The Onion has Cancer:
Some Social Network Analysis Visualizations
of Open Source Project Communication

Christopher Oezbek
Freie Universitat Berlin
Berlin, Germany
oezbek@inf.fu-berlin.de

ABSTRACT

Background: People contribute to OSS projects in wildly different
degrees, from reporting a single defect once and never coming back
to spending many hours each workday on the project over several
years — or anything in between. It is a common conception that
these degrees of participation sort the participants into a number of
similar groups which are layered like the peels of an onion: The
onion model. Objective: We check whether this model of gradu-
ally different degrees of participation is valid with respect to the
participation in OSS project mailing-list traffic. Methods: We per-
form social network analysis based on replies to mailing-list mes-
sages and use visualization to check the nature of three different
groups of participants. Results: There appears to be a discontinu-
ity with respect to core members: The degree to which very ac-
tive core members (as opposed to less active co-developers) react
to e-mails of senders from the project’s periphery is significantly
higher than would be expected from their level of activity in gen-
eral. Limitations: The effect might be an artifact of the assumption
that each mailing-list message can be treated the same. Conclu-
sions: We conclude that core member status may be qualitatively
(rather than just quantitatively) different and the transition of indi-
vidual mailing-list participants towards ever higher participation is
qualitatively discontinuous.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences

General Terms

Measurement, Human Factors

Keywords

social network analysis, open source process, communication struc-
ture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FLOSS’10 May 8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-978-7/10/05 ...$10.00.

Lutz Prechelt
Freie Universitat Berlin
Berlin, Germany
prechelt@inf.fu-berlin.de

Florian Thiel
Freie Universitat Berlin
Berlin, Germany
thiel@inf.fu-berlin.de

1. INTRODUCTION

We are concerned here with projects that have not just a free soft-
ware license for their product, but also an open participation model
for process conduct: Everybody who is interested in the product
or project is free to participate in discussions (on an open mailing-
list) and contribute to development (coordinated via publicly read-
able version control systems to which participants gain write ac-
cess after contributing for a while) [9]. We call such projects OSS
projects.

Ever since Mockus et al.’s description of the Apache httpd project
[29] it is common to think of the participation structure in OSS
projects in terms of what has been called the onion model: nested
spheres of participation, where participation and influence increase
from outer to more inward layers of the onion while the number of
participants increases from inner (core developers) to outer layers
[42,17, 11].

The Apache study considered three such spheres (has reported
a defect, has contributed a defect fix, is core developer), but other
studies suggest there are more facets of participation (participating
in discussions, contributing to one vs. many modules, being able
to grant write-access, etc.) that create further stages [19], and it
may be best to think of the participation career of a will-be core de-
veloper as a smooth, continuous process of increasing participation
and integration [13]. This would indeed be more similar to a real
onion, which typically has eight or more layers.

The contribution of the present paper is to suggest that the idea
of a smooth transition from outer layers to the core may be mislead-
ing. Rather, the core may be special and have a qualitatively dif-
ferent (and not just quantitatively different) role in an OSS project
even when compared to the heavy but not-quite-yet-core developers
of the same project.

This observation stems from a visualization-based analysis of the
social network that arises from e-mail communication. In the par-
ticular visualization style chosen, three layers of participants can
easily be discerned in medium-sized projects, the middle one of
which hugs the core in a manner that looks somewhat like a tumor
growing out of an organ, hence the flashy title of the paper.

We will now explain social network analysis (SNA) and the role
and dangers of visualization (Section 2), sketch previous studies
of OSS using SNA (Section 3), describe the origin of the data we
have analyzed (Section 4) and the design decisions used for the vi-
sualization (Section 5). We will then show the visualizations them-
selves and discuss our finding (Section 6).

2. SOCIAL NETWORK ANALYSIS (SNA)

Social Network Analysis or SNA [20] is the analysis of graphs in
which a node represents an individual (e.g. a developer, but could

be a group or organization as well) and a vertex represents a rela-
tionship between two individuals (e.g. they have modified the same
code module or one has sent e-mail to the other).

