
A preliminary examination of code review processes in
open source projects

Peter C. Rigby and Daniel M. German
Software Engineering Group, Dept. of Computer Science

University of Victoria
{pcr, dmg}@cs.uvic.ca

1. INTRODUCTION
This paper represents a first attempt to understand the code review
processes used by open source projects. Although there have been
many studies of open source projects [1, 2, 4], these studies have
focused on the entire development process and community of the
project or projects. We are not aware of any paper that has exam-
ined the review process of open source projects in depth or com-
pared the review processes used among projects. We examined the
stated and observed code review processes used by 11 open source
projects; the four most interesting projects are discussed. Addition-
ally, we examined the mature, well-known Apache server project
in depth. We extracted the developer and commit mailing lists into
a database in order to reconstruct and understand the review and
patch processes of the Apache project. The paper is broken into
six sections. The remainder of this section introduces our research
questions. The second section introduces our research methodol-
ogy and data extraction techniques. The third section discusses
the actors in the process, introduces a general patch process, and
contrasts the formal and observed processes used by GCC, Linux,
Mozilla, and Apache. The fourth section discusses some observed
review patterns. The fifth section quantitatively answers our re-
search questions using the Apache data (although we discuss our
findings, due to time and other considerations, we leave the de-
velopment of hypotheses to future work). In the final section we
present our conclusions and future work.

1.1 Research Questions
What is the patch process and review process used by the projects?
The review process is part of the patch process, as such one cannot
describe the review process without understanding the patch pro-
cess and project structure. We provide a qualitative description of
these processes and the project structure in the next section.

What types of review does a the project use?
We expect that projects do not use only the traditional, formal style
of review, but also other lightweight reviews.

Why are patches rejected? What percentage of patches are re-
jected?

We seek to understand what makes a good and bad patch.

Who performs the review? Are the top developers also the top re-
viewers?
We want to understand if the best developers are also the best re-
viewers. Although code review ownership is not addressed in this
paper, in future we would like to determine whether reviewers al-
ways review code pertaining to a certain set of files or a given area
of expertise.

When are reviews performed? What is the frequency of review?
In a proprietary setting reviews are performed at predetermined
times in the development cycle. Does a similar phenomenon oc-
cur in OSS review?

How long do reviews take to perform? How does the patch size
affect the review?
Traditional review usually takes no more than two hours and in-
volves a complete solution to a problem. Is this the case in OSS
reviews?

How does merit-based trust among actors affect the review? Are
more trusted individuals reviewed less often? How much feedback
is provided in the review?
Open source projects are based on trust, only developers who are
trusted have commit privileges. However, trust may result in fewer
reviews of core developers producing more defects in the product.

What kinds of non-source code patches are reviewed? How does
the kind of patch affect the review?

What affect does reviewing have on other elements of the patch
process? What is the relationship between reviewing and testing?
Both testing and review are defect detection techniques, as such
they compete for developer attention. Additionally, some projects
are more difficult to create automated tests than others, which will
effect the relative amount of review and testing?

2. METHODOLOGY AND DATA SOURCES
In order to create an accurate picture of the code review process, we
first examined the qualitative patch statements. These statements
were created by the project to guide developers both external and
internal to the project. They helped us focus our later investiga-
tion of qualitative review patterns and quantitative analyses. Our
qualitative research allowed us to identify recurring patterns in the
data that might be difficult to detect quantitatively and helped to
assert our quantitative conclusion by providing examples. Both the
project statements and the qualitative investigation of development



artifacts guided the development of our research questions.

In our quantitative section we examine the Apache project’s devel-
oper and version control mailing lists based on our research ques-
tions. The developer’s mailing list contains general discussion re-
lated to the development of the server. We were most interested
in patches that were reviewed and discussed on the mailing list.
Since this mailing list was large (over 100,000 emails), it was dif-
ficult to resolve the names on the mailing list as many individuals
had multiple email names (e.g., Peter Rigby vs. Peter C. Rigby vs.
pcr) and many email addresses. There were also some inconsis-
tencies in the data, such as emails that belonged to a discussion,
a thread, being separated from that thread. These inconsistencies
were removed and now involve less than 10% of the emails. The
commit (version control) mailing list receives an email every time
a commit is made to the version control system. The commit con-
tains the difference between the old and new file (i.e., the lines that
have changed, and some surrounding context); the patch submit-
ter’s name; the reviewer’s name; the time the commit was made;
a log describing what was changed; a list of modified, added, and
removed files; and a subject that begins “cvs [or svn] commit:” fol-
lowed by the list of files. There were often more than one submitter
and reviewer. The commit mailing list was much easier to work
with because user names are unique and many of the entries are
generated by a computer, making the data far more consistent than
the developer’s mailing list.

The data was extracted into a mysql database using Perl scripts.
Once in the database we fixed inconsistencies with the data using
(sometimes iteratively) SQL statements. A database is significantly
easier to work with, German [3], than creating a data file from
Perl scripts for each research question as was done by Mockus et
al. [4]. Querying the database made analysis significantly quicker
and more accurate. We hope to use this data to validate our own
results against Mockus’ results.

