
A Replicable Infrastructure for
Empirical Studies of Email Archives

Megan Squire
Department of Computing Sciences

Elon University
Elon, NC, USA

msquire@elon.edu

Abstract—This paper describes a replicable infrastructure
solution for conducting empirical software engineering studies
based on email mailing list archives. Mailing list emails, such as
those affiliated with free, libre, and open source software
(FLOSS) projects, are currently archived in several places online,
but each research team that wishes to study these email artifacts
closely must design their own solution for collection, storage and
cleaning of the data. Consequently, research results will be
difficult to replicate, especially as the email archive for any living
project will still be continually growing. This paper describes a
simple, replicable infrastructure for the collection, storage, and
cleaning of project email data and analyses.

Keywords—email; archive; mailing list; database; document-
oriented database; collection; storage; cleaning

I. INTRODUCTION
Email mailing lists are an important artifact of the

contemporary software engineering process, especially in
transparent, distributed development teams, such as those
making free, libre, and open source software (FLOSS). For
example, the Apache Software Foundation (ASF) is one of the
largest not-for-profit corporations supporting FLOSS
development. ASF projects adhere to a policy of transparency
in decision-making; specifically, project leaders are directed to
"conduct project business on mailing lists"[1]. As such, email
archives, and ASF-affiliated emails in particular, are a frequent
object of study for researchers interested in the process of
software development.

The easy availability of mailing list emails is both a
blessing and a curse for research teams. All ASF projects, for
example, make their entire mailing lists available for browsing,
and many provide raw downloads. However, one of the
shortcomings of this high availability is that research teams
may not think twice about jumping into collecting and storage
of emails for their own analyses, without considering whether
it has been done in the past, and how. They may not be aware
of the methods that others have already discovered for solving
collection and storage problems. The result is that teams may
inadvertently duplicate each others' work in the collection,
storage and cleaning of the data. Or, they may not design as
robust a system for collection and storage as would be required
for this large amount of unstructured data. The effect is to
increase the amount of time spent in the frustrating collection

and storage tasks, thus leaving less time for analyses and
sharing of results.

This paper describes a strategy for inverting this situation.
The system described here describes a simple, repeatable
collection and cleaning infrastructure, using all open source
software and commodity hardware, and with code and scripts
made available for anyone to use. The system thus provides a
lower barrier to entry and a common vocabulary for describing
the collection and storage infrastructure. Most importantly, it
also provides a common platform for replicating the
subsequent analyses. The result is less work in collecting and
cleaning, and more opportunities for analysis and sharing.

Section II describes the background of this project, both in
terms of a review of existing literature on how emails are used
by the research community, and what tools are currently
available for this purpose. Section III describes the system that
was built, including its system architecture, the data collection
procedure, and examples of using the system. Section IV
describes several challenges and limitations of the system,
including cost and sizing concerns, and a few potential pitfalls
in cleaning the data.

II. BACKGROUND
Email mailing lists from software development projects are

useful for learning about project management, team dynamics,
and decision-making. For example, a literature survey on how
email archives are used to learn about FLOSS processes [2]
found a variety of analyses being performed on mailing list
archives, including basic statistics (e.g. [3]), social network
analysis (e.g. [4]), automated text mining (e.g. [5]) for concept
extraction, and mixed methods mining tasks (e.g. [6]) including
confirmatory analyses.

A. Limitations of Third-Party Email Archives for Replication
and Sharing
There are two main ways that researchers interact with

email mailing list archives. For simple browsing and searching,
they might use a web-enabled searchable archive like
Gmane.org, Mail-Archive.com, or MarkMail.org (e.g. [7])
These web sites collect and store mailing list messages, such as
from FLOSS projects (including the ASF projects), and
provide a searchable front end to their collection. The searches
are typically keyword based. Browsing on these sites consists
of drilling down on clickable list names, author names, and the

like. Mail-Archive.com and MARC.info both archive email
and provide a web interface for searching by keyword. Gmane
is a service that archives emails, and then funnels the emails
into newsgroups. MarkMail has a fuller feature set, including
some dynamically-generated graphs for message counts. It is
owned by MarkLogic corporation, created as a proof of
concept for one of their commercial projects, MarkLogic
server. The FAQ states, "One reason we built the site is to
show what MarkLogic Server can do" [8]. However, the FAQ
is outdated and the discussion lists and blog have not been
active since 2011. The last MarkMail announcement came out
in 2010.

