
Retrieving Open Source Software Licenses

Timo Tuunanen\ Jussi Koskinen ,̂ and Tommi Karkkainen^
1,3 Department of Mathematical Information Technology, University of

Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland,
timtuun@jyu.fi, tka@mit.jyu.fi

2 Department of Computer Science and Information Systems, University of
Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland, koskinen@cs.jyu.fi

Abstract. Open Source Software maintenance and reuse require identifying and
comprehending the applied software licenses. This paper first characterizes
software maintenance, and open source software (OSS) reuse which are
particularly relevant in this context. The information needs of maintainers and
reusers can be supported by reverse engineering tools at different information
retrieval levels. The paper presents an automated license retrieval approach
called ASLA. User needs, system architecture, tool features, and tool evaluation
are presented. The implemented tool features support identifying source file
dependencies and licenses in source files, and adding new license templates for
identifying licenses. The tool is evaluated against another tool for license
information extraction. ASLA requires the source code as available input but is
otherwise not limited to OSS. It supports the same programming languages as
GCC. License identification coverage is good and the tool is extendable.

1 Introduction

The relative amount of the costs of software maintenance and evolution activities has
traditionally been 50-75% of the software life-cycle, in case of successful systems
with long lifetime [12]. Moreover, according to some studies [21] the relative amount
is increasing, so the importance of this subarea can hardly be over-emphasized.
According to Lehman's first law [11] software must be continually adapted or it will
become progressively less satisfactory in "real-world" environments. Many software
systems have been very large investments, and they contain invaluable business logic
and knowledge. Therefore, there is a need to reuse their components.

Component-based software reuse is one way to reduce the problems of software
system maintenance. Adaptation of the components, however, can be relatively
demanding. For example, the applied software licenses need to be taken into account
when designing support for reuse. Reverse engineering is the main automated general
approach for retrieving relevant information for supporting maintenance, reuse and
comprehension of large-scale programs. Most of the reverse engineering tools provide
abstracted views of system components and their interrelations. This supports the tool
user to make right choices and decisions concerning potentially reusable components.

The paper is organized as follows. Section 2 shortly describes the general central
problems of software maintenance and nature of reverse engineering approaches.
Section 3 describes specific characteristics and problems of OSS maintenance and
reuse. Section 4 describes an automated reverse engineering approach and its

Please use the following format when citing this chapter:
Tuunanen, T., Koskinen, J., and Karkkainen, T., 2006, in IFIP International Federation
for Information Processing, Volume 203, Open Source Systems, eds. Damiani, E.,
Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 35-46

36 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

implementation, called ASIA (Automated Software License Analyzer), for retrieving
relevant license information from source code modules. Short description of the
approach has been accepted to the software maintenance community's conference:
CSMR 2006 [22]. This paper considerably extends that earlier paper, especially by
addressing the issue of license retrieval from OSS perspective, and by providing a
more detailed description of ASLA. The tool users are mainly component engineers,
software reusers, and software maintainers. The approach and its implementation are
not restricted to OSS. However, OSS is a natural setting for developing and testing
the approach. OSS is a good source of reusable components, and provides many
licenses and their versions. Tool user needs, system architecture, tool features, and
tool evaluation are presented. Finally, Section 5 draws the conclusions.

2 Reverse Engineering

Maintaining and reusing large-scale software systems is demanding especially if
documentation is inadequate or misleading. While solving maintenance problems,
maintainers have information needs [10]. One of the main problems is the
identification and comprehension of relevant pieces of programs, and their
dependencies. Reverse engineering tools extract that information from the source
code and store it into a program database. The extraction is usually achieved by
calling a parser component, implemented according to the well-established
conventions of compiler construction [1].

Five-level classification of the information retrieval features of reverse
engineering tools is provided in [10]. That classification will be later applied in the
evaluation part of this paper (Section 4.4). The levels of the model are:

LI. Formation of basic internal data structures (such as abstract syntax trees).
L2. Formation of higher abstraction level access structures (such as call graphs).
L3. Visualization of access structures.
L4. Information request and retrieval mechanisms.
L5. Navigation mechanisms.
Typical features of the main reverse engineering tools are compared in [10]. There

are also some other relevant related studies based on structural program analysis and
text and documentation analysis, as listed in [9, Appendix 1, Categories 1-3].