3. PATCH STATEMENTS
A patch is a change, fix, or enhancement to the product, includ-
ing source code and documentation. Patches are an integral part of
the OSS development process. Most projects have a statement that
describes their requirements for a patch and how the patch is pro-
cessed. In contrast, few projects have a statement describing how
they conduct code reviews, but most mention code review in their
patch statement. We describe the elements of the patch statement
and project structure that are related to code review.

3.1 Roles
The actors in the patch process include the following: a bug re-
porter, a contributor, a tester, a reviewer, and a committer. An in-
dividual may play one or more roles on any given patch and the
roles may be played by any number of individuals. Since this pa-
per is an investigation of code review processes, we mainly focus
on code review, but we also discuss aspects of bug reporting and
testing when they pertain to code review.

3.2 General Patch Process
No project used exactly the same patch process as another project.
Indeed, many newer and smaller projects did not have a formal
statement for the processing of patches. Mature projects had state-
ments that appear to have evolved over the lifetime of the project.
However, most projects’ processes contained the elements described
in the general patch process below.

1. someone reports a bug (defect) or requests a new feature

2. it becomes a priority (e.g., a lot of people find/want it or it is
critical)

3. there is a discussion about the bug

4. someone posts a patch (sometimes just a work around in the
case of a bug) there is often some uncertainty about the patch.

5. people try the patch, (lazy testing) (if it fails, no need to re-
view a broken patch), but ultimately a successful patch is
produced

6. the patch is reviewed and formally tested (sometimes mini-
mally)

7. once the patch is deemed acceptable, it is committed and re-
leased in the next version

3.3 Commonalities in Review Processes
To avoid repetition, we discuss elements of review that were com-
mon among the four projects. First, every project had a coding
standard. Second, projects required contributors to update docu-
mentation, especially for new functionality. Third, projects em-
phasized that patches must be independent (e.g., don’t send major
functionality changes with simple formatting changes), complete,
and small. All projects agreed that smaller patches were generally
easier and quicker to review than larger patches. Fourth, patches
were often ignored and lost; it is the responsibility of the contribu-
tor to resend the patch at defined intervals. All patches that are sent
from external contributors (i.e., developers without commit privi-
leges) are reviewed.

3.4 GCC - Write Policies
The GNU Compiler Collection’s (GCC) process for submitting a
patch for review follows the general pattern. GCC requires more
extensive testing 1 than most projects and provides a test suite that
can simulate other hardware environments. GCC requires that a de-
tailed commit log, linked to all problem reports, be included with
the patch. If the patch affects many different aspects of the com-
piler, it will have to be sent to all affected mailing lists (all patches
are sent to the gcc-patches mailing list). GCC has a long patch
resend time period of two weeks.

GCC has developed a strict set of policies for granting commit priv-
ileges. These policies are not enforced by subversion, GCC’s ver-
sion control tool. Rather, their implementation is dependent on
the integrity and understanding of the 148 2 developers who have
commit privileges. The project relies on its steering committee to
discipline uncooperative members.

GCC’s policies create four categories of write privileges. Devel-
opers with global write privileges do not need approval to check
in code to any part of the compiler; there are 11 developers with
global write privileges. The second category consists of developers
with local write privileges; they are authorized to commit changes
to sections of code they maintain without approval. Developers in
this category are generally responsible for ports to other hardware
platforms. The third category consists of regular contributors who
can only write after approval from the maintainer of the section
1http://gcc.gnu.org/contribute.html\#testing
December 2005
2See GCC’S MAINTAINERS file version 1.439



of code their contribution modifies. The final free for all approval
applies to obvious changes to artifacts like documentation or the
website 3. Consistent with Mockus et al.’s [4] results, the core
group (developers who can commit code to any part of the project)
consists of 11 developers. The core group is supported by a much
larger group of 137 developers who are responsible for ports to par-
ticular hardware environments or regularly provide patches.

GCC’s write policies imply that code must at least be reviewed by
the maintainer of the code. The maintainer of a given section of
code is not required to be reviewed by anyone, nor are developers
with global write privileges.

3.5 Linux - Pyramid of Trust
The Linux Operating System Kernel’s review process is informal 4.
Patches are sent to the appropriate developer in the ‘MAINTAIN-
ERS’ file and the mailing list. To avoid “flaming,” contributors
can privately send works-in-progress to the appropriate maintainer.
Once a patch is considered “obviously correct,” the patch can be
sent to Linus for further review and potential inclusion in the ker-
nel. For a patch to be “obviously correct,” it must be either small
and obvious, critical and obvious, or large and/or complex and re-
viewed and tested. If a patch does not meet the “obviously correct”
criteria, the patch will not be committed. Since test cases for kernel
development are difficult to write, Linux relies on informal testing.
This testing, “lazy testing,” consists of having people try your patch
and reporting whether it worked. Since lazy testing can take a long
time, the contributor may have to rewrite the patch against the latest
kernel to have it accepted.

