modeling, and analysis activities, such as members of the project under study (NetBeans.org—see Figure 7). These

external reviewers can read through the narrative during validation to see if there are gaps or inconsistencies, or to

pose questions to the narrative’s authors. When such shortfalls or queries are detected or reported, then the task is to

determine if the problem arises from either a gap in the modeling effort, or in its narrative rendering. Finally, the

narrative and its hypermedia components are envisioned as open and living documents, so that feedback from the

community may serve to keep them consistent with current practice, or to detect and report inconsistencies that are

in need of attention, update, or remediation, much like the software and artifacts found in the F/OSSD projects they

describe.

 13

Figure 6. A screenshot displaying the result of the PML-based re-enactment of one step (“Action Report issues to
Issuezilla”) in the NetBeans.org requirements and release process.

4. Discussion

We have learned a number of things based on applying our approach to modeling development processes, such as

those for software requirements, in different F/OSSD projects. First, no single mode of process description

adequately subsumes the others, so there is no best process description scheme. Instead, different informal and

formal descriptions respectively account for the shortcomings in the other, as do textual, graphic, and

computationally enactable process representations. Second, incremental and progressive elicitation, analysis, and

validation occur in the course of developing multi-mode requirements process models. Third, multi-mode process

models are well-suited for discovery and understanding of complex software processes found in F/OSSD projects.

However, it may not be a suitable approach for other software projects that do not organize, discuss, and perform

software development activities in an online, persistent, open, free, and publicly accessible manner. Fourth, multi-

 14

mode process modeling has the potential to be applicable to the discovery and modeling of software product

requirements, although the motivation for investing such effort may not be clear or easily justified. Process

discovery is a different kind of problem than product development, so different kinds of approaches are likely to be

most effective.

Figure 7. Getting captured and analyzed process models out for validation and possible evolution by NetBeans.org
project participants.

Last, we observed that the software product requirements in F/OSSD projects are continually emerging and

evolving. Thus, it seems likely that the requirements process in such projects is also continuously. Thus, supporting

 15

the evolution of multi-mode models of OSS requirements processes will require either automated techniques for

process discovery and multi-mode update propagation techniques, or else the participation of the project community

to treat these models as open source software process models, that can be continuously elicited, analyzed, and

validated along with other F/OSSD project assets, as suggested in Figure 7, which are concepts we are currently

investigating. However, it seems fair to note that ethnographic accounts are situated in time, and are not intended for

evolution.

5. Conclusion

Ethnographic hypermedia are an important type of semantic hypertext that are well-suited to support the navigation,

elicitation, modeling, analysis and report writing found in ethnographic studies of F/OSSD processes. We have

described our approach to developing and using ethnographic hypermedia to support the modeling, analysis, and

validation of software development processes in F/OSSD projects like NetBeans.org, where multiple modes of

informal to formal representations are involved. We find that this hypermedia is well-suited for supporting

qualitative research methods that associated different type of project data, together with comparative analysis of

process descriptions rendered in graphic, textual and computationally enactable descriptions. We provided examples

of the various kinds of hypertext-based process descriptions and linkages that we constructed in moving from

abstract, informal representations of the data through a series of ever more formalized process models resulting

from our studies.

Based on our efforts and results reported here, it appears that free/open source software development projects can

benefit from the discovery, modeling, and validation of the development processes they practice, and that

ethnographic hypermedia based representations of these processes provides an innovative scheme for capturing,

representing, and evolving these representations in a manner that can be maintained and evolved in an open source

manner.

6. Acknowledgements

The research described in this report is supported by grants #0083075, #0205679, #0205724, and #0350754 from

the U.S. National Science Foundation. No endorsement implied. Mark Ackerman at University of Michigan, Ann

 16

Arbor; Les Gasser at University of Illinois, Urbana-Champaign; and others at ISR are collaborators on the research

described in this paper.

7. References

1. Bolchini, D. and Paolini, P., Goal-Driven Requirements Analysis for Hypermedia-Intensive Web Applications,

Requirements Engineering, 9, 85-103, 2004.

2. Cockburn, A., Writing Effective Use Cases, Addison-Wesley, New York, 2001.

3. Curtis, B., Krasner, H., and Iscoe, N., A Field Study of the Software Design Process for Large Systems,

Communications ACM, 31(11), 1268-1287, 1998.

4. Dicks, B. and Mason, B., Hypermedia and Ethnography: Reflections on the Construction of a Research

Approach, Sociological Research Online, 3(3), 1998. www.socresonline.org.uk

5. Elliott, M. and Scacchi, W., Free Software Developers as an Occupational Community: Resolving Conflicts and

Fostering Collaboration, Proc. ACM Int. Conf. Supporting Group Work, 21-30, Sanibel Island, FL, November 2003.

6. Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A Virtual Organizational

Culture, in S. Koch (ed.), Free/Open Source Software Development, Idea Group Publishing, Hershey, PA, 152-172,

2004.

7. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Nuseibeh, B., Inconsistency Handling in Multi-perspective

Specifications, IEEE Trans. Software Engineering, 20(8), 569-578, 1994.

8. Gans, G., Jarke, M., Kethers, S., and Lakemeyer, G., Continuous Requirements Management for Organisation

Networks: A (Dis)Trust-Based Approach, Requirements Engineering, 8, 4-22, 2003.

 17

9. Gasser, L., Scacchi, W., Penne, B., and Sandusky, R., Understanding Continuous Design in OSS Projects, Proc.

16th. Int. Conf. Software & Systems Engineering and their Applications, Paris, December 2003.

10. Glaser, B. and Strauss, A., The Discovery of Grounded Theory: Strategies for Qualitative Research, Aldine

Publishing Co., Chicago, Il, 1967.

11. Grinter, R.E., Recomposition: Coordinating a Web of Software Dependencies, Computer Supported

Cooperative Work, 12(3), 297-327, 2003.

12. Hine, C., Virtual Ethnography, Sage Publications, Newbury Park, CA, 2000.

13. Jensen, C. and Scacchi, W., Collaboration, Leadership, Control, and Conflict Management in the NetBeans.Org

Community, Proc. 38th. Hawaii Intern, Conf. Systems Science, Waikola Village, HI, January 2005a.

14. Jensen, C. and Scacchi, W., Process Modeling Across the Web Information Infrastructure, Software Process--

Improvement and Practice, 10(3), 255-272, July-September 2005b.

15. Kitchenham, B.A., Dyba, T., and Jorgensen, M., Evidence-based Software Engineering, Proc. 26th Int. Conf.

Software Engineering, 273-281, Edinburgh, Scotland, IEEE Computer Society, 2004.

16. Leite, J.C.S.P. and Freeman, P.A., Requirements Validation through Viewpoint Resolution, IEEE Trans.

Software Engineering, 17(12), 1253-1269, 1991.

17. Mi, P. and Scacchi, W., A Meta-Model for Formulating Knowledge-Based Models of Software Development,

Decision Support Systems, 17(4), 313-330, 1996.

18. Monk, A. and Howard, S., The Rich Picture: A Tool for Reasoning about Work Context, Interactions, March-

April 1998.

 18

19. Narayanan, N.H. and Hegarty, M., Multimedia Design for Communication of Dynamic Information, Int. J.

Human-Computer Studies, 57, 279-315, 2002.

20. Noll, J. and Scacchi, W., Specifying Process-Oriented Hypertext for Organizational Computing, J. Network &

Computer Applications, 24(1), 39-61, 2001.

21. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., and Musen, M.A., Creating Semantic Web

Contents with Protégé-2000, IEEE Intelligent Systems, 16(2), 60-71, March/April 2001.

22. Nuseibeh, B. and Easterbrook, S., Requirements Engineering: A Roadmap, in Finkelstein, A. (ed.), The Future

of Software Engineering, ACM and IEEE Computer Society Press, 2000.

23. Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. A First Look at the NetBeans Requirements and Release

Process, http://www.ics.uci.edu/cjensen/papers/FirstLook

NetBeans/, February 2004 (Original May 2002).

24. Rao, R., From Unstructured Data to Actionable Intelligence, IT Pro, 29-35, November 2003.

25. Scacchi, W., Understanding the Requirements for Developing Open Source Software Systems, IEE

Proceedings—Software, 149(1), 24-39, February 2002.

26. Scacchi, W., Free/Open Source Software Development Practices in the Computer Game Community, IEEE

Software, 21(1), 59-67, Jan. 2004a.

27. Scacchi, W., Socio-Technical Interaction Networks in Free/Open Source Software Development Processes, in

S.T. Acuña and N. Juristo (eds.), Peopleware and the Software Process, World Scientific Press, to appear, 2004b.

 19

28. Seaman, C.B., Qualitative Methods in Empirical Studies of Software Engineering, IEEE Trans. Software

Engineering, 25(4), 557-572, 1999.

29. Spinuzzi, C. and Zachry, M., Genre Ecologies: An Open System Approach to Understanding and Constructing

Documentation, ACM J. Computer Documentation, 24(3), 169-181, August 2000.

30. Truex, D., Baskerville, R., and Klein, H., Growing Systems in an Emergent Organization, Communications

ACM, 42(8), 117-123, 1999.

31. Viller, S. and Sommerville, I., Ethnographically Informed Analysis for Software Engineers, International

Journal Human-Computer Studies, 53, 169-196, 2000.