3 Characteristics of Open Source Software

Definitions for OSS-related terminology are provided in [19]. OSS community
provides a rich base of potentially reusable software. Unlike the more traditional
closed source software (CSS), OSS can be freely accessible, used, modified, and
redistributed. OSS development has been studied based on a sample of 406 projects
[5]. Most used languages were C, C++, Perl, and Java. Despite the large number of

Retrieving Open Source Software Licenses 37

OSS projects, development effort has focused on a few large projects, such as Lima,
Mozilla, and Apache [14].

One important aspect in OSS development is the need for greater maintainability.
Based on the analysis of almost 6 million LOCs it was concluded [20] that OSS
development will produce legacy systems in much the same way as CSS
development. It is stated that 20% of the components will produce about 80% of the
maintainability problems. Therefore, the problem-prone modules need to be
identified. An empirical study of key success factors in software reuse in general
based on 24 projects has been conducted [15]. Reusing OSS neither differs much
from reusing other kind of software. Therefore, results received from supporting
OSS-development should be quite generalizable to CSS also.

One important problem for partial reuse is that there are over 50 different versions
of OSS licenses as listed by Open Source Initiative [19]. GPL is the most common
license [5]. License information concerning the dependency of different modules
provides the key metainformation for partial reuse. Component-based white-box reuse
of OSS is natural, e.g., since license information is typically bound to modules. It is
clear that good tool support reduces the reuse and comprehension problems. Reuse
can be supported by identifying reusable component candidates, simplifying the
license identification, and providing abstracted views of the relevant components and
their interrelations.

4 The License Retrieval Approach

There is a clear need for software reuse oriented license analysis. It can be made more
effective by automated license identification of source code files by using text
searching techniques and by providing information about file dependencies. In this
section we present ^5*1- ,̂ which is our license retrieval approach for this purpose.

4.1 User Needs

OSS reuse can be classified into two different approaches: Using the whole software
package as-is and modifying it and using part of the software packages as part of
another program. Both cases introduce three main user needs as presented below.

4.1.1 Identifying Dependencies

There is a huge amount of code for different platforms and not all source code is used
in certain platform in large OSS packages such as Lima kernel [13]. Therefore, user
needs to know what source files are used in a particular environment. When build
process outputs are identified the information can be used for component
identification. This can give some clues about reusable components inside a larger
software package and becomes useful when considering partial reuse. Licenses

38 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

behave differently depending on what part of software is dependent on other parts of
the software. Therefore, the user must also know what libraries are linked to the
program and recognize the dependencies between all objects in order to make reliable
license analysis.

4.1.2 Identifying Licenses in Each Source File

OSS is distributed under one or more licenses. Unfortunately all OSS licenses are not
compatible with each other and they pose different restrictions so that each source
code file must be checked separately. It is vital, at least from the commercial
perspective, to check that licenses of a software package are in order to avoid any
legal consequences.

4.1.3 Adding New License Templates

In most cases programmers who write OSS use the predefined templates [18] to
indicate the use of certain license. Unfortunately this is not the case in all software
packages. In many cases license of the source code is indicated in a way that is not
known in advance. Therefore, there is an obvious need to add new search criteria for
licenses as part of the license analysis.

4.2 System Architecture

Fig. 1 shows the system architecture in UML-notation. ASIA employes three open
source programs: GCC [7] [8], and modified versions of Id (linker) and ar (archive
builder) that are based on GNU binutils [4] (version 2.15.97). Any version of GCC
compiler which supports environment variable $DEPENDENCY_OUTPUT can be used.

ASLA is implemented in Linux operafing system using Java programming
language (version 1.5.0_01). GCC supports compilation of many programming
languages, which are supported by ASLA also. Only requirement is that dependency
information files (DIFs) produced by GCC are available. Ar and Id are modified in a
way that these programs write similar iDIFs about dependencies of the libraries as
GCC does for the source code files and compiled objects. DIFs form the program
database. It contains the information about compiled and linked objects and their
dependencies. DIFs serve as a basis for data integration between these four programs.
ASLA reads the DIFs, analyzes licenses of files listed in them, creates a dependency
map based on them and visualizes the information.

Fig. 2 presents the contents of ASLA user interface after analysing gaim [6]
(version 1.2.1), which is an open source instant message client. It is used as the main
example case in this paper. The left panel of the figure shows hierarchically the
analyzed file structure. The modules can be selected from it and opened to the right
panel for viewing their contents.