The Linux project is unique among the examined projects in that
there is only one true committer: Linus Torvalds. Since it is not
possible for Linus to review every patch, he partially depends on his
“lieutenants,” the people he trusts, to determine if a patch is correct.
In turn, the lieutenants, such as Alan Cox, trust other regular com-
mitters, and these regular contributors trust other less well-known
contributors. This “pyramid of trust,” picture which is largely de-
pendent on the Linux source control tool, allows each developer to
maintain their own version of the software and to be the ultimate
judge of what is committed and what is not. In practice. Linus
maintains the current version of the kernel, and he is “very con-
servative about what he lets in,” while maintainers of older kernel
versions, such as Alan Cox, accept more experimental patches. If a
patch proves to be stable, these maintainers send the patch to Linus
for inclusion in the current kernel.

Interestingly, Linus does not provide feedback on patches. Instead,
it is the contributor or a reviewer of the patch who is responsible
for repeatedly sending the patch to Linus until the patch appears in
Linus’s released patch list. Other maintainers will provide feedback
on patches. For example, Alan Cox will always respond, even if the
response is terse. This lack of responsiveness coupled with “lazy
testing” can lead to long patch process times.

3.6 Mozilla - Two Reviewers
The Mozilla project is a suite of applications that were originally
developed by Netscape Inc. under a proprietary license. In January
1998 [5] Netscape released the source code under the Netscape

3http://gcc.gnu.org/svnwrite.html\#policies
December 2005
4For more information see http://www.kernel.org/pub/
linux/docs/lkml/index.html December 2005

Public License and later under the more successful Mozilla Pub-
lic License. The application suite includes a web browser and an
email client. Mozilla also includes software development tools like
bugzilla. Compared to the other projects we examined, Mozilla had
the highest level of code review. “Code review is our basic mecha-
nism for validating the design and implementation of patches.” 5

Since many of the Mozilla projects are dependent on each other,
every commit to the Mozilla repository is reviewed by at least two
independent reviewers. The first type of review is conducted by
the module owner or the module owner’s peer. This review catches
domain-specific problems. A patch that changes code in more than
one module must receive a review from each module. The sec-
ond type of review is called a “super review”. The goal of this
review is to find integration and infrastructural problems that may
effect other modules or the user interface. “Super review” is not
required for independent projects, such as bugzilla. Simple, obvi-
ous patches can request a “rubber stamp” (quick) “super review”.
By requiring both types of review, Mozilla ensures that someone
with domain expertise and someone else with overall module and
interface knowledge have approved the patch.

Mozilla performs daily builds for Linux, Windows, and Mac OSX
at 8am PST. Developers who have committed code in a daily build
are required to be available to fix any build problems associated
with their code. The committer is responsible for any third party
(external) code, but the reviewer is not. The project’s CVS tree,
Mozilla’s uses the CVS version control tool, is closed until all
build problems are fixed. Although Mozilla has very few auto-
mated tests, there are a number of manual tests including “smoke
tests”. Mozilla requires that the build pass the “smoke tests”, which
are run by quality assurance volunteers, before it will open the CVS
tree.

There are 116 developers working on 96 6 Mozilla modules. On
average, developers work on 2.7 different modules; the mean num-
ber of reviewers (owners and peers) per module is 3.2. Currently,
26 7 developers are authorized to perform “super” reviews.

Mozilla reviewers will respond within 24 hours with a schedule for
the review. This project is strongly against checking in uncertain
code, because “Checking code in seems to cause a psychological
effect that the patch is done, it’s time to go on to the next thing, and
requested changes are new and extra [and undesirable] work.” 8

One would expect this statement to lead to long patch times.

All four projects use the Bugzilla bug tracking tool which is de-
veloped by Mozilla. Mozilla’s code review process is more highly
integrated with bugzilla than the other projects. A flag in bugzilla
is set whenever a patch needs to be reviewed, and a request is auto-
matically sent to the reviewer’s mailing list. In the past, most open
source projects used a mailing list to communicate about bugs, re-
views, and all other software artifacts. This developer’s mailing list
made it difficult to track individual problems. Bugzilla has success-
fully integrated bug reporting, testing, and code review in a single

5http://www.mozilla.org/hacking/
code-review-faq.html December 2005
6http://www.mozilla.org/owners.html December
2005
7http://www.mozilla.org/hacking/reviewers.
html December 2005
8http://www.mozilla.org/hacking/
code-review-faq.html December 2005



place, leaving the mailing list for open discussions. The support for
code review is not explicit and leaves much room for improvement.

