
Understanding Broadcast Based Peer Review on
Open Source Software Projects

Peter C. Rigby
Software Engineering Group

University of Victoria
Victoria, BC, Canada

pcr@uvic.ca

Margaret-Anne Storey
Software Engineering Group

University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

ABSTRACT

Software peer review has proven to be a successful technique
in open source software (OSS) development. In contrast
to industry, where reviews are typically assigned to specific
individuals, changes are broadcast to hundreds of potentially
interested stakeholders. Despite concerns that reviews may
be ignored, or that discussions will deadlock because too
many uninformed stakeholders are involved, we find that
this approach works well in practice. In this paper, we
describe an empirical study to investigate the mechanisms
and behaviours that developers use to find code changes they
are competent to review. We also explore how stakeholders
interact with one another during the review process. We
manually examine hundreds of reviews across five high profile
OSS projects. Our findings provide insights into the simple,
community-wide techniques that developers use to effectively
manage large quantities of reviews. The themes that emerge
from our study are enriched and validated by interviewing
long-serving core developers.

Categories and Subject Descriptors

K.6.3 [Software Management]: [Software development;
Software maintenance; Software process]

General Terms

Experimentation, Human Factors, Management

Keywords

Peer review, Open source software, Case studies, Grounded
theory

1. INTRODUCTION
Peer review by a large community of developers and other

stakeholders is often championed as one of the most impor-
tant aspects of open source software (OSS) development [4,
11, 14, 16], and it has been adopted by most mature, suc-
cessful OSS projects [1, 15]. A review begins with an author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

creating a patch (a software change). This patch is broadcast
to a community of potentially interested individuals. The
patch can be ignored, or it can be reviewed with feedback
sent to the author and also broadcast to the larger commu-
nity. The author and other stakeholders revise and discuss
the patch until it is ultimately accepted or rejected.
Broadcasting reviews and other development discussion

to hundreds of potentially interested individuals has both
significant advantages and potentially serious weaknesses.
For example, we know that a diverse set of stakeholders will
see the patch, but how can we be sure that any will review
it and be competent enough to find defects? Additionally,
there may be too many conflicting opinions during a review.
How do stakeholders interact to avoid deadlock and reach an
acceptable solution?
In previous work, we examined the process and quanti-

fied the parameters of review on the Apache HTTP server
project [16]. In Rigby’s dissertation [15], he replicated this
study on the projects we examine in this paper. These and
other studies (e.g. [1, 4, 11]) have shown OSS peer review
to be both efficient and effective. However, the underlying
mechanisms and behaviours that facilitate peer review in a
broadcast setting are not well understood. In this paper,
our goal is to inform researchers, developers, and managers
about the advantages and weaknesses of this style of review.
This paper is structured as follows. In the next section,

we introduce our research questions. In section 3, we intro-
duce our methodology and data sources. In each subsequent
section, we provide evidence regarding the techniques used
to find patches for review (Q1), the impact of ignored re-
views (Q2), review outcomes, stakeholders, interactions (Q3),
the effect of too many opinions during a review (Q4), and
scalability issues involved in broadcasting reviews in large
projects (Q5). In the final sections, we discuss the threats
to credibility of this study, and summarize the findings.

2. RESEARCH QUESTIONS
We explore the following research questions:
Q1 Finding patches to review: How do experts decide which

contributions to review in a broadcast of general development
discussion?
Previous research [1, 15] has shown that there are expert

reviewers involved in most reviews on OSS projects. How-
ever, this past research does not explain how experienced
developers find patches they are competent to review. We
aim to understand the techniques used to wade through a
seemingly overwhelming broadcast of information as well as
uncover what motivates a developer to review a patch.

Q2 Too few reviewers: Why are patches ignored? What is
their impact on the project?
Many patches in OSS development are never reviewed [2,

11]. Why does this occur and how significant are unreviewed
patches?

Q3 Stakeholders, interactions, and review outcomes: Once
a patch has been selected for review, which stakeholders be-
come involved? How do these stakeholders interact to reach
a decision?

One touted strength of OSS development is the high degree
of community involvement [6, 14]. How do the author, core
developers, and other stakeholders, such as external develop-
ers and users, collaborate to create a working solution?
Q4 Too many opinions: What happens to the decision

making process when very large numbers of stakeholders are
involved in a review?
Parkinson’s law of triviality, or the “bike shed painting”

effect as it is known in OSS communities [6, 9], states that
“organizations give disproportionate weight to trivial issues”
[13]. Intuitively, a broadcast to a large community of stake-
holders should exacerbate this law and lead to unimportant
changes being discussed to a deadlock. We measure the
impact of Parkinson’s law on OSS projects and discuss the
implications for broadcast based review.

Q5 Scalability: Can large projects effectively use broadcast
based review?
On a large mailing list with a wide variety of topics, we

expect that developers will have difficulty finding the infor-
mation and patches pertinent to their work. To investigate
the influence of project size on peer review, we examine five
projects. We want to understand how the techniques used to
manage broadcast information on a moderately sized project,
like Apache, differ from a much larger project, like Linux, or
a much more diverse project, like KDE.

3. METHODOLOGY
Reviews occur as email threads on a mailing list [16]. An

author emails a contribution of code (i.e. a patch) or other
software artifact to the mailing list, and reviewers respond to
the email with defects and other issues. These email threads,
which contain reviews of patches, are our unit of analysis.
They encapsulate which developers take notice of a patch
and how various stakeholders interact during the review.

In this section, we describe the multiple case study method-
ology we used to examine the mechanisms and behaviours
that underlie peer review in the context of five OSS projects.
After describing the projects, we outline our use of grounded
theory to code 460 instances of review and to code interview
data from nine core developers.