This idea originated in the social sciences as “sociometrics” [16]
and has been applied to many types of data such as local com-
munities of fishermen in Norway [3], the spread of AIDS through
sexual contacts [21], the interlock of enterprises via debt or share
holders [4], or collaboration among authors of scientific publica-
tions [30].

Computing various global or node-specific metrics for a network
is useful for making general statements about specific networks or
classes of networks. Examples of such metrics are betweenness,
diameter, distance, density, betweenness centrality, degree central-
ity, or eigenvector centrality [31, 32]. Examples of general effects
and principles found for social networks are the small world phe-
nomenon [28, 41, 10], 0-1-2 effect [1], preferential attachment [31],
or triadic closure [22]. Note that we are interested in the social phe-
nomena underlying the network. However, the metrics tend to be
so abstract that one can easily loose track of what they really mean,
which is dangerous [36].

This is why we prefer the complementary approach to SNA here:
visualization. Visualization of a social network graph [18, 40, 15] is
useful for identifying key individuals, for understanding the struc-
ture of a particular social network, or for comparing presumably
similar networks in order to identify peculiarities.

However, visualization has its pitfalls as well: Visualizing large
networks requires automation, which implies choosing a set of rules
for how to place the nodes, a layout algorithm. Layout algorithms
attempt to minimize the number of edge intersections (which would
make the image harder to read) and node overlaps (which would
make the image very hard to read). They may also have various
other functions, such as keeping certain designated subgroups of
nodes together or biasing the overall structure towards a certain
shape [14]. For instance, arranging all nodes in a single wide ring
always allows a layout without any edge intersecting a third node
but often leads to very uneven use of the layout area and to con-
fusing images in which even strong substructures are hard to find.
Other choices have different drawbacks and one must keep in mind
that a striking feature of a visualization is always to some degree
an artifact of the particular visualization rules chosen [39, 8].

Size, shape, or color can be used to encode further information
in a node (node type and weight) or an edge (relationship type,
connection strength). This increases the expressive power of the
visualization, but may also create additional artifacts.

For our visualizations we use the GraphViz package [14], which
provides various layout algorithms and powerful options for cus-
tomizing the resulting visualization.

3. SNA IN THE OSS LITERATURE

A number of different relationship types within OSS projects
have been analyzed.

Madey et al. looked at how projects are linked by individuals par-
ticipating in more than one project [26, 27] and suggested there are
individuals who are important boundary-spanners between many
projects.

Crowston and Howison looked at how developers are linked by
working on the same entry in the defect tracking system. Their
study considers many projects and makes heavy use of metrics.
It finds for instance that it is less likely in a large project that
one developer dominates the communication regarding a defect en-
try [11].

Lopez-Fernandez et al. looked at how developers are linked by
contributing to the same ‘module’ (source code directory) in three

large projects (KDE, Gnome, Apache) and at how modules are
linked by the same developer working on both [25, 24]. They
found that both networks are loosely connected and exhibit small
world characteristics. Spaeth has similar results for medium-sized
projects [37].

de Souza et al. extended this by static call graph analysis and
followed the evolution of the situation over a long time. They found
shifts in participation from the periphery to the core of a project
and vice versa, as well as changes to the ownership of files over
time [12].

Bird et al. considered five large OSS projects and looked at de-
velopers working together on the same files and reply-to relation-
ships on the mailing-list [7]. They found that (1) the communica-
tion network was modular, i.e. sub-groups could be identified, (2)
that developers discussed product-centric topics in a smaller group,
while other topics were discussed more broadly in the community,
and (3) that people who interacted on the mailing-list also were
much more likely to work together on the same files in the reposi-
tory.

Ducheneaut attempted to understand the ‘career’ of a single, spe-
cific developer, Fred, and uses SNA (based on both mailing-list
communication and work on files) as one of several qualitative and
quantitative methods in this longitudinal individual-centric study.
The result is a rich description of how Fred gradually moves to-
wards the core of the Python project until eventually he is a re-
spected core member. It characterizes joining as a learning process
involving e.g. identity construction and join scripts and as a politi-
cal process [13].