3.7 Apache - Post-commit Review
The Apache httpd server project, the focus of our quantitative sec-
tion, has a 69% of the server market share 9. The Apache code
review system depends largely on its voting system. This sophisti-
cated system has evolved from the part-time, asynchronous nature
of the Apache community. Most patches are voted upon using a
commit-then-review policy. A developer with commit privileges
is allowed to commit a patch to the repository without review. If
problems arise from the patch or it is in some way not agreeable
to a voting member, the patch can be can be vetoed and must be
reverted to a previous version of the code. For significant changes,
such as a new feature or a new idea, the change must be reviewed-
then-committed. Two days’ notice must be given to allow core
members to review and vote on the issue. Since this kind of change
requires a consensus, at least three positive (+1) votes and no neg-
ative (-1) veto votes must be attained for a change to be accepted.
There are other types of voting systems employed by Apache, but
they are mainly used by the Apache foundation and during the re-
lease process 10.

The Apache website 11 recognizes 54 current core developers. Of
the projects under examination, Apache has the largest number of
committers who can modify any section of the code. This reduces
the amount of review required, but also increases the risk of de-
fective code being added to the project. Apache’s commit policies
create two barriers to ‘buggy’ code. The first barrier is to require
significant changes be to reviewed and agreed on by consensus.
The second barrier is to allow vetoes of committed code. For the
latter to be effective, developers must examine the commit mailing
list to ensure that unacceptable code is not committed.

Apache no longer requires developers to post every patch to the
mailing list because many were unintentionally ignored. Patches
are now posted to the bugzilla bug repository. If a patch requires
review and discussion, the patch is also posted to the developers’
mailing list.

Apache committers are responsible for what they commit. They
generally review, test, and release it on their own system before
committing. Apache has an entire subproject devoted to developing
its test suite 12.

3.8 Automated Testing vs. Review
What effect does reviewing have on other elements of the patch
process? What is the relationship between reviewing and testing?

We leave quantitative answers to this question for future work. We
noticed that projects that have many automated tests performed less
review. For example, both GCC and Apache have extensive test
suites and committers who do not need to be formally reviewed by
anyone. Linux represents an extreme in which only one person has
commit privileges. However, the closer (higher) you are to the top

9http://news.netcraft.com/archives/2005/04/
01/april 2005 web server survey.html April 2005

10http://www.apache.org/foundation/voting.
html December 2005

11http://httpd.apache.org/contributors/ Decem-
ber 2005

12http://httpd.apache.org/test/

in the pyramid of trust the fewer reviews you must pass through.
Linux relies on informal tests. Mozilla reviews all patches by two
different individuals. They do not have many automated tests and
rely mostly on manual tests. With Linux (operating system) and
Mozilla (GUI), it is difficult to automate tests.

4. ANECDOTAL PATTERNS
After examining the formal review and patch statements, we qual-
itatively examined the mailing lists of Mozilla and Apache. The
main difficulty with developing review patterns before first quan-
titatively evaluating the projects is that it is difficult to find inter-
esting patches through random selection. Patterns become more
interesting when backed by quantitative findings. For example, af-
ter quantitative analysis, one could examine all the patches with the
top number of responses (the most heavily discussed patches). We
present some interesting patterns 13

4.1 Accepted then Rejected
In the Apache review process, a patch is posted to the mailing list
for review. Often the first reviewer would approve the patch, but a
second or even third reviewer would veto it and the patch would be
dropped or reworked.

4.2 External Contributor Rewrite
In all projects, code that comes from external sources (i.e., contrib-
utors who do not have commit privileges) is reviewed. We noticed
a recurring pattern in which an external patch would be below the
acceptable quality required by the project. Instead of providing the
contributor with review comments, as was often done, the commit-
ter would simply rewrite the patch providing the contributor with a
sample of good code.

4.3 Committer as Mediator
Instead of being the principle actor, the committer acts as a knowl-
edgeable mediator/moderator between parties interested in solving
a particular problem. This pattern is especially prominent with
bugzilla because the discussion of the problem need not be posted
to the developer’s mailing list (which can be daunting). In this pat-
tern, the committer usually arrives after some discussion of the bug
has already taken place and potentially after someone has created
a patch. The committer negotiates between those who have a bug
and are willing to test a patch and those who are skilled and frus-
trated enough with the bug to create a patch. The committer pro-
vides deeper insight into the ongoing discussion. We expect that
this pattern will be more prominent with obscure and non-critical
problems.

4.4 Focused Lazy Testing
Instead of using formal test suites, individuals who have a certain
problem will test uncommitted patches and provide feedback. If
the patch does not work it saves a core developer from performing
a review. The testing is focused because only the patch associated
with the bug is tested and lazy because no formal tests are run (the
patch is just tried out).

5. APACHE
In this section, we discuss our results from a preliminary quantita-
tive evaluation of the Apache project.

13Other patterns can be found at guinness.cs.uvic.ca:
8080/∼pcr/OSSCR/ in the reports section.