3.1 Project Selection
We used theoretical sampling to select five projects to

study [19]. We began by selecting the Apache HTTP server
project because its review policies are well known and used
by other projects [6]. Next, we examined the Subversion
version control system as it uses a similar review process to
Apache and is of similar size. Subversion was a useful first
test of our preliminary themes. For the next two projects, we
chose FreeBSD and the Linux kernel; both are UNIX based
operating systems. These projects are significantly larger
than either Apache or Subversion (see Figure 2 in Section
8). Linux also has a unique set of policies and governance
structures which could yield interesting contrasts. The fifth

Figure 1: Example fragment of review with three

codes written in the margins: a type of fix, a ques-

tion that indicates a possible defect, and interleaved

comments.

project, KDE, is a desktop environment and represents not
a single project, as was the case with the other projects, but
an entire ecosystem of projects. In addition, KDE is the only
project in our study which develops end user software as well
as infrastructure software.

3.2 Analysis Procedure
We randomly sampled and manually analyzed 200 email

reviews for Apache, 80 for Subversion, 70 for FreeBSD, 50
for the Linux kernel, and 40 email reviews and 20 Bugzilla
reviews for KDE. Saturation of the main themes occurred rel-
atively early on, making it unnecessary to code an equivalent
number of reviews for each project [7].

The analysis of these reviews followed Glaser’s [7] approach
to grounded theory where manual analysis uncovers emer-
gent abstract themes. These themes are developed from
descriptive codes used by the researcher to note his or her
observations. Our analysis process for Apache proceeded as
follows:

1. The messages in a review thread were analyzed chrono-
logically. Since patches could often take up many
screens with technical details, we first summarized
each review thread. The summary uncovered high-
level occurrences, such as how reviewers interacted and
responded. The summaries were written without any
interpretation of the events [7].

2. The reviews were coded by printing and reading the
summaries and writing the codes in the margin. The
codes represented the techniques used to perform a
review and the types and styles of interactions among
stakeholders. The example shown in Figure 1 com-
bines the first two steps with emergent codes being
underlined.

3. These codes were abstracted into memos which were
sorted into themes. These themes are represented
throughout the paper as paragraph and section head-
ings.

4. A draft of the themes was given to the then presi-
dent of the Apache Foundation, Justin Erenkrantz, for
conceptual validation.

This process was repeated for the other four projects,
with the final validation step replaced by interviews with
experienced reviewers from each of the projects. While these
interviews were originally intended as a validation of the
coded review findings, new themes did emerge from the
interviews and are an integral part of this paper. These

interviews were conducted after the coding and memoing of
reviews had been completed for all projects.

The semi-structured interview questions were based on the
themes that emerged from manual coding of reviews on all
the projects 1. To analyze the interviews, we coded them
according to grounded theory methodology.

To select interviewees for the Apache and Subversion
projects, we had Erenkrantz send an email on our behalf
to the respective developer mailing lists. Not knowing any
developers on the remaining projects, we ranked developers
based on the number of email based reviews they had per-
formed and sent an interview request to each of the top five
reviewers on each project. All these individuals were core
developers with either committer rights or maintainers of
a module. Initially, we asked for a phone interview; how-
ever, most developers refused to be interviewed by phone,
though they were willing to answer questions by email. This
was not particularly surprising since OSS developers are
very experienced with and prefer communication via email.
Most responses were detailed, and most developers quickly
responded to follow-up questions.

Overall, we interviewed nine core developers. Some devel-
opers were willing to be quoted and are referred to by project
and name, while others wished to remain anonymous and are
referred to by project only. To provide a quick reference to in-
terviewees we use a subscript of the first letter of the project
and first letter of the interviewee’s last name or a number
in the case of an anonymous interviewee. We were able to
interview one core developer from Apache in person, who pre-
ferred to remain anonymousA1, and one Subversion developer
(WrightSW) over the phone. The remaining developers were
interviewed via email: three Linux maintainers (GleixnerLG,
IwaiLI , and Kroah-HartmanLK) two core developers from
FreeBSD who preferred to remain anonymousF1,F2, and two
core developers from KDE (FaureKF and SeigoKS). Intervie-
wees were all long-serving core developers on their respective
projects.

In summary, the analysis in this paper focuses on the
manual coding of 460 review discussions across five projects,
as well as our interviews with nine core developers. We
also use simple measures to assess the impact of certain
themes. Throughout this paper, named themes are presented
as section and paragraph headings.

4. FINDING PATCHES TO REVIEW
Q1: How do experts decide which contributions to review

in a broadcast of general development discussion?
In contrast to an industrial setting, reviews are not assigned

in OSS projects. In previous work, we have shown that
although there is a potentially large number of reviewers
(i.e. everyone subscribed to the mailing list), only a small
number of reviewers (usually two reviewers) are actually
involved in any given review [16]. We also showed that the
typical reviewer is a long-standing committer in the area of
the project to which the patch under review belongs [15].
Interviewing core developers allowed us to understand

why developers decide to review a particular patch. We
asked, “How do you determine what to review?” All our
interviewees said that they review patches that are within

1The interview questions are contained in Rigby’s disserta-
tion [15]

their area of interest and expertise that they see as important
contributions.

“Mostly [I review because of] interest or experience in
the subject area [of the patch].”

Anonymous, FreeBSD, InterviewF2

Additionally, developers who have contributed significantly
to an area of the code base often become the defacto owner,
or in a large project, the official maintainer, assuming a
degree of responsibility and a sense of obligation to perform
reviews in that areaA1,SW,LG,LI,LK,F1,F2,KS,KF .
While we now have an understanding of how developers

decide which patches they will review, it is surprising to
us that developers are able to find these contributions in
a large and general broadcast of development discussion
and code changes. Some patches are assigned to or sent to
specific developers, a topic we quantify and discuss in detail
in Section 8.2, but for the most part, developers self-select
broadcast patches for review. In this section, we present
the techniques that core developers use to find and refind
reviews: email filters, progressive detail within patches, an
interleaved and full history of past discussions, and recipient
building based on past interest.

4.1 Filtering
All interviewees agreed they receive an overwhelming quan-

tity of broadcast information via email on a daily basis, the
entirety of which they cannot process manually. Core de-
velopers reported that they subscribe to between 5 and 30
mailing lists, with most developers receiving more than 300
messages daily. This quantity of correspondence is drastically
larger than the number of emails received by the average
individual. For example, Whittaker and Sidner [18] found
that individuals received between a mean of 40 and 60 emails
per day. However, with personal email one is expected to
respond to most messages, while email broadcast to a large
community rarely requires a response. Instead these broad-
cast messages serve to keep developers aware of the general
activity on the project [8].

