

How Healthy is my Project? Open Source

Project Attributes as Indicators of Success

James Piggott1 and Chintan Amrit2

Department of IEBIS

University of Twente

The Netherlands

1. j.j.h.piggott@student.utwente.nl

2. c.amrit@utwente.nl

Abstract. Determining what factors can influence the successful
outcome of a software project has been labeled by many scholars and
software engineers as a difficult problem. In this paper we use machine
learning to create a model that can determine the stage a software
project has obtained with some accuracy. Our model uses 8 Open
Source project metrics to determine the stage a project is in. We
validate our model using two performance measures; the exact success
rate of classifying an Open Source Software project and the success
rate over an interval of one stage of its actual performance using
different scales of our dependent variable. In all cases we obtain an
accuracy of above 70% with one away classification (a classification
which is away by one) and about 40% accuracy with an exact
classification. We also determine the factors (according to one
classifier) that use only eight variables among all the variables
available in SourceForge that determine the health of an OSS project.

1 Introduction

Determining what makes a software project successful has been a research topic

for well over 20 years. The first model that defined the factors influencing software

success was published in 1992 by Delone and McLean [1], as the Information

Systems Success Model. Since then there has been a considerable effort in research

to determine what can be done to minimize project failure. However, factors that

influence commercial projects differ from those known as FLOSS or Free/Libre

Open Source Software. Attempts at remedying this gap have focused on statistical

models that focus on certain aspects of a software development lifecycle. Only

recently, has historical data been used to determine the changing nature of factors for

success during a projects lifecycle[2].

In this paper we use machine learning in the form of decision trees, to predict the

development stage of an Open Source project based on project metrics1, project

1 We use the terms metric and attribute to mean the same concept in this paper

2 James Piggot and Chintan Amrit

constraints and circumstance. This model will serve as an indicator of OSS project

health that will enable developers to determine accurately in what stage their project

is in and what is necessary to improve project success. For organizations seeking to

use OSS it can also be used to determine what risks are associated with sponsoring a

project.

Previous research has tried to understand which indicators influence a project‟s

success and how these indicators are interrelated but there have been very few

working models[3]. What this paper proposes is that, through machine learning we

can model which available project metrics are of importance in determining OSS

project health. Our method differs from previous attempts at building a model, which

were based on statistical correlations that approximated success factors without

revealing how they actually influenced project‟s status [4-6].

In the last few years a considerable number of papers have been published that

have tried to determine what the indicators of OSS project success are and how these

indicators are interrelated. Often a number of these metrics are empirically tested on

OSS projects found on SourceForge2, a key OSS depository. In this paper we try to

estimate the status of a project based on various metrics related to an OSS project.

We also determine the accuracy of the subjective status of an OSS project in

SourceForge that is provided by the OSS project leader. To this extent, we extend the

research work on the problems with reporting the status of a software project [7], to

OSS projects. For the purposes of this research we use SourceForge to obtain a data

sample and use longitudinal data collected from 2006 to 2009. We have limited the

sample to projects starting in 2005, in order to observe all stages of a project‟s

lifecycle.

2 Literature Review

Recent research on OSS success factors has focused on enlarging the scope of

influences, common elements found cite factors such as user/developer interest [2],

the critical number of active developers [8] and software quality [5].

Ever since the publication of the Information Systems Success model by Delone

and Mclean[1] researchers have attempted to define in what way factors that

influence Open Source Software differ from those of commercial software. Early

research showed that due to geographical dispersal of developers and lack of formal

managerial methods, coordination becomes more difficult [9], this has been off-set

by the proliferation of software forges that act as a single locale for communication

and development for a project as well as a download site for users. To determine

which metrics found on a software forge can be used to determine project success, an

explanation of the IS success model is in order.

2 http://www.sourceforge.net

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 3

2.2 Open Source Health

In order to gauge the success of the Open Source projects we studied in this

paper, we looked into literature on measuring Open Source success.

Crowston et al. [3] collect data on the bug tracker and the mailing list of the

projects to determine the health of the projects. They propose that the structure of the

OSS community determines the health of the community and state that an onion

structure is one of the better OSS community structures. Subramanian et al. [2]

measure an Open Source project‟s success by measuring user interest, project

interest and developer interest. They measure user interest by calculating the

number of project downloads and to measure the developer interest in the project,

Subramanian et al. [2] count the number of active developers in the project. Finally,

they measure project activity by calculating the number of files released in the

project [2].

Other authors such as Stewart et al. [10] find that licence choice (i.e. how

restrictive the licence is) and organizational sponsorship (i.e. its affiliation with a for-

profit company or university) determine how successful the OSS projects are. In

addition to these measures, Sen et al. [11] also find subscriber base (i.e. the number

of individuals who chose to be updated about the project developments) and number

of developers to reflect the ”healthiness” of an OSS project [11]. Chenglur-Smith et

al.[12] work on similar lines, and predict that a OSS project‟s age and size help in

the sustainability of the project (i.e. its ability to retain interest and continue to attract

developers) [12]. Amrit and Hillegersberg [13], on the other hand, explore the core-

periphery shifts of development activity and its impact on OSS project health. They

find that a steady movement of developers away from the core of the software code

is indicative of an unhealthy OSS project [13].