5.1 Core Group Changes
The Apache core group has changed dramatically over the lifetime
of the project. Of the core group that Mockus et al. [4] studied
between February 1996 and May 1999, only one member is still
part of the top 20 committers in 2005; four members remain in the
periphery of the project. This change is not a recent phenomenon,
as many of the leading Apache developers in 1998 made way for
other developers in 1999 and left the core group in 2000. Examin-
ing the top committer for each year, one notices that this individual
remains on top for two years and gradually fades out over the next
few years. In every instance, the top committer has at least one of
his top two years with more than double the number of commits of
the second highest committer. It will be interesting to use a metric
that takes the movement of all developers, not just the top devel-
oper, into account. We expect that these changes lead to an influx
of new and innovative ideas as well as changes in the development
process. The original statistics that we gathered were project life-
time statistics, from 1997 to 2004 (1996 and 2005 are incomplete),
but due to core group changes, these may be misleading. The task
of analyzing and interpreting individual years is a much more in-
volved and difficult task than analyzing the lifetime of the project.
Where possible, we present yearly and monthly data.

5.2 Types of Review
Another complication is that the Apache project has many different
types of review. The three identified types are pre-commit (formal
review-then-commit), post-commit (commit-then-review), and sec-
ondary review. Pre-commit review is only recorded when a patch is
committed; this means that reviewed revisions and rejected patches
are not recorded. Post-commit review is never formally recorded,
but we can deduce when it occurs by looking in the mailing list for
replies to a committed patch. Since a reply to a patch likely repre-
sents someone finding a problem with the patch, we only know how
many post-commit reviews contained problems. We do not know
how many post-commit patches were reviewed with no problems
found. Furthermore, we do not know how many different individu-
als post-commit reviewed a patch. Secondary review occurs when
an individual does not review the patch themselves, but reads the
comments of the reviewer, and makes an additional comment them-
selves. This type of review is only recorded as replies to a patch in
the mailing list; it can apply to both types of reviews and is mainly
left to future work.

5.3 Accept? Reject?
What percentage of reviewed patches are accepted? Rejected?

Over the lifetime of the project, 5747 patches were submitted for
pre-commit review. Of these patches we were able to trace only
2522 to patch commits (44%). We expect that many patches were
submitted more than once when they were ignored or if they re-
quired patch revisions. To determine why 56% of pre-commit re-
viewed patches were rejected, we intend to do more detailed data
analysis including the use of more sophisticated message threading
techniques and manual classification of a smaller time period.

Over the lifetime of the project, 9% of post-reviewed commits are
found to have problems. We assume, based on qualitative infor-
mation and post-commit review frequency (see below), that close
to 100% of the patches are post-commit reviewed. This implies
that 91% of patches are accepted. Interestingly, 5% of pre-commit
reviewed patches are found to still contain a problem when post-
commit review is performed. We believe that this is because pre-

Figure 1: The cumulative distribution of pre-commit reviews
by year

review patches are generally larger, more complex, and often sub-
mitted by external contributors.

5.4 Reviewer Characteristics
Who performs the review?

Pre-commit review. Over the lifetime of the Apache project, re-
views were performed by 130 individuals; however, many of these
people only reviewed a single patch. In 1999, Mockus et al. [4]
found that the Apache project had a core group size of 15 devel-
opers; this core group made 83% of the commits. Analyzing the
same time period, we found that the top 15 reviewers performed
93% of the reviews. During this time, there were 55 individual
reviewers and approximately 300 [4] individual 14 patch contribu-
tors. It would appear that the review group is a subset of the core
group. Indeed, 10 reviewers are responsible for 84% of the re-
views. In figure 1, it can be seen that between 1997 and 2000 the
core reviews remains small. However, from 2001 to 2002, the re-
view group grows to 20 reviewers performing 84% of the reviews.
In 2004, the review group appears to have shrunk to 12 reviewers.
We are not certain about the cause of this apparent fluctuation in
reviewer group size. Currently, we cannot correlate it with commit
core group size because we have not resolved the patch submitter
names. However, figure 2 shows the total number of commits (in-
flated since submitter name is not resolved) and reviews over the
lifetime of the project. This figure demonstrates that over the life-
time of the project, the group of committers and reviews is almost
the same size. The core group size is much larger, with 80% of the
commits done by 26 individuals, than Mockus’s original finding of
15 developers (likely from core group changes).

The previous results pertain only to pre-commit reviews. Since
post-commit and secondary review require name resolution on the
mailing list (over 100,000 emails), we leave the determination of
who performs these reviews to future work.

Are the top developers (committers) also the top reviewers?

Pre-commit review. We examined the lifetime top committers and
reviewers to determine if the same individuals are on top in both
roles. The group size varied from five to 20 people, each time we

14Examining Mockus’ scripts revealed that resolution of names was
only performed on core group members, thus inflating the total
number of contributors, but having little effect on the percentage
based size of the core group



Figure 2: The cumulative distribution of reviews and commits
for the lifetime of the project.