“If anything, there is almost too much awareness”
Anonymous, Apache, InterviewA1

To avoid becoming overwhelmed, most interviewees sep-
arate “interesting and important” emails from general list
traffic by using email filters. Since email archives do not
record the filters used by developers, the following result is
based exclusively on interviews. Interesting email is placed
into folders that are checked on a regular basis. There are
varying levels of filter sophistication, listed from simple to
complex below:

• Separate tags or folders for each mailing listAll

• Differentiation between email sent directly to a devel-
oper (e.g. developer is on “Cc” list) and email sent
generally to the listLG,KF,KS

• Differentiation of emails that come from certain people
or “important” individualsLI,LK,KS

• Parsing the subject for interesting keywords, usually
related to areas maintained by the developerLG,LI,F1

• Parsing email for changes to files that belong to the
developer’s area of interestLG

These filtering techniques reduce information overload and
allow for email to be sorted according to interest:

“Because of those filters, no, I do not feel overwhelmed
[by the Linux Kernel Mailing List (LKML)]. On
subsystem-specific mailing lists (like the linux-usb or
linux-pci mailing lists), I read all emails”

Kroah-Hartman, Linux, InterviewLK

Within this filtered set of emails, there are still many emails
that have potential relevance for a particular developer. The
subject, format of the patch, and certain properties of email
allow developers to identify which patches to review.

4.2 Progressive Detail
The author’s email, which contains his or her patch, has

three structural components that progressively provide in-
creasingly detailed information to potential reviewers (i.e.
progressive detail): the subject, the change log, and the
file differences. Our evidence for the importance of patch
structure comes from review instances where we saw au-
thors rebuked for not following the correct format and the
intervieweesLG,LI,LK,KF,KS who said that a well structured
patch made it easier to review. The following quotes are
taken from our interview with GleixnerLG.

Subject: “A good and descriptive subject line draws
immediate attention.”

The email subject provides an overview of the problem. All
interviewees remarked on the importance of subject scanning
for finding interesting patches.

Change log: “The change log message is equally impor-
tant as it helps one to understand why a particular change
is necessary, which problem it fixes or how the new feature
is supposed to work.”
The change log introduces the developer to the problem

and allows them to determine, at an abstract level, whether
the change is worth reviewing. While some projects require
detailed change logs (e.g. Linux and Subversion), others
do not. Our interviewees had differing opinions about the
importance of the change log with some preferring to skip it
and look at the changes immediatelyF1.

File changes: “The diff [the code change] itself should
be short, i.e. large patches should be split into logical and
functional steps. That makes reviewing easier.”
The file differences, the essential part of a patch, are the

actual changes to the files.
By progressively providing increasing levels of detail, re-

viewers can quickly determine (1) if they have the necessary
interest, skill, and time to perform a detailed review (e.g. if
the reviewer does not understand or is uninterested in the
subject, they need not look at the file changes) and (2) if
the contribution is at a sufficient level of quality to warrant
a detailed review.

4.3 Full and Interleaved History
When individuals perform reviews, they respond by ex-

tracting problematic sections of the review request email.
Critiques or issues are written directly under the code sec-
tion that has a potential defect and irrelevant text is removed
(see Figure 1). This technique is known as “interleaved post-
ing” and is widely used in email communities 2. As the

2It is often referred to as “bottom posting” http://en.
wikipedia.org/wiki/Posting_style

author and reviewers discuss a problem, a stack of quoted
text with responses creates a focused discussion around a
particular problem. Indeed, there may be multiple related
and unrelated discussions in a single email thread. Seigo
noted that the inability to interleave comments within code
was one of the significant weaknesses of performing reviews
in BugzillaKS .

By viewing the extracted sub-problems presented in chrono-
logical order, a reviewer can quickly form an opinion regard-
ing an issue. The reviewer can also assess which issues have
or have not been discussed, and whether the current partici-
pants are making progress towards a solution. This history is
of great utility to developers on large projects where intervie-
wees admitted they are unable to keep up with all discussions
they are potentially interested inLG,LI . In contrast, intervie-
wees on smaller projects, such as Apache and SVN, stated
they have little trouble keeping track of daily discussion and
have limited need for email thread historiesA1,SW .

4.4 Refinding: Recipient Building
As we have seen, developers respond to contributions when

they are interested in or feel a sense of obligation to review
a patch. However, as the author revises his or her contri-
bution, it would be very inefficient to refind this discussion
thread in the breadth of broadcast information each time a
change is made. The recipient fields (i.e. the “To” and “Cc”
fields) provide a simple and natural mechanism for remaining
aware of the development of a thread once interest has been
indicatedSW,LG,LI,LK,F1,KF,KS . Unlike private email, where
the recipients of a message remain the same unless a new
recipient is explicitly added, with mailing lists, the number
of recipients grows with the number of distinct people that
respond. Once interest has been indicated by a response to
the mailing list, subsequent responses are sent not only to
the mailing list, but also specifically to the growing number
of developers in the recipient fields. As we discussed above,
interviewees pay more attention to emails sent to them di-
rectly than to those sent to the general list. These direct
emails are responded to in a manner similar to private email.
In summary, we have learned that developers select con-

tributions to review based on their interest in the area and
in some cases, a developed obligation. We discussed the
techniques that allow reviewers to locate contributions they
are competent to review and to remain aware of future discus-
sion: email filters, progressive detail within contributions, a
full and interleaved history of past discussions, and recipient
building based on interest in a topic. These techniques were
present in all five projects examined. In the next section, we
describe what happens when a contribution is neglected.