Keep in mind that SNA can be criticized as over-simplifying re-
ality [5]. For instance, the reply-to relationship was often used to
model an association between actors, without accounting for the
content of the e-mail or the actual quotation patterns [2] and with-
out considering the relationship strength to decay over time [22].

4. OUR DATA

We study the introduction of process innovations in Open Source
projects [33] by manually extracting innovation episodes from arch-
ives of mailing-lists and analyzing these episodes qualitatively by
the Grounded Theory Method [38].

In this context, we wanted to validate whether a social network
visualization could be used to provide background information that
helps interpreting an innovation episode. To this end, we took all
messages from the mailing-list archives in 2007 of the projects we
were studying, turned each participant into a node (unifying multi-
ple e-mail addresses where needed [6]), and computed relationship
strength between A and B as the number of e-mails that are a reply
of B to a message from A or vice versa, according to the in-reply-to
header of the e-mail.

For understanding innovation introduction, by the way, the result
was negative: The only helpful information shown in the visualiza-
tion was the ‘weight’ of each of the episode participants, which can
be obtained much more easily by a simple count of the mailing-list
contributions.

Our data set covers 11 of the 13 projects (from 7 different do-
mains, selected from mailing-list archive Gmane to build a diverse
set of projects) for which we analyzed innovation episodes. They
include three workflow applications (Bugzilla, Flyspray, Request
Tracker), two desktop environments (Rox, Xfce), two design tools
(ArgoUML, a UML CASE tool; gEDA, a set of electronic design
automation tools), one bootloader (Grub), one hardware emulator
(Bochs), one operating system (FreeDOS), and one database man-
agement system (MonetDB). Data was cleaned as to unify multi-
ple e-mail addresses used by the same person and Spam was re-

moved [6]. The two other projects (U-Boot, KVM) were so large
that the data created scaling problems for our graph layout soft-
ware. Since the resulting images would be overcrowded and hardly
useful anyway, we simply leave them out.

S. VISUALIZATION RULES USED

Each node represents a person who has posted to the mailing-
list at least once in 2007. Each such person is represented, even
if nobody has reacted to these e-mails and the person is hence not
connected to any other. Each node is represented by a circle. The
area of the circle represents the number of e-mails sent by the per-
son.

Each edge represents an undirected replies-to relationship be-
tween two persons (except when crossing the core-group boundary,
as described below) and is represented as a line. The width of the
line represents the number of e-mails (in any of the two directions).

The color of a circle represents the number of calendar months
during which that person has sent at least one e-mail (the darker
the color the more months of activity); frequent participants are not
always also regular participants and vice versa.

All of these visualization design decisions are quite straightfor-
ward. Now for the crucial one: We treat core members specially, as
follows.

e We consider participants to be members of the project core
according to a formal criterion. A participant is in the core if
s/he has sent at least one e-mail to the list in at least k calen-
dar months, with £ = 8. This simple criterion works accept-
ably well: We experimented with various other definitions, in
particular one based on a community finding algorithm [35,
34], and different values of k, but the above definition pro-
duced the subjectively most convincing core groups across
the various projects.

e We layout the core nodes as a separate subgraph.

e This subgraph is drawn inside a grey square to make the core
group readily visible.

e Edges between core nodes are drawn as usual.
e Edges between non-core nodes are drawn as usual.

e An edge between a core node and a non-core node is not
actually drawn. Rather, all edges between this non-core node
and any of the core nodes are collapsed into a single edge and
drawn towards the center of the core rectangle.

The latter rule greatly reduces the number of lines to be drawn,
makes the image correspondingly clearer, and practically turns the
core group into a single entity. This has to be firmly kept in mind
when interpreting the image.

6. RESULTS

The resulting visualizations for our 11 projects can be seen in
Figure 1. The script in these figures is too small to read in print,
but is hardly relevant; it can be enlarged arbitrarily in the digital
version.