Aside from relative recent inattention from some of the site
owners, there are no APIs for interacting with any of the
services mentioned above. Researchers cannot run regular
custom analyses. Results are only occasionally downloadable
and formats are not customizable. No claims are made as to the
future longevity of the services. All of these shortcomings are
probably due to cost concerns (especially in terms of
bandwidth), since none of these projects are profiting
financially from hosting email archives. However, this means
that for any type of analysis more complicated than a
conducting a keyword search or generating a graph of post
counts, researchers will have to download their own email and
build a set of tools for storing and analyzing it.

B. Limitations of Home-Grown Email Archives for
Replication and Sharing
The second way that researchers interact with email

archives is to download the messages, clean and store them in a
local database or file system, and then analyze them. The
processes and software used for conducting these activities,
even the collecting and cleaning activities, will vary widely
between teams and will be difficult to describe in sufficient
detail to be replicable by another researcher.

To illustrate the point, here are the "how the data was
collected" descriptions from three different research papers,
each studying mailing lists in different ways, but each starting
with the same type of raw data (mbox mailing list archive
files).

Example 1: "We process each message in a mailing list
repository using a semi-automated approach similar to [ref].
We remove attachments, duplicate messages, convert HTML
emails to plain text, and extract the email header information
(such as From and Date). Then, we identify and merge multiple
email addresses that belong to the same person." [9]

Example 2: "A Python script implementing the schema was
used to extract data from the mbox files. For a given input list,
the script traversed each mbox to extract a record for each
msg_id (primary key). The output for each run was parsed into
a MySQL database containing two tables, one for each list.
SQL queries were used to extract the information necessary for
data analysis.... The data cleaning process involved removing
messages in the following categories...." [10]

Example 3: "For every email, we extracted from the email
header the message identifier, the sender, the sent time, and the
identifier of the message (if any) to which this message was a
reply. When a reply-to header was found, the sender s of the

reply was someone who found the initial message of interest;
and so the sender s was marked as a recipient of the original
message.... A small proportion of messages could not be
parsed, because of malformed headers. Approximately 1.3% of
the messages were in this category." [11]

When faced with the requirement to design and construct a
system for collecting and storing mailing list messages, it is
natural that each research team will approach this differently.
These differences are due to familiarity with various design
paradigms, languages and technologies as well as the
requirements coming from particular research goals. For
example, in Example 3, the researchers only kept the headers
they needed and were very concerned with finding threads and
replies. Compare this to Example 1, where the researchers kept
the entire message but focused on removing duplicate
addresses. In many papers, there is insufficient information
describing the cleaning and storage, which makes it nearly
impossible to recreate the data set (much less to replicate the
entire study). In other cases (e.g. [6]), details and rationale are
given, but code is not. These differences may be due to page
limitations, different levels of expertise and familiarity, and
different expectations of the particular research community.

The methods chosen for cleaning and storage are not the
only area of concern with transparency and replicability;
researchers' standards for quality of the results will also vary
widely, and can be affected by choice of technique. Bettenberg,
et al. [12] discuss the likelihood of potential failure in
processing email archives using known information retrieval
techniques (many of which were not developed for use with
email), and the risks to quality from each step taken to collect,
store, and clean the data. For example, they state that even the
simple foundational activity of extracting messages from mbox
archives still has a measure of risk (albeit a low one), in that
there have been differing mbox specifications over time. They
acknowledge that other email cleaning tasks, such as duplicate
identification and threading, are considerably more risky and
difficult to standardize. They conclude with a recommendation
that the research community work to develop standards for
mailing list processing techniques.

C. Goal of this Paper
This paper is a step towards that goal of a standardized,

sharable, reproducible infrastructure. The next section
describes a system designed to standardize some of the choices
about how emails are processed, thus lowering the barrier to
entry and providing transparency to research groups studying
email. The scripts and techniques also improve replicability by
providing a common language for communicating about how
the messages were collected and stored.

III. THE FLOSSMOLE APACHEMAIL PLATFORM
The system described here is named Apachemail (as it has

been deployed and tested using ASF emails) although it will
work on any collection of email in mbox format, including
personal email. The entire system (code and procedures) has
been donated to the FLOSSmole data commons [13]. The
system has a few key characteristics that are intended to
improve the logistics of sharing between researchers, while
decreasing the tedious collection and cleaning work.