5. IGNORED PATCHES
Q2: Why are patches ignored? What is their impact on

the project?
Previous work has demonstrated that a large number of

patches posted to mailing lists are ignored [1, 2]. In this
section, we examine what effect ignored patches have on an
OSS project.
Although the traditional pressures of finishing a meeting

on time do not exist in an asynchronous style of peer review,
developers on OSS projects are still restricted by the amount
of time they have to spend on a given project. When asked
how time pressures affect the review process, interviewees
stated that quality does not suffer, but that reviews of con-

tributions are sometimes postponed or droppedA1,LG,F1,KF .
The following quotation summarizes the finding:

“Lack of time can postpone the actual reviewing, but
not really have an effect on whether to review or the
quality of it.”

Faure, KDE, InterviewKF

While the postponement of a review, and sometimes per-
manent “postponement”, (i.e. ignored low priority patches)
may seem like an obvious solution, it is in stark contrast
to what often happens in industry. In industry, the goal of
simply reviewing everything can take priority over review
quality [5]. As a deadline approaches, code may be added
to the system without review and more pressing activities
(e.g. creating a workaround so the system can ship), replace
longterm activities (e.g. peer review) [17]. The lack of rigid
deadlines in OSS development and the reduced importance
of monetary work incentives appear to produce an environ-
ment where proper reviewing is seen as more important than,
for example, ensuring the latest feature makes it into the
product.

By postponing reviews, the burden of making sure a patch
is reviewed and committed by a core developer lies with
the author, not the reviewer. While this may be frustrating
for the author, it means the reviewer, who is usually more
experienced and pressed for time, is simply “pinged” about,
or reminded by the author periodicallyLG. An author’s
patch will only be reviewed once it is considered by a core
developer to be sufficiently interesting in relation to his or
her other workA1,SW,LG,LI,LK,F1,F2,KF,KS . Inexperienced
authors can be intolerant of this waiting period and may be-
come frustrated or discouraged and provoke core developers.
The following quotation is extracted from a response to a
FreeBSD mailing list discussion that was started by Kamp [9].
It illustrates the sentiments of one annoyed developer:

“There is no sense in wasting the time of one informed
developer to help one uninformed developer; this is a
bad tradeoff unless the uninformed developer is showing
signs of promise . . . Are you [the inexperienced author]
willing to accept that you may have been judged ‘not
worth the effort’ on the content of your questions [and
so are ignored]?”

While textual communication removes social cues and
may lead to individuals responding in what appears to be
a negative or even confrontational manner, our interviewees
stated that list etiquette is very importantLG,LI,LK and that
they make a concerted effort to be polite and to respond
to authorsLG,F1. During our manual analysis, we found
that authors who were overconfident, rude, or displayed a
sense of entitlement were frequently ignored, “flamed”, or
reprimanded. Developers who fixed authentic problems or
conducted themselves modestly usually received some form
of response, even if only to point out that their contribution
was redundant or outside the scope of the project. We also
saw instances where novice authors ignored polite detailed
reviews from core developers.

There are instances where interesting contributions can be
inadvertently lost, i.e. ignored, in the “noise” on a mailing
list. As we have seen, it is common project policy to ask that
ignored contributions be reposted. Bug tracking systems can
help reduce inadvertently ignored patches. However, when
we examined 20 bugs on KDE’s Bugzilla, we found that bug

tracking may not be the solution. Although external devel-
opers’ bugs were recorded and often discussed in Bugzilla,
many had the complaint, “This still hasn’t been committed!”
For some bugs, a core developer would respond “I’ll look
at this tomorrow” and then never respond again. Although
tracking is certainly an aspect of the ignored review problem,
our findings indicate that the time, priorities, and interest of
the core development team are the more central issues.
To summarize, code contributions that do not generate

sufficient interest within the core development team of an
OSS project are usually ignored. It is up to the author to
resend his or her patch to the mailing list until a response is
received. Tracking mechanisms do not appear to solve the
problem of ignored reviews since reviewer time and interest
are the main obstacles.

6. STAKEHOLDERS, INTERACTIONS, AND

REVIEW OUTCOMES
Q3: Once a patch has been selected for review, which

stakeholders become involved? How do these stakeholders
interact to reach a decision?
Empirical investigations of software inspections and com-

parisons to the literature on group behaviour indicate that
group synergy does not exist in traditional inspection meet-
ings [17]. Extreme discipline and well defined roles inhibit
teams from adapting to the strengths of individual members.
The single goal of a traditional inspection meeting is to find
defects; no discussion of a fix is allowed during the meet-
ing [5]. Furthermore, time pressures can have the unintended
effect of changing the goal from finding all defects to finishing
the meeting on time [17].

In the previous section, we discussed how OSS developers
are allowed to naturally gravitate towards contributions they
are interested in or responsible for, and are competent to
review. In this section, we first discuss the types of patches
and review outcomes. We then describe stakeholder charac-
teristics and ways that stakeholders with different skill sets
and individuals of varying status participate in reviews.

6.1 Patch Types and Review Outcomes
Patches can be classified as followsSW,LG:
(1) those that lead to a purely technical discussion, and
(2) those that lead to a discussion of project objectives,

scope, or politics.
The different patch types lead to different styles of review

and interactions among stakeholders. Technical patches are
comparatively simple to review. The reviewer asks, “does
the patch do what it claims to do and are there any flaws in
the implementation?”SW Both author and reviewer accept
that the patch is a necessary change to the system. In
contrast, when reviewers question the value of a contribution
and project scope and politics are discussed, a great deal of
diplomacy can be required. Instead of focusing on technical
aspects, discussions focus on whether the change is necessary
and the effect it will have on other aspects of the system. In
the context of the two types of patches, we list the reasons
why our interviewees rejected a patch or required further
modification before accepting it.