All figures show a similar structure of (1) a tightly integrated
core, (2) aloosely collected set of co-developers which are strongly
oriented to the core but also share some links between each other,
and (3) a periphery of project participants, most of which are either
only connected to the project core or not at all (that is, their e-mails
were all ignored).

In contrast to the “onion” model, which describes influence and
role advancement possibilities, the communication social network
is thus more appropriately named “earth, moon, and stars” with the
project core being the earth around which most communication re-
volves, the co-developers forming a crescent-like set of “moon” de-
velopers hugging the core, and the peripheral participants are dot-
ted as stars around the core.

A central oddity struck us when looking at these graphs: Com-
munication between peripheral participants and co-developers and
inside the co-developer group is surprisingly low, showing little
signs of the strong peer-to-peer assistance commonly assumed in
OSS projects [23]. Rather the core developers hold an dispropor-
tionally large share of communication with the periphery.

This visual impression is confirmed by a quantitative analysis:
When a group g produces some fraction f, of overall e-mail traffic,
we would expect it to have the same fraction f, p of the commu-
nication with the periphery P as well: We define T, = f,/f, p and
expect T, = 100%. We compare these fractions for the core C and
co-developers D via a y2-test! and assume co-developer status for
all mailing-list participants active for three months and more, who
are not in the core. We find that 7p < 100% in all 11 cases. In
three cases, the difference is not statistically significant: For Re-
quest Tracker and Bochs because their core groups are so small
(n =2, n=1), for Xfce because the expectation is only almost met
(Tp = 95%). For the remaining 8 projects, the difference is statisti-
cally significant (p < 0.01) and Tp ranges from 31.2% (ArgoUML)
to 69.2% (Bugzilla).

7. CONCLUSION AND LIMITATIONS

We conclude that the core group is not just a group of developers
with particularly intense participation. Rather, the core appears to
have a qualitatively different role as well, so that the many-layered
onion model is misleading. Core developers appear to take part in
the project in a way that is inherently more comprehensive, even be-
yond the fact that they simply do more. The group of co-developers
on the other hand, while connected to some degree, seems strongly
oriented to the core, causing us to describe it as “cancerous” or
rather as following a “sun, moon, stars”’-model of communication
activity.

Although it is not clear to us what this qualitative difference re-
ally is, we do not find it surprising that it exists. What we do
find surprising, however, is that the difference is so strong that it
is clearly visible despite the crude metric we used for participation
(e-mail counts with no weighting) and our definition of the core
group that is as simple as a nursery rhyme “Active at all // for eight
months or more? // You’re in the core!”.

Nevertheless, the result needs to be validated with refined met-
rics.? Alternatively, the suitability of the metrics itself needs fur-
ther investigation and support. We need to understand whether the
e-mail-count metric is distorted by the existence of high-volume,
oft-topic traffic, whether effects such as days-per-month activity or
hours-per-day activity of contributors skews who captures the (pre-
sumably often simple, one-shot) periphery traffic, and whether our
months-activity rule accurately captures what conventional defini-
tions would consider the core (such as official members, commit-
ters, high-frequency committers, high-volume committers).

INote that due to the existence of threads in e-mail communication,
the events counted are not all strictly independent, which distorts
the test results a bit. We will therefore require p < 0.01 before we
consider a difference significant.

2Barcellini et al. have for instance cautioned to the use of reply-
relationships when quotations might provide a substantially better
mapping of discussion flow [2].

fig:sna:argouml
fig:sna:bugzilla

f\) Q periphery & . A A .)
7, AL,
m core developer ¢ eae ’ ° .

darker colors signify more months of activity

(a) Legend

s ©
(d) Project Bochs

&

(j) Project Request Tracker (k) Project Rox (1) Project Xfce

Figure 1: Visualizations (as defined in Section 5) of the e-mail communication structure for 11 OSS projects.

8.

ACKNOWLEDGMENTS

We thank Christian Bird for providing his implementation of a
community modularization algorithm as a starting point for exper-
imentation.

9.
(1]

2

—

(3]
(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

REFERENCES

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership,
growth, and evolution. In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 44-54, New York, NY,
USA, 2006. ACM.