A. Requirements
First, because the data is collected from a third party, and is

growing all the time, the system should support regular,
incremental additions in the native format with minimal or no
adjustments. Second, because the email artifacts have both
structured and unstructured parts (headers can be conceived as
structured data, whereas content is usually unstructured text),
the data storage architecture is designed to be as flexible as
possible in terms of new or unknown headers, while also being
entirely searchable within the content. Third, this system can
be deployed in a central, accessible Internet location for use by
many distributed researchers. Finally, the system supports a
way for users to query the system via JavaScript views
(discussed in Section D), and to describe those queries to each
other, thus supporting sharing.

B. Collection
As discussed in Section I, many FLOSS software projects

provide the archives of their email mailing lists in either a
browsable interface, or in downloadable files. This system was
deployed with ASF mailing list files, which are available
online, archived by project (e.g. Apache Httpd Server) and list
name (e.g. 'dev' for developers), then by year and month (e.g.
'199502').

The archives are stored in compressed UNIX mbox format
[14]. Mbox files are just text files of email messages with all
headers, content, and attachments intact. Each message starts
with a From: header, followed by any number of other headers
set by the email client. Each message is separated from the
next message by a blank line. The mailing list that the message
was sent to is shown in the List-Id: header (for newer
messages), or in the Mailing-List: header (for older messages).

The larger, older ASF projects have raw mbox files easily
accessible for downloading. (Some newer, smaller projects
appear in the browsable interface [15] but the location of the
raw mbox files is less obvious. If the approach from this paper
proves to be popular, the next step will be to expand the
collection by seeking out those hard-to-find raw mbox files or
by writing additional collection procedures.) For the purposes
of this paper, a few simple shell scripts were written to
download raw mbox files from Apache Httpd Server
developers list (called httpd-dev for the rest of this paper). It
had 131,093 messages over the 18 years from 1995-2013. The
scripts to download these mbox files are available in the
Github repository for this project [16].

C. Cleaning and Storage
After downloading and uncompressing the mbox files, the

mailbox files were transformed into an array of JSON objects
using a short Python script based on work from [17]. This
process included stripping out HTML tags and working with
various character encodings and quoted printable strings. The
scripts for this procedure are available on Github.

The JSON files were then read into a CouchDB [18] nosql
document-oriented database server using another Python script
(also available on Github). The document-oriented approach is
preferable to a relational database for a few reasons. First, there
are more than 100 different headers used in 131,000 emails,
which means the number of fixed columns that a relational

structure would have to have would be quite large, and many
of the columns would be sparsely populated. Second, to create
a relational schema, it is necessary to know all the possible
columns in advance, before reading in the data. This obviously
limits flexibility in dealing with new, never-before-seen
headers. (Similar systems using a relational format, for
example MLStats from MetricsGrimoire[19], solve this
problem by only saving a few of the most common and
important headers.) However, with a nosql system, every
header can be handled as a "key" with an associated "value",
and there is no need to know the entire list of keys in advance.
Second, although there are numerous known advantages of a
relational system, especially in transactions and security, these
are less important in an email storage scenario since this is
static, public data. In addition, the data set will only be added
to, and not deleted from. Finally, the CouchDB system
provides a REST-oriented API for access, and multi-master
replication (pull or push) [20], both of which were important
requirements for this system.

D. Querying
After the emails were read into in the database, a few

simple JavaScript "views" were created to summarize key
features of the data, similarly to the basic counts provided by
the other email browsing systems mentioned previously (e.g.
MarkMail). This section walks through some options for
mailing list message retrieval, summary, display, and
interaction in this system.

A simple example of a mailing list query is to count the
messages sent to the list over time. This type of query is
available on many of the web-based email archives compared
in section II. This is accomplished using CouchDB views.
CouchDB views are written in JavaScript (or another language
if a query server is available and installed), and saved inside
CouchDB as design documents. Views use the map/reduce
paradigm to emit some subset of keys and values that match
the specified map (and optional reduce).