Technical issues:

• Obviously poor quality code (e.g. novices that are
clearly out of their depth)LG,KS

• Violation of style or coding guidelines (e.g. not portable
code)LK

• Gratuitous changes mixed with “true” changes (e.g.
re-indenting a file in the same patch as a bug fix)F1

• Code does not do or fix what it claims to or introduces
new bugsLK,KF,KS

• Fix conflicts with existing code (i.e. integration)A1,LG

• Use of incorrect API or libraryLK

Feature, scope, or process issues:

• Timeline prevents addition of fix or feature (e.g. new
code during a code freeze)LI

• Poor design or architectureLG,LK

• Fix is misplaced or does not fit design of the system
(e.g. optimization for a rare use case)SW,KS

• Addition of a large codebase or feature that no individ-
ual is willing to maintain or review (e.g. new subsystem
that is outside of the core developers’ interest)A1,F1

• Project politics (e.g. ideology takes precedence over
objective technical discussions)A1,F2

• Addition of code that provides no significant improve-
ment over existing code 3

While technical issues dominate the discussions on OSS
mailing lists, project scope and other political issues can
lead to tiring, vitriolic debates. However, according to our
interviewees, this level of conflict is rare (see Section 7) as
core developers have a preference to keep what works over
adding a new feature with questionable value.

“I’m not claiming this [proposal ...] is really any bet-
ter/worse than the current behaviour from a theoret-
ical standpoint, but at least the current behaviour is
tested , which makes it better in practice. So if we
want to change this, I think we want to change it to
something that is obviously better.”

Torvalds, http://kerneltrap.org/mailarchive/

linux-kernel/2007/7/26/122293

6.2 Stakeholder Characteristics
When asked, “Which roles do you see during a review?”,

interviewees seemed confused by our question and, instead
of roles, described characteristics or manners in which stake-
holders interacted.

In our manual analysis of reviews, two main general roles
emerged: reviewer and outsider. Interviewees added subtle
depth further describing the characteristics and interactions
during a review.

6.2.1 Reviewer Characteristics

Our analysis of reviews revealed several reviewer char-
acteristics. These were supported by discussion with our
interviewees. The terms used by GleixnerLG of the Linux
project were particularly descriptive and we have used them
below: objective analyzer, fatherly adviser, grumpy cynic,
frustratedly resigned, and enthusiastic supporter. We divide
them into positive and negative personas.

3This theme was found only during manual analysis of re-
views

Positive Personas

Objective analyzer: All reviewers are expected to provide
a disinterested analysis of the patch. This style of analysis is
the goal and intended purpose of peer review. Interestingly,
reviewers often provide their criticisms as questions, which
can forestall adversarial behaviour and encourage objective
discussion, use cases, and “what if” scenarios (see Figure 1).

Expert or fatherly adviser: New developers may not
understand all the subtleties and quirks of both the sys-
tem and the development communityKF . This experience
is built up over time. Expert reviewers often provide ad
hoc mentoringSW,LG to novices by, for example, pointing
out dead ends, providing links to email discussions of re-
lated past issues, and passing on the culture of the commu-
nity. Sometimes the “fatherly adviser” will simply rewrite
the code himself instead of fixing the novice’s convoluted
patchLG,F2,KS .

Enthusiastic supporter or champion: When the au-
thor of a patch is not a committer (i.e. not a core developer),
an enthusiastic reviewer or champion must shepherd the
patch and take responsibility for committing it. If no one
champions an outsider’s patch, it will not be committed.
Champions are also present when it is unclear what the

best solution is. In this case, different developers put their
support behind different competing solutions, indicating the
feeling of various segments of the community.

Negative Personas

Grumpy cynic: Experienced project members can become
cynical when, for example, novices repeatedly suggest a
“solution” that has been explored in the past with an outcome
of failure. “I usually try to be calm and polite, but there are
times where sarcasm or an outburst of fury becomes the last
resort.”LG

Frustratedly resigned: When a review discussion has
been carrying on for an extended period of time, a reviewer
may simply resign from the discussion and refrain from com-
menting. Since “silence implies consent” in OSS communi-
ties [16], the developers who continue the discussion ulti-
mately make the decisions that influence the system. When
any reasonable solution will suffice, the most effective ap-
proach is to leave the discussion. These fruitless discussions
are discussed in detail in Section 7.

6.2.2 Outsiders

Having a large community of knowledgeable individuals,
outside of the core development team, who can provide
feedback and help with testing, is one of the strengths of
OSS development [14].

However, unlike a core developer who has been vetted and
voted into the inner circle or “appointed” as a maintainer of
a subsystem, outsiders come from a wide swath of experience
and expertise, which can vary drastically from that of the core
development team. These differences can be both an asset
and an obstacle. The interviewed core developers had mixed
feelings about the contributions from outsiders. Outsiders
made positive contributions by suggesting real world use
cases and featuresA1,SW,LG, providing expert knowledge that
the core team lacksA1,F1, testing the system and the APIsSW ,
providing user interface and user experience feedbackF1, and
filing bug reportsLG,F2 and preliminary reviewsKF,KS . Ac-
cording to interviewees, negative contributions came in the
form of, often rude, requests for features that had already

been rejected for technical reasonsLG, as well as use cases
and code optimizations that were too specific to be relevant
to the general communitySW .
The themes of competence and objectivity emerged from

the interviews and manual analysis as attributes that make an
outsider an important contributor to OSS projectsSW,LG,F1,F2.
Competence need not be technical when it comes from an
outsider, but it is usually in an area that is lacking in the
core development team. In general, non-objective opinions
are shunned in this meritocratic community.

While most will be of limited helpLI,F1,F2,KF , there are a
small number of outsiders that are critical to the success of
an OSS projectSW,LK,F1. For example, external developers
who typically write code for a subproject that depends on the
software being developed by the main project make critical
contributionsSW,F1. In the case of the Apache foundation,
the httpd server is used by other modules that have a larger
and faster growing code base than the httpd server itself.
Developers working on these dependent modules find bugs
and provide use cases that are based on objective, real world
experience. They also often provide competent code and
reviews during the resolution of a bug that affects their
project.
In summary, the shift away from explicit roles and time

constrained meetings has allowed peer review to move from
a purely defect finding activity to a group problem solving
activity that recognizes the varying strengths of participants.
Patches can lead to interactions between stakeholders that
are purely technical or that involve scope and political is-
sues. Reviewers take on various personas and competent and
objective outsiders contribute knowledge lacking in the core
team. Outsiders can also hinder the review process, a topic
we quantify in the next section.

