
Adopting OSS Methods by Adopting OSS Tools
 Jason E. Robbins

CollabNet, Inc.
8000 Marina Blvd., Suite 600

Brisbane, CA 94005-1865
(650) 228 2539

jrobbins@collab.net

ABSTRACT
The open source movement has created and used a set of software
engineering tools with features that fit the characteristics of open
source development processes. To a large extent, the open source
culture and methodology are conveyed to new developers via the
toolset itself, and through the demonstrated usage of these tools
on existing projects. The rapid and wide adoption of open source
tools stands in stark contrast to the difficulties encountered in
adopting traditional CASE tools. This paper explores the
characteristics that make these tools adoptable and how adopting
them may influence software development processes.

General Terms

Management, Design, Standardization, Verification.

Keywords
Open source software engineering, methodology adoption.

1. INTRODUCTION
One of the biggest challenges facing the software engineering
profession is the need for average practitioners to adopt powerful
software engineering tools and methods. Starting with the
emergence of software engineering as a field of research,
increasingly advanced tools have been developed to attempt to
address the difficulties of software development. Often these
tools addressed accidental [2] difficulties of development, but
some have been aimed at essential difficulties such as
management of complexity, communication, visibility, and
changeability. In the 1990’s, the emphasis shifted from individual
tools to the development process in which the tools were used.
The software process movement produced good results for several
leading organizations, but it did not have much impact on average
practitioners.

Why have CASE tools not been used? Often the reason has been
that they do not fit the day-to-day needs of the developers who
were expected to use them: they were difficult to use, expensive,
and special purpose. The fact that they were expensive and
licensed on a per-seat basis caused many organizations to only
buy a few seats, thus preventing other members of the

development team from accessing the tools and documents and
reducing the impact of the tools on the project. One study of
CASE tool adoption found that adoption correlates negatively
with end-user choice, and concludes that successful introduction
of CASE tools must be a top-down decision from upper
management [3]. The result of this approach has repeatedly been
shelfware: software tools that are purchased but not used.

Why have advanced methodologies not been widely adopted?
Software process improvement efforts built around CMM or ISO-
9000 have required resources normally only found in larger
organizations: a software process improvement group, time for
training, outside consultants, and the willingness to add overhead
to the development process in exchange for risk reduction. Top-
down process improvement initiatives have often resulted in a
different kind of shelfware where thick binders describing the
organization’s software development method go unused. Smaller
organizations and projects on shorter development cycles have
often opted to continue with their current processes or adopt a few
practices of lightweight methods such as extreme programming
[1] in a bottom-up mannor.

In contrast, open source projects are rapidly adopting common
expectations for software engineering tool support and those
expectations are increasing. Just three years ago, the normal set of
tools for an open source project consisted of just a mailing list, a
known bugs list, an INSTALL text file, and a CVS server. Now,
open source projects are commonly using tools for issue tracking,
source code management, design and code generation, automated
testing, and packaging and deployment. The featuresets of these
tools are aimed at some key practices of the open source method,
and in adopting the tools, software developers are predisposed to
also adopt open source practices.

Exploring and encouraging development and adoption of open
source software engineering tools has been the goal of the
tigris.org web site for the last two years. The site hosts open
source projects that are developing software engineering tools.
Tigris.org also hosts student projects on any topic, and a reading
group for software engineering research papers. The name
“Tigris” can be interpreted as a reference to the Fertile Crescent
valley between the Tigris and Euphrates rivers. The reference is
based on the hypothesis that an agrarian civilization would and
did arise first in the location best suited for it. In other words, the
environment helps define the society, and more specifically, the
tools help define the method. This is similar to McLuhan’s
proposition that “the media is the message” [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE ’02, May 25, 2002, Orlando, FL.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

2. SOME APSECTS OF OSS AND OSSE
The open source movement is broad and diverse, so it is difficult
to make generalizations; however, there are several common
aspects that can be found in many open source software products

and projects, and in the open source software tools used to
produce them.

�� Universal, immediate access to project artifacts. The heart
of the open source method is the fact that the program source
code is accessible to all project participants. Beyond the
source code itself, open source projects tend to allow open
access to all software development artifacts such as
requirements, design, open issues, rationale, development
team responsibilities and schedules. Access to this
information is not just allowed, it is typically available in
real-time over the Internet. This means that all participants
can base their work on up-to-date information.