For this project, a simple example was to map the email
messages by year, month, and day, and then reduce the results
to counts. Fig. 1 shows the result of a view called
countByDate. This is the result as shown in the Futon web
application administrative interface that comes with CouchDB.
For this view, the grouping level was set to 1 (to group by
"year"). Grouping level 2 is year-month, and grouping level 3
is year-month-day. For those familiar with the RDBMS
paradigm, a map/reduce like this is similar to doing a GROUP
BY and COUNT() in SQL. The countByDate view code is too
long to reproduce in this paper, but it is available on the github
site for this project [16].

Now that this view is written, it is possible to add a
CouchDB "list" to format the results for viewing in a browser
or other application via a specially-formatted URL. The list can
emit HTML along with the results of the view.

Fig. 2 shows the code used to create a list called
countByDate. It iterates through each item emitted by the view,
and sends it to the browser wrapped in HTML with added
simple bullet list (,) tags and a colon (":") between the
year and count (line 9).

The URL to access this CouchDB list will include the name
of the design document view, as well as the name of the list
itself. It can also contain optional query parameters, such as
grouping level or start/end points. The URL to access the
countByDate list is shown below:

http://hostname:5984/apachemail/_design/countByDate/_lis
t/countByDate/countByDate?group=true&startkey=[%221994
%22]&endkey=[%222014%22]&group_level=1

The URL begins with hostname and port number for
CouchDB instance, and is followed by the name of the view
and list. Optional query parameters are given at the end
("group", "startkey", "endkey", and "group_level"). Note that
the URL must be encoded with special characters to represent
double quotes (%22). The name of the design document view
and list are requested explicitly ("countByDate"), since there
will be many views in the system. In this example, group_level
of 1 means "year" (2 is month and year, 3 is day, month, and
year), so the startkey (1994) and endkey (2014) are the
bookends for the year values we wish to show.

Fig. 3 shows what a simple bullet list will look like when
accessed in the browser using the URL above. URLs can be
shared and manipulated easily by multiple users.

The next logical step is to attach that URL to a web form,
and use HTTP GET method to submit user input dynamically.
For example the user to could be given a web form to adjust
the startkey and stopkey parameters or the grouping level. Fig.
4 shows the sample form. The results look identical to Fig. 3,
except that only the years selected by the user will be shown.
(The group parameter is passed as a hidden variable.)

Finally, a JavaScript graphing library, such as the Google
Charts API [21], can be added to the list design document to
display the result as a chart or graph.

Fig. 1. The countByDate view, reduced, with grouping set to Level 1

Fig. 5 shows the code added to the list to push the results
through the Google Charts API before displaying in the
browser. Fig. 6 shows the result as a line graph. (Google Charts
API also provides many other visualization types; the
JavaScript in Fig. 5 can be changed to emit column charts, pie
charts, etc.)

All of the code for creating the views and lists described in this
section has been loaded into the same Github repository. [16]
All of the scripts and procedures shown can be used on any
mailing list, not just the ASF lists used here. Headers that are
not of interest can be ignored. New views and lists can be
written and shared with others.

Fig. 2. The countByDate list JavaScript code

Fig. 3. The countByDate list, emitted as HTML with bullets (,)

Fig. 4. Web form for changing parameters in countByDate URL dynamically

Fig. 5. Code for countByDate list, emitted as Google Charts API line graph

Fig. 6. The countByDate list, emitted as Google Charts API line graph

Fig. 7. Design document for a Lucene fulltext index of message subject lines

Fig. 8. Results of a keyword search for "security" on message subject lines

E. Searching
One of the key features of web-based public email

collections such as MarkMail is the keyword search facility.
For this project, the Lucene search engine [22] was configured
to work with CouchDB and perform full-text indexing of
mailing list message content and subject lines. Lucene is a set
of java-based search engine libraries that perform fast, full-text
indexing.

After installing Lucene and configuring it to be aware of
the CouchDB database, a design document was created to
create fulltext indexes on content and subject lines. The subject
line document is shown in Fig. 7.

A simple PHP script then provides a keyword search box,
issues a request to the database in the form of a URL, and
displays the results in a table. Fig. 8 shows an example of the
completed Search application. In this example, the Subject
lines of the httpd-dev mailing list were searched for the
keyword "security", and the results are shown in order by their
Lucene score (relevance).