7. BIKE SHED DISCUSSION:

TOO MANY OPINIONS
Q4: What happens to the decision making processes when

very large numbers of stakeholders are involved in a review?
A disadvantage of broadcasting to a large group is that

too many people may respond to a patch, slowing down the
decision process. In traditional organizations, this problem is
known as Parkinson’s Law of Triviality [13]. It has been re-
popularized in the OSS community by Kamp as the “painting
the bike shed” effect [9] – it does not matter what colour a
bike shed is painted but everyone involved in its construction
will have an opinion.

Our interviewees were aware of the bike shed effect and
many referred to it explicitlyA1,SW,LG,F2. They dreaded
these types of discussions and made every effort to avoid
them. Some projects have explicit policies on how to avoid
the bike shed effect. For example, on the SVN project, when
a core developer says “this discussion is bike shedding,” core
developers are supposed to ignore any further conversation
on the thread [6]. Interviewees stated that this level of
conflict was rareA1,SW,F1 and usually involved uninformed
outsidersLG,LI,F2. However, we wished to quantify how
influential outsider opinions are on OSS projects and how
often bike shedding does occur.
To create a measure of the bike shed effect, we first note

that in Fogel’s experience, “bike shed” problems are identifi-
able by a lack of core group members in a large discussion
thread [6]. We divide all stakeholders involved in all re-

Apache SVN FreeBSD KDE
Percentage of reviews:
Outsiders involved 30% 23% 13% 18%
Outsiders majority 5% 3% 2% 4%

“Outsiders’ influence” measure correlated with:
Time for review −.17 −.24 −.32 −.20
Total messages −.53 −.59 −.60 −.38
Core-dev messages −.76 −.77 −.77 −.63

Table 1: The influence of outsiders during the review

process

views into two categories: core developers, who have commit
privileges, and outsiders, who do not 4.
If the bike shed effect is a significant problem on OSS

projects, we would expect to see many reviews dominated by
outsiders. Table 1 shows that the number of messages sent by
outsiders only exceeded that of the core development group
in between 2% (in the case of FreeBSD), and 5% (in the case
of Apache) of the time. However, outsiders were involved
in between 13% (for FreeBSD), and 30% (for Apache) of all
review discussions.

We also create an “outsiders’ influence” metric by dividing
the number of outsider messages by the total number of
messages in the review thread. In examining threads that
had at least one outside reviewer, we found that outsider
influence was weakly correlated with threads that lasted for a
shorter period of time (−0.17 ≤ r ≤ −0.32), moderately cor-
related with fewer total messages (−0.38 ≤ r ≤ −0.60) and
strongly correlated with fewer messages from core developers
(−0.63 ≤ r ≤ −0.77) 5. These negative correlations indicate
that outsiders receive less attention than core developers.
While outsiders are clearly involved in a significant num-

ber of reviews, the “bike shed” effect, which Fogel defines
as a long discussion that involves few core developers, does
not appear to be a significant problem during OSS reviews.
Our findings appear to support Bird et al.’s [3] finding that
individuals with lower status in an OSS community (i.e. out-
siders) generally receive little attention from the community.

8. SCALABILITY
Q5: Can large projects effectively use broadcast based re-

view?
Intuitively, broadcasting information to a group of individ-

uals should become less effective as the number and range of
discussions increase. Our goal is to understand if and how
large projects, Linux, FreeBSD, and KDE (see Figure 2),
have adapted the broadcast mechanism to maintain aware-
ness and peripheral support of others, while not becoming
overwhelmed by the number of messages and commits. The
themes of multiple topic-specific mailing lists and explicit re-
view requests to developers emerged on the periphery of our
previous analysis as potential effective scaling techniques. In
this section, we focus on these themes and develop research
questions that allow us to understand the advantages and
disadvantages of using each technique to manage the review
process on large projects.

4We were unable to use this measure for Linux because there
is no central version control repository and commit privileges
are not assigned
5All correlations are statistically significant at p < 0.01

Apache SVN FB (1) KDE (1) Linux FB (90) KDE (113)

1
5

1
0

5
0

1
0

0
5

0
0

1
0

0
0

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 p

e
r

d
a
y
 (

lo
g
)

Figure 2: Scale of the project by emails sent daily

8.1 Multiple Lists
Large projects have more than one mailing list that con-

tains review discussions. Lists have specific charters that
isolate developers working on a specific topic, or set of re-
lated topics, into a workgroupA1,SW,LG,LI,LK,KF,KS . These
divisions also allow developers to create email filters based
on the mailing lists in which they are interested, as discussed
in Section 4.1.
Do multiple mailing lists reduce the amount of traffic on

individual lists?
Figure 2 shows that FreeBSD has 90 mailing lists with an
overall median of 233 messages per day, while its busiest
single mailing list has a median of 34. KDE has 113 mailing
lists with an overall median of 226 messages per day, while
its busiest single mailing list has a median of 20. The devel-
opment lists for Apache and SVN have a median of 21 and
34 messages, respectively. Some of our interviewees discussed
how they were able to keep up with all the messages on topic
specific listsA1,SW,LI,LK,F2 (e.g. quotation in Section 4.1).
With the exception of the Linux Kernel Mailing List 6, which
has a median of 343 messages per day and is discussed in
the next section, it appears that while the total amount of
traffic on large projects is unmanageable for any individual,
an individual should be able to follow all the traffic on a
specific list.
Do topic specific lists become isolated and lose valuable

outsider input?
One worry with list specialization is that developers who are
peripherally related to a discussion will not be made aware
of it since they are not subscribed to that particular list.
In this way, valuable outsider input could be lost. Large
projects dealt with this issue by having individuals who
bridge multiple lists.
There are two types of bridging: discussion threads that

span more than one list and individuals who are subscribed
and discuss topics on more than one list. Our interviewees
stated that they subscribe to between 5 and 30 mailing lists
(see Section 4) and that while cross-posting does happen, it
is generally rare and only occurs when a issue is felt to be

6Although Linux does many separate mailing lists, in this
work we examine only the main development list: the LKML.

related to an aspect of the system covered by another mailing
listSW,LG,LI,LK,F1,F2,KF,KS . Discussions can also be moved
from more general lists to specific lists.