F. Barcellini, F. Détienne, J.-M. Burkhardt, and W. Sack. A
study of online discussions in an Open-Source software
community: Reconstructing thematic coherence and
argumentation from quotation practices. In P. van den
Besselaar, G. de Michelis, J. Preece, and C. Simone, editors,
Second Communities and Technologies Conference, Milano
2005, pages 121-140, Milano, Italy, May 2005. Springer.
http://www.springer.com/sgw/cda/frontpage/0,,1-40393-22-
46608953-detailsPage

J. A. Barnes. Class and committees in a Norwegian island
parish. Human Relations, 7(1):39-58, 1954.

J. Bearden, W. Atwood, P. Freitag, C. Hendricks, B. Mintz,
and M. Schwartz. The nature and extent of bank centrality of
corporate networks. Unpublished paper submitted to the
American Sociological Association. Reprinted in Scott J.
Eds. Social networks: critical concepts in sociology, Volume
3. Taylor & Francis, 2002., 1975.

E. Berdou. Managing the bazaar: Commercialization and
peripheral participation in mature, community-led F/OS
software projects. Doctoral dissertation, London School of
Economics and Political Science, Department of Media and
Communications, 2007.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and

A. Swaminathan. Mining email social networks. In MSR 06:
Proceedings of the 2006 international workshop on Mining
software repositories, pages 137-143, New York, NY, USA,
2006. ACM.

C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu.
Latent social structure in Open Source projects. In SIGSOFT
"08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 24-35, New York, NY, USA, 2008.
ACM.

S. Bresciani and M. J. Eppler. The risks of visualization: a
classification of disadvantages associated with graphic
representations of information. In P. Schulz, U. Hartung, and
S. Keller, editors, Identitdt und Vielfalt der
Kommunikationswissenschaft, pages 165-178. UVK
Verlagsgesellschaft mbH, Konstanz, Germany, 2009.

A. W. Brown and G. Booch. Reusing Open-Source Software
and practices: The impact of Open-Source on commercial
vendors. In ICSR-7: Proceedings of the 7th International
Conference on Software Reuse, pages 123-136, London, UK,
2002. Springer-Verlag.

J. J. Collins and C. C. Chow. It’s a small world. Nature,
393:409—410, June 1998.

K. Crowston and J. Howison. The social structure of Free
and Open Source software development. First Monday,
10(2):n/a, 2005.

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

C. de Souza, J. Froehlich, and P. Dourish. Seeking the
source: Software source code as a social and technical
artifact. In GROUP '05: Proceedings of the 2005
international ACM SIGGROUP conference on Supporting
group work, pages 197-206, New York, NY, USA, 2005.
ACM.

N. Ducheneaut. Socialization in an Open Source Software
community: A socio-technical analysis. Computer Supported
Cooperative Work (CSCW), V14(4):323-368, Aug. 2005.

J. Ellson, E. Gansner, L. Koutsofios, S. North, and

G. Woodhull. Graphviz: Open source graph drawing tools. In
Graph Drawing, volume 2265/2002 of Lecture notes in
computer science, pages 594-597, Berlin, Germany, 2002.
Springer.

L. C. Freeman. Visualizing social networks. Journal of
Social Structure, 1(1), 2000.

L. C. Freeman. The Development Of Social Network
Analysis— A Study In The Sociology Of Science. Empirical
Press, Vancouver, BC, Canada, 2004.

C. Gacek and B. Arief. The many meanings of open source.
IEEE Software, 21(1):34-40, January/February 2004. Good
introductury paper.

J. Heer and D. Boyd. Vizster: Visualizing online social
networks. In INFOVIS ’05: Proceedings of the 2005 IEEE
Symposium on Information Visualization, pages 32-39,
Washington, DC, USA, 2005. IEEE Computer Society.

C. Jensen and W. Scacchi. Role migration and advancement
processes in OSSD projects: A comparative case study. In
ICSE °07: Proceedings of the 29th International Conference
on Software Engineering, pages 364-374, Washington, DC,
USA, 2007. IEEE Computer Society.