Retrieving Open Source Software Licenses 39

f °^^ 1
\ < < w n t e s »

GNU ar (modified) 1

~"--^i:^<vvrites»

i:::;::i

Z ' ^ «reads»

V A..n
Source file

Al..n

«desci|bes dependencies o

\^0..n

'^^Af^ \ «reads»

Dependency information
tie (DIF)

1
A S U

License Analyzer 1

Dependency
Analyzer

Graphical User Interface 1

^X'

Fig. 1. ASLA's system architecture

hU AMt*^ $t««HJ»» Mmm

||»''<>5"» * mif^mt^m

g K '̂f # y

0' ^' * '

P >" ^''f'i'«

n;,!* ^- .

T ^ ««.»<-> ><»*<; '

*»<»»»»>»'/«>) i f * / >v«». vji^ 5 > < i;>u f< v<<*» «^<>rJi <' >

i fa^Vf t * : i v . < J)

i « *s«*< ^ r , ? "yit i-^fs

' ' V>^V ' »»-v^>» >* \X!S#V' >*" -»?!?< ' J fci« i ' ' « "

' '.^fiiif ,0 V »•?; ,v>«<- f \ A ' f v " ' i*<swjf ^ ^ ^ ' v it '?<

' t.>s^ if ii »>*> ' " f f f ^ ; f " ! * f » f ^ , ^ if)? '<.*««'>> < V ' > *
' , t <</»> 4< 'V Iff >l <" ' V r""'" ?>••> ->'(^ >-«

" i».vK'? «<if, AfV/< r /.f-' ' « • •̂ H " * j5 '.t^*^ xf^' *?/y*< >*><• J !

. y ?c.«?'» v?v,cr v"' v#i> rcc *'*,
' > fr '-» *̂ A S ! .--> (Oft >-,> "•> ^'

^ <<!,v, r>',r'Wfs>-'

Fig. 2. ASLA after dependency and license analysis of gaim

4.3 Features

The implemented features of ASLA as described below are based on the user needs
introduced earlier.

40 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

4.3.1 Identifying Dependencies

ASLA produces dependency map of source code, build process outputs and linked
libraries by using the DIFs. Dependency map is a data structure where all objects
described in DIFs are stored. Each file has references to the objects that the file is
dependent on and to the objects that are dependent on it.

Each object file that is compiled is, at least, dependent on the initial source code
file(s) and all source code files that are included or referenced from them. This
information is given in GCC dependency output as follows:

.libs/ire.o: irc.c ../../../src/internal.h

../../../config.h ...
This output tells that compiled object i r e . o (in directory . l ibs) is dependent on

(i.e. includes) source files: i r c . c , in te rna l .h and config.hetc.
To identify what compiler outputs (and source code files) are included in the

software, there must be information about what compiler outputs are linked to each
executable or library. This information can not be reverse engineered from binary
files (linker outputs) so it is collected during the build process using Id and ar. The
following dependency output is obtained from Id:

.libs/libirc.so: /usr/lib/crti.o .libs/ire.o
This output tells that shared object l i b i r c . so (in directory . l ibs) is dependent

on (i.e. includes) object files: c r t i . o and i r e . o.
For each DIF the following operations are performed by ASLA:

• Reading the file name of the target object (for example l i b i r c . so).
• Adding the target object to the dependency map if it does not exist.
• Reading all child objects' file names.

For each child object:
• Adding the child object to the dependency map if it does not exist.
• Setting the target (l ib i rc . so) object as a parent object; each object can have

multiple parents.
• Adding the child object as parent's child.

This algorithm produces the dependency map described above. Each compiled
object gets it's license as collecfion of it's children's licenses. If license changes are
made to objects from hereon they are visible to all parent and child objects instantly.

4.3.2 Identifying Licenses in Each Source File

ASLA automatically identifies licenses of single source code files. This is achieved by
using license templates that are compiled into regular expressions (in BNF) as
described below.

Most simple open source licenses^ such as BSD or MIT are usually written in the
beginning of the source code file. Ariother way to indicate the license of the source
code is to reference the license from the source code. This technique is used for
example in GPL and LGPL licenses [18].

In the source code file one can either find a simple notification such as: For
l icense information: see f i l e COPYING, or a defined template text that

Retrieving Open Source Software Licenses 41

indicates the license of the source file, COPYING is the typical name of the license file
in OSS.