How often do review threads span multiple lists? How many
lists do individuals comment on?
While our interviewees indicate that mailing lists are bridged,
we use three measures to quantify the strength of relation-
ships between lists. In the context of review threads, we
examine how many messages are posted to more than one
list, how many threads span more than one list, and how
many lists an individual has commented on.

We find that few messages are posted to more than one list
and few review discussions span more than one list: 5% and
8% respectively for FreeBSD, and 1% and 15% respectively
for KDE. That cross-posting only occurs between 5% and
15% of the time is not surprising, as the lists are set up to
refer to modular components of the system. High levels of
cross-posting might indicate that lists need to be merged.
In contrast to the relatively small proportion of cross-

posted threads, many individuals posted to multiple lists –
30% and 28% of all individuals 7 have posted to at least two
lists for FreeBSD and KDE, respectively. Only 8% and 5%
of individuals posted to more than three lists for FreeBSD
and KDE, respectively. However, on the FreeBSD project,
one individual posted to 24 different lists.

In summary, multiple topic-specific mailing lists appear to
be one technique used by large projects to deal with what
would otherwise be an overwhelming amount of information.
These lists allow developers to discuss details that may not
be relevant to the larger community and then to sometimes
post final changes to more general lists for further feedback.
The mailing lists for FreeBSD and KDE appear to be rela-
tively well separated as there are few cross-posted messages
and threads. Approximately one third of the community is
involved in reviews on more than one list. These individuals
bridge multiple lists, allowing for outsider input on otherwise
isolated lists.

8.2 Explicit Requests
In traditional inspection, the author or manager explicitly

selects individuals to be involved in a review (e.g. Fagan [5]).
With broadcast based review, the author addresses a patch
email to the mailing list instead of particular individuals;
thus, information an author has about potential reviewers
is unused. Explicit requests or messages sent directly to
potential reviewers as well as the entire mailing list can com-
bine an author’s knowledge with the self-selection inherent
in broadcasting. Since core developers filter messages and
pay more attention to messages sent directly to them (see
Section 4), if an author wants to increase the chance that
a particular reviewer will comment on a patch, the author
could explicitly include the reviewer in the “To” or “Cc” fields
of an email. In this section, we measure the impact of the
author explicitly addressing reviewers in the Linux project.
On the Linux project, 90% of patch review requests had

more than one recipient (i.e. the mailing list and one or more
individuals). Compared to the following projects, this is
remarkably high: Apache 9%, SVN 12%, FreeBSD 27%, and
KDE 13%. Since there are relatively few explicitly addressed
emails, with the exception of Linux, it appears that most of
the projects examined rely on multiple, small mailing lists

7In this case an“individual” is represented by a distinct email
address

Requested Explicit Implicit Total

1
2

5
1
0

2
0

5
0

1
0
0

N
u
m

b
e
r

o
f
re

v
ie

w
e
rs

 +
 1

 (
lo

g
)

Figure 3: Explicit vs. Implicit Responses

to ensure that interested reviewers find patches they are
competent to review. Given that the Linux mailing list has
a median of 343 messages per day, more than the combined
multiple lists on FreeBSD or KDE, and that there is a much
higher percentage of explicit review requests, we decided to
investigate the following:
Does the Linux list represent a breakdown in broadcast mech-
anism whereby self-selection is ineffective and review requests
must be explicitly sent to expert reviewers?
To investigate this phenomenon, we measured the follow-

ing for each review thread on Linux: (1) the number of
people who were explicitly addressed – explicit request (or
requested), (2) the number of people who responded that
were explicitly addressed – explicit response, (3) the number
of people who responded that were not explicitly addressed –
implicit response, and (4) the total number of people who
responded – total response. Since individuals may use multi-
ple email addresses, we resolved all email addresses to single
individuals as per Bird et al. [3]. Furthermore, a mailing
list can only receive email, so we used regular expressions
and manual examination to determine which addresses were
mailing lists and which were individuals. Explicit requests
sent to other mailing lists were removed from this analysis,
but could be examined in future work.
If there is indeed a breakdown in the broadcast mecha-

nism, we would expect to see few implicit responses. Figure 3
shows that this is not the case. The median number of people
explicitly requested is three. The median number of people
who explicitly responded is one and the median number of
people who responded without an explicit request is one,
giving a total of two reviewers. A Wilcoxon test failed to
show a statistically significant difference between the number
of people who explicitly responded compared to the number
that implicitly responded. Also, a Spearman correlation test
revealed that the number of explicitly requested individu-
als had almost no effect on the number of individuals that
implicitly responded, r = −.05. However, a moderate cor-
relation existed between the number of explicitly requested
individuals and the total number of respondents, r = .30 8.

8All Spearman correlations are statistically significant at
p < 0.01

These results show that, for the Linux project, although
the original message usually has explicit recipients, this does
not stop other developers from responding, and implicit re-
sponses occur at least as often as explicit responses. Despite
high levels of explicit requests to potentially expert review-
ers, Linux sees a nearly equal number of implicit responses
(i.e. self-selection). As such, Linux appears to maintain the
advantages of broadcasting reviews, while allowing authors
to notify reviewers they believe should examine their contri-
bution.

9. THREATS TO CREDIBILITY
In this section, we discuss the internal and external credi-

bility of our research [12]. Internal credibility assesses how
meaningful and dependable our findings are within the phe-
nomenon and context under study. While external credibility
assesses the degree to which our findings generalize across
different populations and contexts.

Internal Credibility. While there are many aspects to in-
ternal credibility the goal is to examine the “credibility of
interpretations and conclusions within the underlying setting
or group.” [12] We assess the fit and level of triangulation of
our findings.

Fit: Do the findings resonate with the interviewed core
developers? A summary of the research findings was sent
to all participants. We also asked them to search for their
interviewee code to ensure that statements they had made
were not misinterpreted or taken out of context. Of the
nine interviewees, A1, LG, LK, F1, and KF responded. The
interviewees were interested in and agreed with the findings,
with LG and LK pointing out two minor issues (a missing
footnote and a typo).