Fig. 8 shows that the document ID is clickable (last
column). When clicked, the link will bring up the actual email
message. All the CouchDB design documents and the PHP
code used to generate this web interface are also available [16].

IV. CHALLENGES AND LIMITATIONS
This paper presents a reusable system for standardizing

mailing list collection, storage, and cleaning. The approach
presents a few challenges and limitations, which can be
considered as opportunities for future work.

A. Storing many lists
The prototype system developed here was written for

commodity hardware on a single server. The focus of the work
was in collecting and storing ASF mailing lists, particularly the
httpd-dev list. As more lists are added to the database, a few
problems present themselves: first, organization, then size, and
subsequently, cost. With multiple lists, it becomes necessary to
have some way of differentiating between the lists so that only
the documents (emails) from the correct list are considered in a

given query. For example, as described in section III.B., it is
usually possible to determine the list by using the List-Id
header (if available). Queries, in the form of views, will either
have to be written to use this information, or separate databases
will need to be kept for each list. If cross-list comparisons are
required, then the latter solution is not a good option. Even
when the lists are able to be differentiated using a header, the
size of the database could grow substantially. The 18 years of
the httpd-dev list takes about 310 MB inside CouchDB. But for
the ASF alone, there are over 200 projects, each of which have
between two and 38 lists. Storing all of these lists into
perpetuity could create a requirement for substantial disk
space. However, this would be a concern for any system of this
size and is not affected by the choice of a document-oriented
database.

B. Querying via views
CouchDB is unlike the traditional RDBMS that many data

analysts may be more familiar with, in that it does not allow ad
hoc querying. Views must be written in advance, and they are
actually stored as documents inside the document database
itself. This has one drawback, in that it is a new paradigm for
query development, and many users of a system like this will
be unfamiliar with it. One benefit, however, is that it
encourages sharing of views between researchers. Views can
be published as documents in the server, and since the server
can be mirrored across multiple sites easily (this is in fact one
of the benefits of CouchDB, as explained in section III.C.), the
result is a highly sharable, replicable data and query store.

C. De-duplication of addresses
Bettenberg, et al. [12] pointed out the numerous difficulties

in cleaning email headers. One cleaning task that is particularly
important for many email mining analyses, such as creating
social networks or reading dialogue from users, is to
standardize the email address formats, and figure out which
addresses are aliases. Indeed, for this project, a very simplistic
view called CountBySender (similar in structure to the
CountByDate examples given in Section III) suffered from this
problem. In 18 years of the httpd-dev mailing list, people are
going to have multiple email addresses, or multiple spellings
for their name, added middle initials, etc. Left uncleaned, these
inconsistencies have a detrimental effect on the quality of the
view results. For example multiple email addresses will dilute
the count impact of a single sender. In other words, if their
name is spelled multiple ways it will reduce the count of emails
any one of those "senders" sent. Or, for social network
creation, name duplication will result in an incorrectly drawn
network with more nodes than should exist. This is a problem
which will require cleaning steps at the view level to solve.
Similarly, the Date headers of emails had to be cleaned and
standardized in the CountByDate views to account for pre-
Y2K era two-digit years. Once the views are written, they can
be shared and improved in the usual way.

D. Threading
Another problem with the prototype system as presented

here is that it currently lacks threading for emails. When one
email of interest is found, it is sometimes helpful to see the
entire thread before and after that message. Right now this
system does not specifically support threading via views or in

the web interface. Threading can be more easily accomplished
with newer headers that were added to modern email clients to
handle this issue. However, because many of the researchers
using this system are likely to be studying many years' worth of
email, they are likely to need a more comprehensive and high-
quality way to reconstruct threads for older messages, or for
when this header is missing. In the future, threading can be
added by creating views in CouchDB following the model
presented in [17], for example. Subsequently, it will be
possible to perform a keyword search, like the one shown in
Fig. 8, but to have the option of showing the original messages
and allow a user to retrieve the entire thread context.

V. CONCLUSION
This paper presents a replicable system, FLOSSmole

Apachemail, for collecting and storing email message archives
in mbox format in a document-oriented database, for creating
views and lists as queries to those messages, and for setting up
a search engine and web-based interface to that search engine.
This system could be useful to researchers in a variety of fields
(including but not limited to empirical software engineering)
who need to get a large amount of email collected and stored
quickly and easily, and want to share the collection with others.
The paper reviews several challenges and limitations of the
project, and presents a way forward on each of these.