�� Volunteer effort. Open source projects typically have only
very few dedicated staff. Instead, work is done by developers
who volunteer their contributions. This means that every
feature is validated by at least on person who strongly desires
it. Another aspect of volunteerism is that unlikable jobs tend
to go undone, unless they are automated.

�� Standards-based. Lack of formal requirements generation in
specific open source projects tends to force reliance on
external standards or conventions. Deviation from standards
is discouraged because of the difficulty of specifying the
alternative with the same level of formality and agreement
among contributors. Standards also define interfaces that
give choice to users and support diversity of usage.

�� Diversity of usage leads to plurality of authorship. Open
source products are often cross-platform from the start, and
usually offer a wide range of configuration options that allow
them to address diverse use cases. When contributors add a
feature to “scratch an itch,” it can lead to feature creep and a
loss of conceptual integrity [2, 5]. This can make it harder to
meet predefined deadlines, but it broadens the appeal of the
product because more potential users get their own win
conditions satisfied. Peer review and limited resources can
help keep a lid on feature creep.

�� Release early, release often. Open source projects are
usually not subject to the economic concerns or contractual
agreements that turn releases into major events in traditional
development. In fact, open source projects need to release
pre-1.0 versions in order to build the development
community needed to reach 1.0. The feedback provided by
this practice is one key to risk management in open source
and is also found in other methods.

�� Peer review. Feedback from users and developers is one of
the practices most central to the open source method [5].
Peer review has also been shown to be one of the most
effective ways to eliminate defects in code regardless of
methodology.

3. SOME COMMON OSSE TOOLS
This section reviews several open source software engineering
tools with respect to the aspects defined above. Most of these
tools are already widely used, while a few are not yet widely used
but are rapidly expanding their user base.

3.1 Version Control
CVS. The concurrent versions system (see cvshome.org) is the
most widely used VC system in open source projects. Its features
include: a central server that always contains the latest versions
and makes them accessible to anyone over the Internet, with
support for disconnected use; conflict resolution via merging
rather than locking to reduce the need for centralized coordination
among developers; simple commands for checking in and out that
lower barriers to casual usage; and, cross-platform clients and
servers. It is common for CVS to be configured to send email
notifications of commits to project members to prompt peer
review.

Subversion. Subversion is being developed as the official
successor to CVS (see subversion.tigris.org). Its featureset
includes essentially all of CVS’s features, but it is also based on
the existing WebDAV standard (see webdav.org), and has
stronger support for disconnected use.

3.2 Issue Tracking and Technical Support
Bugzilla. Bugzilla was developed to fit the needs of the Mozilla
open source project (see bugzilla.mozilla.org). Its features
include: an “unconfirmed” defect report state needed for casual
reporters who may not share knowledge of previous issues; a
“whine” feature to remind developers of issues assigned to them,
this addresses the lack of traditional management incentives; and,
web-based interface that makes the tool cross-platform,
universally accessible, and that lowers barriers to casual use.

Scarab. The scarab project, much like subversion, seeks to
establish a new foundation for issue tracking systems that can
gracefully evolve to fit many needs over time (see
scarab.tigris.org). Key features of scarab include many similar to
those of Bugzilla, plus: issue de-duplication on entry to defend
against duplicates entered by casual participants; standard XML
issue-exchange formats; and, highly customizable issue types,
attributes, and reports.

3.3 Technical Discussions and Rationale
Mailing lists. Mailing lists provide a key feature above simple
direct email in that they typically build archives that capture the
design and implementation rationale. Since mailing lists are based
on email, they are standards-based, cross-platform, and accessible
to casual users. Also, since the email messages are free-format
text, this single tool can serve a very wide range of use cases,
although it relies on social conventions to provide much specific
support for any particular use case.

FAQs and FAQ-o-matic. Lists of frequently asked questions help
to mitigate two of the main problems of mailing lists: the
difficulty of summarizing the discussion that has gone before, and
the wasted effort of periodically revisiting the same topics as new
participants join the project. FAQ-o-matic and similar tools aim
to reduce the unlikable effort of maintaining the FAQ.

3.4 Build Systems
Make. The unix ‘make’ command is a standard tool to automate
the compilation of source code trees. Its usage in open source is
an example of the use of automation to reduce barriers to casual
contributors. Not only are ‘make’ and associated tools used in

open source projects, but there are several conventions that make
it easier for casual contributors to deal with different projects.