Triangulation “involves the use of multiple and differ-
ent methods, investigators, sources, and theories to obtain
corroborating evidence” [12]. We used multiple data sets
(i.e. archival and interview data), and multiple methods
(i.e. grounded theory and various measures of review) to
triangulate our findings.

External Credibility. “External credibility refers to the de-
gree that the findings of a study can be generalized across
different populations of persons, settings, contexts, and
times.” [12]
We examined publicly available data on five successful

OSS projects, so it should be possible to replicate our study
on these or other projects. To improve the generalizability
of our results, the case studies were chosen in a sequence
that tested weaker aspects of our themes [19]. However,
we examined only large, mature projects, so future work is
required to examine the review processes of smaller and less
successful projects.
Furthermore, KDE is the only project that included non-

infrastructure software. KDE uses tracker based review,
while post-commit review was still conducted on the mailing
list. Studies of peer review on projects developing end-user
software, e.g. Firefox and Eclipse [4, 11], indicated that when
defects are reported by non-developers, improved defect and
review tracking tools are required. We only interviewed core
developers; while these developers do the majority of the
work on an OSS project [10], attending to the needs of and
interviewing outside developers is left to future work.

10. SUMMARY AND CONCLUSION
In this paper, we conducted five case studies, manually

coding hundreds of reviews, interviewing core developers,
and measuring several aspects of OSS review processes. Our
goal was to understand the mechanisms and behaviours
that facilitate peer review in an open source setting. We
summarize our results below.
(1) How do experts decide to review contributions in a

broadcast of general development discussion?
Developers use filtering, progressive detail within patches, full
and interleaved histories of discussion, and recipient building
based on past interest to find contributions that fall within
their area of interest and obligation.

(2) Why are patches ignored? What is their impact on the
project?
Developers prefer to postpone reviews rather than rush
through them. Therefore, patches that fail to generate in-
terest among the core development team tend to be ignored
until they become interesting. It follows that issue tracking
does not completely solve the problem of ignored patches.

(3) Once a patch has been selected for review, which stake-
holders become involved? How do these stakeholders interact
to reach a decision?
Roles are not assigned in OSS development. This allows com-
petent and objective stakeholders to play a role that accords
with their skillset and leads to group problem solving. The
style of interaction among stakeholders depends on whether
the patch can be assessed from a technical perspective or
whether project scope must also be considered.

(4) What happens to the decision making process when
very large numbers of stakeholders are involved in a review?
The latter type of patch can lead to politicized, long, opin-
ionated and unproductive discussion, i.e. bike shed painting
discussion. These discussions are relatively rare, and core
developers typically try to avoid them.
(5) Can large projects effectively use broadcast based re-

view?
While investigating scale issues, we found that two large
projects, FreeBSD and KDE, effectively used multiple topic
specific lists to separate discussions. Developers are typi-
cally subscribed to multiple lists, which results in lists being
bridged when a discussion crosscuts topics. The Linux Ker-
nel mailing list is an order of magnitude larger than the
topic specific lists on the projects we examined. On this list,
explicit requests to reviewers who the author believes should
see a patch are employed, alongside the general broadcast.

OSS development continues to surprise software engineer-
ing researchers with its unique and often unintuitive ap-
proaches to software development that nevertheless result in
mature and successful software products [10, 8]. Organic, de-
veloper driven, community-wide mechanisms and behaviours
that use simple tools that rely heavily on the human can
effectively manage large quantities of broadcast reviews and
other development discussions.

11. ACKNOWLEDGEMENTS
We would like to thank the interviewees for participating

in this study. We also thank Daniel German, Gargi Bougie,
and the Chisel Group for their feedback and support.

12. REFERENCES
[1] J. Asundi and R. Jayant. Patch Review Processes in

Open Source Software Development Communities: A
Comparative Case Study. HICSS, 0:166c, 2007.

[2] C. Bird, A. Gourley, and P. Devanbu. Detecting Patch
Submission and Acceptance in OSS Projects. In MSR
’07, 2007.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. pages
137–143, 2006.

[4] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: improving
cooperation between developers and users. In CSCW
’10, pages 301–310, 2010.

[5] M. Fagan. A history of software inspections. 2002.

[6] K. Fogel. Producing Open Source Software. O’Reilly,
2005.

[7] B. Glaser. Doing grounded theory: Issues and
discussions. Sociology Press Mill Valley, CA, 1998.

[8] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
CSCW ’04, pages 72–81, 2004.

[9] P.-H. Kamp. A bike shed (any colour will do) on
greener grass... FreeBSD mailing list archive
http://www.webcitation.org/5ZZaDOxyW, 1999.

[10] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1–38, July 2002.

[11] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and
S. Rawal. The role of patch review in software
evolution: an analysis of the mozilla firefox. In
IWPSE-Evol ’09, pages 9–18, 2009.

[12] A. Onwuegbuzie and N. Leech. Validity and
Qualitative Research: An Oxymoron? Quality and
quantity, 41(2):233–249, 2007.

[13] C. N. Parkinson. Parkinson’s Law: The Pursuit of
Progress. John Murray, 1958.

[14] E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly and Associates, 1999.

[15] P. C. Rigby. Understanding Open Source Software Peer
Review: Review Processes, Parameters and Statistical
Models, and Underlying Behaviours and Mechanisms.
thechiselgroup.org/rigby-dissertation.pdf,
Dissertation, 2011.

[16] P. C. Rigby, D. M. German, and M.-A. Storey. Open
Source Software Peer Review Practices: A Case Study
of the Apache Server. In ICSE ’08, pages 541–550,
2008.

[17] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The
Effectiveness of Software Development Technical
Reviews: A Behaviorally Motivated Program of
Research. IEEE Trans. Softw. Eng., 26(1):1–14, 2000.

[18] S. Whittaker and C. Sidner. Email overload: exploring
personal information management of email. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 276–283, 1996.

[19] R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series.
Sage Publications Inc., 2 edition, 1994.