Ffle informatton
File »*n'»^/space/tirT:tyun/gaim-
rile typK|^oiJrce^7i''""
Llcense:iiJNKr40WN
License status:iL!riKnown
ChUiJ licensed" ~

/» 7hh f)k' m psrf of ihv Projva fiinvna. Zephyr Nofifkaflon SyjU^m
" }t comains source for as'i^chrorous focation funaiorfs

* Created by. Marc Horowitz

$'Jource: /cvsroot/iiaim/gaim/sri/protocois/zephvr/2As\/ficlocate c v J
$Aj.ini(>r: ihipxse S

* CopyriQfit iO 1990.1991 toy^'i^ hi^assjichusens inshimv of Technofony.
fart(ij^^^n§mfi^'Ttmiijinm^mnsfn^^^m. mi>f^»«/$

A iHeader f^f*

*iinclude ''fnterni

mfndfff }ki7
static const crtsj
^ffnd'f

co/7sr char
registt-r H/^
^^Notke.Kir}\
Z..AbitnProL

iiv retviK
2Notif:sj rtpj

if (ZGetFDO
if(\

, License Template Text
or cop'̂ /ing and clistritoution InfonTiation,

'rnit-t.npyrighi \t

{J4/^4 09 UO J'j chiptSt E><p $ - /

\9 00. 35 chipx86 Exp S",

, License Name -<

' ',«(? Use existing license name pvtrr _ 1 T J

O New license f i^^^S^E-^V^^'^ l ; !^: '^

License Analysis

; <i> Analyze package with tUls template

O k Cancel

(wid) m\-'n>'<>:^i{(i!'Kyir *)i'^ri\Min- 0, .wi-tM
not'Cf z..Kinc} =r Kind;
riotne ;.' port -^ Zt-phyr.pon,
notice z.c}3ss - LOCATh.LUi&'S,
fii>t/c9 ^.class.insr ^ user;
notice 2.opCQds •= LOCATE.LOC-irn:
nothe 2..se}idei ••« 0.
notice.2.recipient •>»• "\
iioti[.e.z..{isfauh..fvrmst ••" "",

Fig. 3. ASLA after adding a new license template for gaim

Identifying licenses of source files that contain pre-defined template or full license
text is fairly simple relying on finding the predefined text from source code file. This
approach, however, requires that all unnecessary source code characters (such as
comment characters) are removed and different white space characters are allowed
between words.

Many programmers modify the predefined texts slightly and there are also many
different versions of licenses published. For example LGPL was previously called
GNU Library general public license and nowadays it is called GNU Lesser general
public license. Therefore, there are many slightly different texts within source code
indicafing the same license. Hence, their recognition requires more sophisticated text
searching techniques. Especially, regular expressions can be used for allowing white
space characters, alternative words and undefined characters.

For example, ASLA's license search template for LGPL (version 2 and 2.1) is the
following:

42 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

GNU (Library)|(Lesser) General Public License as
published by the Free Software Foundation; either version 2.*,

This is compiled into a regular expression:
...\s*GNU\s*(Library)|(Lesser)\s*General\s*Public\s*License\s

as\s\s*published\s*by\s*the\s*Free\s*Software\s*Foundation;\s
*either\s*version\s*2 .*, \s etc.

This is interpreted as follows: "0..n white spaces", "GNU", "0..n white spaces",
"Library or Lesser", ... , "version", "0..n white spaces", "2", "0..n any
character",","...

Unfortunately license of every single source code file can not be reliably
identified and, therefore, user must have a possibility to identify licenses also
manually. Such feature is supported by ASLA, First way to do manual identification is
to apply license of the separated license file for all source files in subdirectories of the
directory where the file is found. This technique is useful in a situation where license
file is meant to cover all files in subdirectories but source files themselves do not
include any reference to the used license.

Another way to do manual license identification is to manually check all
unidentified source files. This is aided by ASLA that lists all source code files that
were unidentified separately. To reduce the number of unidentified licenses and need
for manual license identification with other software packages the tool user is able to
add new license templates.

4.3.3 Adding New License Templates

ASLA offers two different ways to introduce new license identification templates.
First way is to create new text file into the directory where existing license template
files are saved. File format for new template contains the license name on the first line
of the file and template text in regular expression form on the following lines.
Another way is especially usable. User is able to select a text in a source file and use
that text as a license identification template (Fig. 3). In this case ASLA forms the
regular expression automatically.