Ant. Ant is a java replacement for ‘make’ that uses XML files
instead of makefiles (see jakarta.apache.org). Ant’s use of the
XML standard is a key enabler of reuse of standard XML parsing
libraries, and a key to data exchange with other tools to support
integration into a variety of IDEs. Ant’s concept of a task is at a
higher level of granularity than a command line in a makefile; this
can reduce the tedium of managing complex makefiles, increase
consistency across projects, and ease peer review.

3.5 Design and Code Generation
ArgoUML. ArgoUML is a pure-java UML design tool (see
argouml.tigris.org). In addition to being cross-platform and
standards-based, it emphasizes ease of use and goes so far as to
actively help train casual users in the usage of UML.

Torque. Torque is a java tool that generates SQL and java code to
build and access a database defined by an XML specification of a
data model (see jakarta.apache.org). It is cross-platform,
customizable, and standards-based. Torque’s code generation is
customizable because it is template-based; also, a library of
templates has been developed to address incompatibilities
between SQL databases. Together these features can greatly
reduce the unlikable task of making the adjustments needed for
new products to support multiple databases.

3.6 Integrated Development Environments
Emacs. Emacs is “the extensible self-documenting text editor”
(see savannah.gnu.org). Its name alone emphasizes that it serves
diverse use cases and attempts to lower barriers to casual users. It
is also cross-platform and includes bug-reporting tools supporting
the release-early-release-often practice.
NetBeans. NetBeans is a pure java IDE for java development with
a very well thought-out framework for integrating new modules
(see netbeans.org). Its ability to add modules supports diverse
usage, and there are several example of modules that aim at
supporting standard open source tools such as CVS and Ant.
Eclipse. Eclipse is a recent open source IDE effort that has many
of the same goals as NetBeans, but seeks to serve an even more
diverse userbase by supporting multiple languages (see
eclipse.org).

3.7 Testing Tools
Junit. Junit supports java unit testing (see junit.org). It is a simple
framework that is highly customizable. Its aim is to reduce the
unlikable task of manual testing.
Cactus. Cactus is an extension to the Junit framework that uses
Ant to easily automate testing of server-side web applications (see
jakarta.apache.org).

3.8 Packaging and Deployment
RPM. The Redhat Package Manager (see rpm.org) is a system for
packaging and deploying software components on Linux and
other operating systems. It has a simple command syntax for its

most basic operations, allowing casual usage. It aims to eliminate
the unlikable task of building installers and maintaining hosts.

3.9 Missing Tools
Although there is a wide range of open source software
engineering tools available to support many software engineering
activities, there are also many traditional development activities
that are not well supported. For example, requirements
management, project management, metrics, estimation,
scheduling, program analysis, and test suite design.

4. IMPACT OF ADOPTING OSSE TOOLS
Drawing conclusions about exactly how usage of these tools
impacts development methods in practice would require careful
observation of actual projects. The descriptions above can help
guide such observation to look for the following benefits:

�� Since the tools are free and support casual use, more
members of the development team will be able to access and
contribute to artifacts in all phases of development.

�� Since the “source” to all artifacts is available and up-to-date,
there is less wasted effort due to decisions based on out-of-
date information.

�� Since causal contributors are supported in the development
process, non-developer stakeholders such as management,
sales, marketing, and support, should be more able to
constructively participate in the project.

�� Since many of the tools support incremental releases, teams
using them should be better able to release early and often.

�� Since many of the tools aim to reduce unlikable work, more
development effort should be freed for forward progress.

�� Since peer review is addressed by many of the tools, projects
may be able to catch more defects in review or conduct more
frequent small reviews in reaction to changes.

5. REFERENCES
[1] Beck, K. Extreme Programming Explained – Embrace

Change. Addison Wesley Longman, Reading MA, 2000.

[2] Brooks, F. P. No silver bullet: essence and accidents of
software engineering. IEEE Computer, 20, 4, 10-19.

[3] Iivari, J. Why are CASE tools not used? Commun. ACM 30,
10, 94-103.

[4] McLuhan, M. Understanding Media. MIT Press, Boston
MA, 1994.

[5] Raymond, E. S. The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary.
O’Reilly and Associates, Sebastopol CA, 2001.

	INTRODUCTION
	SOME APSECTS OF OSS AND OSSE
	SOME COMMON OSSE TOOLS
	Version Control
	Issue Tracking and Technical Support
	Technical Discussions and Rationale
	Build Systems
	Design and Code Generation
	Integrated Development Environments
	Testing Tools
	Packaging and Deployment
	Missing Tools

	IMPACT OF ADOPTING OSSE TOOLS
	REFERENCES