Common Group Size Percent
3 5 60
5 10 50
13 15 87
16 20 80

Table 1: Lifetime top reviewers and committers. The first col-
umn indicates which individuals are common to both roles. The
second column is the total number of individuals (e.g., top five).
The final column is the percentage of common individuals.

compare the review and commit group to determine how many in-
dividuals are common to both roles. Table 1 shows that at least 80%
of individuals are common to both roles with a group size between
15 and 20 individuals. Surprisingly, the percentage does not con-
tinue to increase as the core group size increases from 15 to 20 (or
from 20 to 26). This indicates that the review group is not necessar-
ily a subset of the commit group. The two roles are even less related
when we examine the top reviewers and committers. Table 1 illus-
trates that 60% or less of the individuals are common to both roles
with a groups size of 10 to 15 individuals. Additionally, results re-
garding the top five reviewers and committers indicate that the re-
viewers have been with the project for an average of 7 years while
the committers have been with the project for average of 4.75 years.
The longevity of reviewers compared to committers indicates that
strong reviewers stay with the project longer and potentially coach
the newer developers. Further study of shorter time periods and
individual people must be done before definite conclusions can be
drawn.

5.5 Review Cycles
What is the frequency of review?

The median number of pre-commit reviews that were accepted is
262 per year (mean 272). The median number of reviews per month
is 18 (mean 22). The actual number is likely higher, since these
results do not account for rejected patches.

The median number of post-commit reviews that contained a prob-
lem is 258 per year (mean 304). The median number of reviews per
month is 17 (mean 23).

Figure 3 shows the fluctuations of two review types at monthly in-

Figure 5: The top individual reviewers and the two years they
were the top reviewer.

tervals. Since more reviews will likely lead to more pre-commit
review acceptance and post-commit reviews that find problems,
this figure adequately shows the fluctuation in both review types.
It appears that few months had high levels of both types of re-
view. The years 2000, 2001, and 2002 (Apache 2.0 was released
in 2002) had a sustained increase in commits over other years (See
figure 4. These three years also have the highest levels of post-
commit reviews and the lowest levels of pre-commit reviews. Qual-
itatively, we know that pre-commit reviewed patches are larger than
post-commit reviewed patches. This size difference would produce
more commits in years with a large number of post-commit re-
views. We discuss other reasons for these fluctuations later. Formal
correlational tests (e.g., Pearson correlations) need to be performed
before we can draw definite conclusions.

When are reviews performed?

The Apache policies state that changes to pre-release code can be
post-commit reviewed, while changes to post-release code must be
pre-commit reviewed. We have not examined the prevalence of
each type of review in pre- and post release in each of the Apache
branches. However, examination of figure 3 shows that the release
of Apache 1.3 in June of 1998 and Apache 2.0 in April of 2002
were followed by an immediate decrease in post-commit review
and a more gradual and less obvious increase in pre-commit review.
It would be interesting to mark all releases on figure 3.

Apache policy also states that pre-commit review must be performed
on new features and complex changes, while the post-commit re-
view policy applies to all other patches. We do not believe that this
is always applied in practice. Figure 5 show how often each type
of review was performed for patches submitted by the top com-
mitter. It appears impossible that the top committer for 1999 and
2000 only contributed seven patches that required pre-commit re-
view (i.e., were complex or were new features). Looking through
the mailing list we found that this individual was aggressive toward
his reviewers and toward people he pre-commit reviewed. We be-
lieve that the type of review performed is more dependent on the
culture of the core group than on the type of patch.

5.6 Merit-based trust
How does merit-based trust between actors affect the review? Are
more trusted individuals reviewed less often? How much feedback
is provided in the review?



Figure 3: The blue line represents pre-commit reviews. The red line represents post-commit reviews.

Figure 4: The number of raw commits per year.



The Apache policy of post-commit review applies only to trusted
developers with commit privileges. This policy is left to the in-
terpretation of the individual and the current understanding in the
core group (See 5. All individuals who do not have commit privi-
leges (i.e., are not in the core group) must be formally pre-commit
reviewed. In future studies, we would like to understand how the
trust affects the number of comments made in a review. We expect
that newer, promising developers would be given more feedback
than older developers with whom the reviewer has an established
relationship.

5.7 Time and Patch Size
How long do reviews take to perform? How does the patch size
affect the review?

Pre-commit review requires matching patches submitted to the mail-
ing list with committed patches. This matching is difficult (rejected
and resubmitted patches) and error prone; it is left to future work.
However, we understand qualitatively that the more formal pre-
commit review takes longer than post-commit review.

Post-commit reviews. The following quotations are from the dis-
cussion that ultimately led to Apache’s acceptance of the commit-
then-review (post-commit) policy. They illustrate many of the prob-
lems associated with pre-commit review. These quotes also quali-
tatively explain the sudden drop in pre-commit review experienced
in early 1998 (See figure 3).

“This is a beta, and I’m tired of posting bloody one-line bug fix
patches and waiting for votes.” “Making a change to apache, re-
gardless of what the change is, is a very heavyweight affair.”, top
reviewer in 1997 complaining about the review process in January
of 1998.

“During the 1.2.5 release [before the acceptance of commit-then-
review], [name removed] noted how many people are just +1ing
[approving] code without really looking at it. I’ve done it. I’m sure
we all have.”, part of discussion in January of 1998.

”I think the people doing the bulk of the committing appear very
aware of what the others are committing. I’ve seen enough cases
of hard to spot typos being pointed out within hours of a commit.”,
part of discussion in January of 1998.