4.4 Evaluation

In this section ASLA is evaluated against LIDESC [17], which is another license
information extractor. ASLA and LIDESC have many similarities but the focus areas
and applied techniques have their differences. ASLA is targeted especially for
component engineers, and other reuse and maintenance personnel. The approach is
extendable and designed to be used for analyzing existing software packages. An
especially rich base of possibly reusable software is OSS packages. ASLA itself has
also been implemented based on reusable OSS components.

As an example of used source code we consider gaim which includes total of 506
source files. 437 (86%) of them were used in the selected test environment {Linux).
ASLA does not require any makefile modications to produce DIFs. Existing software

Retrieving Open Source Software Licenses 43

packages can be analyzed as they are. In LIDESC all source files must be compiled
using defined compiler flags. The user must manually modify all makefiles or define
the parameters in autoconf[li] scripts. From user perspective this is probably not the
preferred approach, especially, when analyzing large potentially reusable software
packages.

4.4.1 Identifying Dependencies

DIFs contain information of dependencies, which is the basis for forming basic level
data structures. This corresponds to level LI of tool features as presented in section 2.
Both ASLA and LIDESC naturally form internal data structures.

Information contained in the DIFS in ASLA is collected and combined in order to
create higher abstraction level access structures (level L2). This is done by the ASLA
dependency analyzer when creating the dependency map based on the DIFs. Features
of this level are not convincingly reported for LIDESC.

The dependency map is visualized by ASLA in tree form (level L3). LIDESC does
not support this level. The information visualized in ASLA is useful both in full and
partial reuse of software packages. For partial reuse, compiled objects that have no
parent objects are potential reusable components. For example, in Fig. 4 all files with
extension . so (shared library objects) are such compiled objects.

t Il3 protocols

? C3gg
^ t C3.litos

^ HI libgg.so
t C3irc

? [3. l ibs
^ 0 libircso

t i l3 Jabber
f (13.libs

«̂ @ libjabber.so
t C3 msn

t [13 .libs
«- [oj libmsn.so

t C^riapster
' t C^.iibs

^ 0 libnapster.so
^ l~1 nriwll

Fig. 4. ASLA's tree for showing the potentially reusable components (gaim)

In case of full reuse, the ASLA tree format introduces the dependencies of the
different parts of the software and indicates how licenses of the compiler outputs are
collected from the source files. Neither ASLA nor LIDESC provide real navigation
capabilities (level L5), which could be useful in case of complex dependencies,
although ASLA's file tree can be browsed and direct access to the files is provided.

44 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

4.4.2 Identifying Licenses in Each Source File

Information requests (level L4) are supported in ASLA based on regular expressions.
Therefore, the approach adapts well into "real world" of varying OSS packages.
LIDESC is implemented in a similar way but is based in this regard on exact match of
license identification string in the source file. Due to alternative word matching, and
ability to handle undefined characters and different commenting styles, ASLA
provides more flexibility. It handles the identification of modified and different
versions of licenses without need to introduce new identification templates for each
different license version.

The license identification coverage of ASLA against LIDESC can be further
compared with our gaim example case. On our initial analysis we were able to
identify license of 315 source files out of 437 (72%) using 7 different license search
templates. The reason of the moderate identification ratio was that one gaim
component did not contain any references to used licenses in source code. To reach
the same result using the exact matching technique of LIDESC would have required at
least 20 unambiguos license identification strings.

Manual license identification, which is not supported by LIDESC, complements
the license analysis in our example case of gaim. By applying the license found in the
file COPYING, which was explained earlier and which can be found on top directory
of the component, to the files of the component, we were able to identify licenses of
350 files out of 437 (80%).

Moreover, ASLA's initial analysis of Mozilla [16] identified licenses of 5654 files
out of 5871 (96%) using 10 different license templates and licenses of 283 files out of
301 (94%) of Apache http server [2] using 5 different templates. These results
illustrate both good coverage and scalability of ASLA.

4.4.3 Adding New License Templates

Final step in our gaim example was for the user to introduce a new license template
during the license retrieval (as presented earlier). In our case it was the following:
For copying and d i s t r ibu t ion information, see the f i l e "mit-
copyright. h". When this template was introduced and used in the analysis the final
number of identified source files was 401 out of 437 (92%). By comparison LIDESC
does not support addition of new license templates during the license retrieval.
Another way of new license template addition is to add new file entry to license
template directory. This offers more versatile but more complex way since the
template must be in BNF. LIDESC applies a similar approach. However, in that case
the license must be in a specifically formatted text file and it must be added using
specific seven step process as described in LIDESC documentation.