J. Kleinberg. The convergence of social and technological
networks. Commun. ACM, 51(11):66-72, 2008.

A. S. Klovdahl. Social networks and the spread of infectious
diseases: the AIDS example. Social Science and Medicine,
21(11):1203-1216, 1985.

G. Kossinets and D. J. Watts. Empirical Analysis of an
Evolving Social Network. Science, 311(5757):88-90, Jan.
2006.

K. R. Lakhani and E. von Hippel. How Open Source
software works: “free” user-to-user assistance. Research
Policy, 32(6):923-943, June 2003.

L. Lépez-Ferndndez, G. Robles, J. Gonzalez-Barahona, and
L. Herrdiz. Applying social network analysis techniques to
community-driven Libre Software projects. International
Journal of Information Technology and Web Engineering,
1(3):27-48, 2006.

L. Lépez-Ferndndez, G. Robles, and J. M.
Gonzalez-Barahona. Applying social network analysis to the
information in CVS repositories. IEE Seminar Digests,
2004(917):101-105, 2004.

G. Madey, V. Freeh, and R. Tynan. The Open Source
software development phenomenon: An analysis based on
social network theory. In 8th Americas Conference on
Information Systems (AMCIS2002), pages 1806—-1813,
Dallas, TX, 2002.

G. Madey, V. Freeh, and R. Tynan. Modeling the F/OSS
community: A quantitative investigation. In S. Koch, editor,
Free/Open Source Software Development, chapter 9, pages
203-220. Idea Group Publishing, 2005.

S. Milgram. The small-world problem. Psychology Today,

[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

1(1):61-67, May 1967.

A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of Open Source Software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, 11(3):309-346, 2002.

M. E. J. Newman. The structure of scientific collaboration
networks. Proceedings of the National Academy of Sciences
of the United States of America (PNAS), 98(2):404—409, Jan.
2001.

M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45(2):167-256, 2003.

M. E. J. Newman. Analysis of weighted networks. Phys. Rev.
E, 70(5):056131, Nov. 2004.

C. Oezbek and L. Prechelt. On understanding how to
introduce an innovation to an Open Source project. In
Proceedings of the 29th International Conference on
Software Engineering Workshops (ICSEW *07), Washington,
DC, USA, 2007. IEEE Computer Society. reprinted in
UPGRADE, The European Journal for the Informatics
Professional 8(6):40-44, December 2007.

G. Palla, I. Derényi, 1. Farkas, and T. Vicsek. Uncovering the
overlapping community structure of complex networks in
nature and society. Nature, 435(7043):814-818, June 2005.
M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in
networks. Notices of the AMS, 56(9):1082-1097, Oct. 2009.
J. Scott. Social Network Analysis. Sociology,
22(1):109-127, 1988.

S. Spaeth. Coordination in Open Source Projects — A Social
Network Analysis using CVS data. Dissertation, Universitét
St. Gallen, St. Gallen, Switzerland, Oct. 2005.

A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and Techniques.
SAGE, 1990.

M. van der Meulen, R. H. Logie, Y. Freer, C. Sykes,

N. Mclntosh, and J. Hunter. When a graph is poorer than 100
words: A comparison of computerised natural language
generation, human generated descriptions and graphical
displays in neonatal intensive care. Applied Cognitive
Psychology, Early View:n/a, Dec. 2008.

visone Software for the Analysis and Visualization of Social
Networks. Michael Baur. Disseration, Fakultit fiir
Informatik, Universitit Karlsruhe (TH), Karlsruhe, Nov.
2008.

D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440-442, June 1998.
Y. Ye and K. Kishida. Toward an understanding of the
motivation of Open Source Software developers. In
Proceedings of the of the 25th International Conference on
Software-Engineering (Portland, Oregon), 2003.

	Introduction
	Social network analysis (SNA)
	SNA in the OSS Literature
	Our data
	Visualization rules used
	Results
	Conclusion and limitations
	Acknowledgments
	References