Post-commit reviews happen very soon after the patch is commit-
ted and are done surprisingly fast (even faster than the last quote
would have us believe). Table 2) shows that 46% of post-commit
reviews occurred in less than an hour and 84% occurred in less
than 12 hours. To have response times like these, the Apache group
must watch the commit mailing list very closely; this is why we
believe that members of the core group review close to 100% of
the patches. Additionally, given the short time frame, the size of
the patch is likely very small when compared to longer-term re-
views that examine a larger fix or problem. Mockus et al. [4] found
that Apache had smaller patch sizes than the proprietary projects
they examined; however, they did not understand why the patches
were smaller. Furthermore, figures 4 and 3 indicate that the years
with the largest number of commits also had higher levels of post-
commit review. Since the patch is likely small, the review does not
take very long, so the review does not tax the reviewer’s attention.

Over the lifetime of the project, 9% of all commits received a post-
commit review response (i.e., there was problem with the patch). If

Time period Cumulative percent
less 1 hour 45.8%

less 12 hours 83.8%
less 1 day 91.3%

less 1 week 97.9%
more 1 week 99.6

Table 2: The cumulative percent of responses to commits in a
given time frame. Notice that over 90% of problems are found
in less than a single day.

we assume that all commits are reviewed (high frequency and qual-
itatively), then this means that 9% of the time the reviewer found
a problem in the patch, and 91% of the time the reviewer did not
find a problem in the patch. If pre-commit review was used on all
patches (as is the case with Mozilla), then nine times out of ten the
developer would wait for a review only to hear that his or her patch
was fine (false negative).

Traditionally, views toward code review require patches to contain
a complete solution to a given problem or new feature. Reviews
are taken very seriously and only performed at regular and usu-
ally long intervals. This long review cycle allows problems to be-
come embedded in the code, making their removal difficult. In con-
trast, post-commit review requires solutions (or partial solutions) to
small (or part of larger) problems. Since the code is immediately
committed, the contributor and other developers can start using this
code. If there is a problem in the code, it is noticed very soon after
it is committed, and is relatively easy to remove, as there will be
fewer dependencies on the problematic code.

Mockus et al. [4] found that unlike proprietary projects, the Apache
project’s defect density remained the same before and after a re-
lease. They mention in passing that this result “may indicate that
fewer defects are injected into the code, or that other defect-finding
activities such as inspections are conducted more frequently or more
effectively.” [4] Our quantitative result shows that indeed there are
likely fewer defects injected into the code because reviews are con-
ducted very frequently on small patches. There are efficiency gains
because reviews are performed on small patches, because develop-
ers do not have to wait for a review (90% of the time the patch
passes the review), and due to the relative ease and speed with
which bad patches are caught and removed from the code (a ve-
toed patch must be either reversed, or an immediate fix accepted by
the reviewer).

When compared to proprietary projects, Apache’s pre-release de-
fect densities are lower, but Apache’s post-release defect densities
(the same amount as pre-release defects) are higher. This differ-
ence can be explained by our finding that only 8.7% of problematic
patches, which are found by post-commit review, are discovered
after a single day has passed. This result also makes intuitive sense
for two reasons. First, the reviewer has already reviewed and ac-
cepted the patch and will likely use other defect detection tech-
niques before re-reviewing a patch. Second, as more time elapses,
the number of small, fragmented patches to examine increases,
making it difficult to find the offending patch (tool support could
help). Defects that make it through post-commit review are mostly
found by other defect detection techniques. Since post-release de-
fect densities in Apache are high, it would appear that other open
source defect detection strategies are less effective than traditional
ones. However, we do not feel that the credit for low post-release



Figure 6: First column indicates percentage of commits re-
viewed per year. Second column indicates percentage of com-
mits reviewed by two or more reviewers.

defect densities can be solely credited to post-commit review. Un-
like proprietary projects, testers and users have access to and can
post bugs about the current Apache source. Furthermore, it is diffi-
cult to obtain an accurate measure of defect density (and given that
this is a report I have not had time to review the literature on defect
densities in open source projects). A more recent study by Reason-
ing Inc. 15 indicated that the Apache project has a defect density
comparable to proprietary software.

It must be noted that this type of post-commit review does not scale
to large projects with less modular architectures than Apache’s. It
would appear (although I have not read the literature on peer and
extreme programming) that post-commit review is, in effect, a type
of distributed peer programming. In order to review code in such
a short time period, reviewers must be intimately familiar with the
code, and they must understand the effect of the code on the system
as a whole. This type of distributed peer programming is poten-
tially more efficient than traditional co-located peer programming
(where one developer controls the input devices and the other com-
ments and helps in navigation), because the peer must only examine
what the other developer feels is the correct solution, not every step,
including invalid ones, to the solution. If the peer does not feel the
patch is correct, they can discuss the patch and give the developer
navigational and other help. Furthermore, the advice is not limited
to a single peer. Future experimentation is needed to validate these
results

5.8 How many reviewers review a single patch?
Pre-commit review Although we do not know how many individu-
als unofficially review a patch (i.e., discuss the patch on the mailing
list), we do know how many reviewers officially review patches that
were accepted. For the lifetime of the project, 56% of patches were
reviewed by one individual, 82% of reviews were performed by
one or two reviewers, and only 18% of reviews had more than two
reviewers. Figure 6 shows the percentage of commits that were re-
viewed in each year and the number of these commits that involved
more than one reviewer. Again, it is obvious that certain years had
high levels of involvement in the review process while other did not
(Compare with figure 3.