Retrieving Open Source Software Licenses 45

5 Conclusions

This paper has presented a license retrieval approach and its implementation called
ASLA. It is targeted at retrieving software license information from source code
modules. At general level it has been motivated by the characteristics, problems and
needs of OSS development, maintenance and component reuse. License retrieval and
comprehension is especially important for effective component reuse. It can be
concluded that ASLA addresses an important problem. ASLA has been tested and
compared to LIDESC, which is another known license information extractor. ASLA
provides promising results regarding the coverage of identified licenses, and
supported information retrieval levels as compared to LIDESC. ASLA uses regular
expressions and dependency information files (DIFs). The approach was found
sufficiently effective, and can be applied to several programming languages.
Incorporation of new licenses is uncomplicated by using the license templates. The
applicability of the approach is neither restricted to OSS. Further research avenues
include studies regarding information abstraction and visualization, e.g. architectural
views, handling of the even more complex cases of license determination in case of
multiple applied licenses, and system efficiency optimizations.

References

L Aho, A.v., Sethi, R., Ullman, J.: Compilers - Principles, Techniques, and Tools. Addison-
Wesley (1986)

2. APACHE HTTP Server Project, http://httpd.apache.org/ (accessed 25.9.2005)
3. Autoconf http://www.gnu.org/ soflware/autoconf/ (accessed 13.9.2005)
4. GNU Binutils. http://www.gnu.org/ software/binutils/ (accessed 13.9.2005)
5. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of Open Source Software Projects.

Proc. 7th European Conference on Software Maintenance and Reengineering (CSMR
2003) 317-330. IEEE Computer Soc.

6. Gaim: A Multi-Protocol Instant Messaging (IM) Client, http://gaim.sourceforge.net/
(accessed 19.9.2005)

7. GCC: GNU Compiler Collection, http://gcc.gnu.org (accessed 13.9.2005)
8. GCC 4.0.1 Manual. http://gcc.gnu.Org/onlinedocs/gcc-4.0.l/gcc/. Free Software

Foundation (2005) (accessed 13.9.2005)
9. Koskinen, J.: Automated Transient Hypertext Support for Software Maintenance.

Jyvaskyla Studies in Computing 4 (2000). Univ. of Jyvaskyla, Jyvaskyla, Finland
10. Koskinen, J., Salminen, A., Paakki, J.: Hypertext Support for Information Needs of

Software Maintainers. Journal of Software Maintenance and Evolution: Res. and Pract. 16,
3(2004)187-215

11. Lehman, M., Perry, D., Ramil, J.: Implications of Evolution Metrics on Software
Maintenance. Proceedings of the International Conference on Software Maintenance -
1998 (ICSM 1998) 208-217. IEEE Computer Soc.

12. Lientz, B., Swanson, E.: Problems in Application Software Maintenance. Communications
of the ACM 24, 11 (1981) 763-769

13. The Linux Kemel Archives, http://www.kemel.org (accessed 13.9.2005)

46 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

14. Mockus, A., Fielding, R., Herbsleb, J.: Two Case Studies of Open Source Software
Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11,3 (2002) 309-346

15. Morisio, M.: Success and Failure in Sofl:ware Reuse. IEEE Transactions on Software
Engineering 28, 4 (2002) 340-357

16. Mozilla. http://www.mozilla.org/ (accessed 19.9.2005)
17. Nordquist, P., Petersen, A., Todorova, A.: License Tracing in Free, Open, and Proprietary

Software. Journal of Computing Sciences in Colleges 19, 2 (2003) 101-112
18. Opensource Org.: The Approved Licenses, http://www.opensource.org/ licenses/ (accessed

16.9.2005)
19. Perens, B.: The Open Source Definition, http://www.opensource.org/ docs/definition.php.

Open Source Initiative (2005) (accessed 13.9.2005)
20. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open Source Software

Development Should Strive for Even Greater Code Maintainability. Communications of
the ACM 47, 10(2004)83-87

21. Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices (2003). Addison-Wesley

22. Tuunanen, T., Koskinen, J., Karkkainen, T.: ASLA: Reverse Engineering Approach for
Software License Information Retrieval. Accepted to CSMR 2006.