The system described here improves replicability of email
archive-based software engineering research in two ways: first,
by standardizing some of the choices about how emails are
processed, this system both removes variability between
different research groups and lowers the barrier to entry for
new research groups. Second, using a common system will
provide a familiar and standardized vocabulary for
communicating about how the email messages were collected
and stored. This improves clarity of communication between
research groups.

To get started using the FLOSSmole Apachemail system,
and to encourage sharing and replication of this infrastructure,
the entire codebase for this system is available for download,
on a publicly-available version control system, where changes
can be made by anyone and can be shared with others. Of
course, this also means that this system could be rolled out in a
central location for multiple groups to access and share.

REFERENCES
[1] Apache Software Foundation. "Project Management Committee

Policies". http://www.apache.org/dev/pmc.html#mailing-list-naming-
policy

[2] M. Squire. "How the FLOSS research community uses email archives."
Int. J. Open Source Software Systems & Proeesses, 4(1). 2012. pp. 37-
59.

[3] D.S. Pattison, C.A. Bird, and P.T. Devanbu. "Talk and work: a
preliminary report." In Proc. 5th Int. Working Conf. on Mining Software
Repositories (MSR). 2008. 113-116.

[4] J. Roberts, I.-H. Hann and S. Slaughter. "Communication networks in an
open source project". In Proc. 2nd Int. Conf. on Open Source Systems
(OSS). 2006. 297- 306.

[5] P.C. Rigby, and A.E. Hassan. "What Can OSS Mailing Lists Tell Us? A
Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List." In Proc. 4th Int. Workshop on Mining Software
Repositories (MSR). 2007. 23-31.

[6] A.C. MacLean, L.J. Pratt, C.D. Knutson and E.K. Ringger. "Knowledge
homogeneity and specialization in the Apache HTTP Server project." In
Proc. of the 7th Int. Conf. on Open Source Systems (OSS). 2011. 106-
122.

[7] A. Schilling, S.L. Andreas, and T. Weitzel. "Who will remain? an
evaluation of actual person-job and person-team fit to predict developer
retention in floss projects." In Proc. 45th Hawaii Int. Conf. on System
Science (HICSS). 2012. pp. 3446-3455.

[8] MarkMail. "Frequently Asked Questions". http://markmail.org/
docs/faq.xqy

[9] W.M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A.E. Hassan.
"Should I contribute to this discussion?" In Proc. 7th Int. Working Conf.
Mining Software Repositories (MSR). 2010. pp. 181-190.

[10] S.K. Sowe, I. Stamelos, and L. Angelis. "Understanding knowledge
sharing activities in free/open source software projects: An empirical
study." Journal of Systems and Software, 81(3), 431-446.

[11] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
"Mining email social networks". In Proc. 3rd Int. Workshop Mining
Software Repositories (MSR). 2006. pp. 137-143.

[12] N. Bettenburg, E. Shihab, and A. E. Hassan, "An empirical study on the
risks of using off-the-shelf techniques for processing mailing list data,"

In Proc. 25th IEEE Int. Conf. on Software Maintenance (ICSM), 2009,
pp. 539–542.

[13] J. Howison, M. Conklin, and K. Crowston,. "FLOSSmole: A
collaborative repository for FLOSS research data and analyses". Int. J.
Information Technology and Web Engineering, 1(3). 2006. 17–26.

[14] E. Hall. "RFC 4155, The application/mbox Media Type". September
2005. http://tools.ietf.org/html/rfc4155

[15] Apache Software Foundation. "Available Mailing Lists". http://mail-
archives.apache.org/mod_mbox/

[16] FLOSSmole Apachemail Github Repository.
https://github.com/megansquire/apachemail

[17] M.A. Russell. Mining the Social Web. Sebastopol, CA, USA: O'Reilly.
2011.

[18] Apache CouchDB. http://couchdb.apache.org
[19] MetricsGrimoire. "Mailing List Stats". http://metricsgrimoire.github.io/

MailingListStats/
[20] Apache CouchDB Wiki. "How to replicate a database".

http://wiki.apache.org/couchdb/How_to_replicate_a_database
[21] Google Charts API. https://developers.google.com/chart/
[22] Apache Lucene. http://lucene.apache.org