Post-commit review. The median number of responses is two
(mean 3.8). Normally, the first email describes the problem with
the patch (is a response to the commit) and the second email is the
response addressing the patch problem. Examining 80% of the re-
views in ascending order revealed that these patches received 4 or
fewer responses (not including the initial problem/review email).
This finding shows that not only does the process of review hap-
pen quickly (see above), but the fix to the (small) patch is usually

15The results can be obtained at http://www.reasoning.
com/downloads.html December 2005

obvious and does not require a great deal of discussion. Since the
number of individuals who discuss a patch must be equal to or less
than the number of email messages, we expect that usually only
two people discusses any given patch: the reviewer and the contrib-
utor. There are a few patches that have a large number of replies,
the maximum number of responses is 80. Examining this email
discussion, we discovered that the majority of the responses were
not related to the patch, but some other problem that the patch had
made obvious to the group. We expect that this type of tangen-
tial discussion or some controversial issue will be found in other
patches with high response rates. Future work is required to val-
idate these results and to determine the time between review and
response to the problems found by the review.

5.9 Patch Kind
What kinds of non-source code patches are reviewed? How does
the kind of patch affect the review?

These questions are mainly left to future work. However, as we
noted in the patch statement section, Apache requires documenta-
tion to be submitted for new features and major changes. Since
documentation is not critical to the functioning of the product, we
expect that documentation is only reviewed when it comes from an
external source, and then only minimally. Translations to other lan-
guages usually require at least two translators to perform the task.
This process serves as review.

6. HYPOTHESES
Before developing hypotheses we need to fix some of the problems
in our data, such as resolving the names in the mailing list and deal-
ing with a number of minor inconsistencies, which are in less than
10% of our data. It would also be ideal to present our results to
a group of interested researchers to obtain a different perspective
on these findings before developing hypotheses. We leave the de-
velopment and testing (on other projects) of hypotheses to future
work.

7. CONCLUSION AND FUTURE WORK
This report is a first attempt at understanding the code review pro-
cesses used by open source projects. In examining the “official”
code review statements of four projects we found interesting simi-
larities, such as the request for small, complete patches. We also
found that differences in commit policy appeared to dictate the
level of patch review. The amount, quality, and type of testing
appeared to be related to how easy it is to automate tests. Fewer
automated tests appears to force a project to do more formal code
review. Through qualitative examination of development artifacts,
we discovered a number of anecdotal patterns. The most interest-
ing pattern was the ”committer as mediator” pattern. This pattern
occurs when a core group member acts as a knowledgeable medi-
ator between those who report bugs and will try out new patches
(lazy testers) and those who will invest the energy to create a patch.

We quantitatively answered our research questions by extracting
the Apache project’s developer and commit mailing lists into a
database. Surprisingly, the core group has changed dramatically
from 1996 to 2005, with a single, different top developer domi-
nating the number of commits for two year periods. These changes
affected the social and software development processes of the com-
munity, making lifetime analysis less meaningful. We found that
the core reviewing group was similar, but not exactly the same as
the committing core group. Pre-commit reviewers appear to have



been with the project for a longer period of time. We found that
three different types of review exist: pre-commit, post-commit, and
secondary review. Pre-commit review was similar to traditional for-
mal review, while post-commit review appears unique to OSS de-
velopment. Post-commit review allows trusted developers to com-
mit patches without first being reviewed. When the patch is later
reviewed, if it is found to contain an error, it must be fixed im-
mediately or removed. Most errors (91.3% of the time) are found
in less than a day allowing no time for a problematic patch to be-
come embedded in the code. The process of post-commit review
borrows elements of peer programming, but is potentially more
efficient because peers only examines each other’s final and best
attempts. Post-commit review generally had a discussion of four
emails indicating that likely only the reviewer and committer were
involved. With pre-commit review few patches were reviewed by
more than two individuals.

Throughout this paper we have mentioned areas we believe deserve
future work; however, the most interesting are the post-commit re-
view process, the changes to the core group, and the relationship
between testing, review, and the number of defects in the software
product.

8. REFERENCES
[1] A. Capiluppi, P. Lago, and M. Morisio. Characteristics of

open source projects. volume 26, pages 317–327. Seventh
European Conference on Software Maintenance and
Reengineering, March 2003.

[2] D. M. German. Decentralized open source global software
development, the GNOME experience. Journal of Software
Process: Improvement and Practice, 8(4):201–215, 2004.

[3] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[4] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[5] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly and
Associates, 1999.