Regarding the techniques used to analyse OSS data, English and Schweik [14]

produce a six-part classification for OSS projects. They base this classification on

phone interviews with OSS developers, manual coding of a sample of OSS projects

from SourceForge.net, and theoretical insights from Hardin‟s “Tragedy of the

Commons”. English and Schweik operationalize these definitions and test them on

110,933 SourceForge projects, with low error rates. Wiggins and Crowston [15]

extend this research and analyse another SourceForge data set. Of 117,733 projects,

they classify 31% as abandoned at the Initiation stage, 28% as abandoned at the

Growth stage, and 14% as successful at both the Initiation and Growth stages.

Though the dependent variables of English and Schweik [14] are well thought

out, they do not explore the relationship of their classification with the existing

classification of projects in SourceForge. Furthermore, their focus is by and large to

determine the number of successful and unsuccessful OSS projects and to classify

projects into their six categories. In this paper, we also try to determine the factors

that affect the heath of an OSS project. Specifically, we try to predict the subjective

classification provided by the project managers and developers of the different

SourceForge projects in order to (1) check the validity of the subjective classification

and (2) if the classification is indeed valid, one can use the classifier to determine the

variables that affect project health.

4 James Piggot and Chintan Amrit

2.3 Success Factors

Previous research has focused on using three well known metrics to determine

project success with the added benefit they have corresponding metrics on

SourceForge [2, 3].

The use of longitudinal data from past projects hosted by SourceForge.net to

determine OSS success is also an innovation in recent studies [2]. They divide the

independent variables into two groups; time-variant and time-invariant and

determined how they affect the success measures. The outcome of this study

validates the idea of using historical data, as they have proved that past levels of

developer and user interest influence present interest. The effect of this change in

popularity is that lead-developers and project managers should better anticipate the

future need for resources and manage both the internal and external network size of a

project [16].

The choice of software license can also have a detrimental influence on the

success of a project [4]. They find that if more effort is necessary to complete the

project, developers tend to choose less restrictive licenses such as those from the No-

Copyleft or Weak-Copyleft categories as opposed to Strong-Copyleft. This even

holds true when developers prefer to use more restrictive licenses to ensure that

derivative work is adequately protected. The choice of license can be influenced by

external factors such as royalties and network effects. As such the preferred license

can differ from the optimal license. Other research has shown that when a project has

managed to pass through the initial stages of its lifecycle with a less than optimal

license it will not severely influence future success [17].

A difficult topic to study relates to determining what factors influence OSS

projects in both the initial stage and in the growth stage. As data from a project‟s

initial stages is often absent, this resolves to determining what time-invariant factors

can influence the growth stage. Research has found that the initial stage of an OSS

project is indeed the most vulnerable time period as a project competes for

legitimacy with other similar projects in attracting developers.

3 Methodology

3.1 Data and variable definitions

In order to build a model that approximates the status value of a software project

on SourceForge we need to gather factors that might influence developers to assign a

particular value of status.
Table 1: Overview of SourceForge‟s status classification

Classification

Number

Development Stage

1 Planning

2 Pre-Alpha

3 Alpha

4 Beta

5 Production / Stable.

6 Mature

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 5

7 Inactive

3.2 Dependent variables

To determine the success of software project we try and categorize what status

(stage) of development a project has reached.

3.2.1 Project Status

The current progress of a software project can be placed in one of five

development stages according to the System development life cycle: these are

Requirements Planning, Analysis, Design, Development and Maintenance [2].

Another way to describe a projects progress is through terms such as Planning,

Alpha, Beta and Stable. Shifts in progress are marked by improvements in

completeness, consistency, testability, usability and reliability [2].

SourceForge.net maintains a system of 7 status designations (Table 1). The

numbers 1 through 6 are for Planning, Pre-Alpha, Alpha, Beta, Production/Stable

and Mature The last status is an outside category for projects that are Inactive.

Previous research [2] makes it clear that it can be expected that projects reaching

advanced stages of their life cycle will be more in favor with users and those in

earlier stages, as their input goes beyond mere maintenance. As more users make use

of the software, they also generate more bug reports, feature requests and

feedback/suggestions. In turn developers develop more patches. As such, the latter

stages of development are marked by more development activity related to patches,

bugs and feature requests. The use of historical data in previous research [2] shows

that increased numbers of developers and users will show later on in increased

project activity. To better mark this relationship between different time periods

within a project we have selected projects on SourceForge that have valid data from

a period of four years from 2006 to 2009. The 7 stage status category used by

SourceForge is considered by some [2, 11], an awkward use of the typical lifecycle

definitions used in software development. SourceForge uses only vague descriptions

for each, and much is left to developers to decide the status their project is in.

Especially the difference between pre-alpha and alpha, as well as between

production/stable and mature, may be cause for confusion. To overcome this, we also

consider the binary project status representing whether the project is active, and the

project status variable that has four categories; namely Planning, Alpha and Beta and

Stable. To achieve the four stages of the project status, we collapsed the inactive and

planning stages to the Planning stage; we aggregated the stages Pre-Alpha, Alpha to

Alpha stage and Production/Stable and Mature to the mature category.

Projects on SourceForge.net can also be differentiated along a different

dimension, that of project activity. It can be reasonably assumed that both projects in

the planning stages and those that are inactive do not have either code to download

or developers to work on the project. As such they should be markedly different from

those projects of which code is available for download and alteration. We propose to

6 James Piggot and Chintan Amrit

check for ways in which projects that are inactive differ from those that are active,

apart from the aforementioned variables.

3.3 Time-invariant variables

Variables that can influence the success of an OSS project can be divided into

two groups – time-invariant factors and time-variant factors. The variables included

have been previously identified in literature as affecting OSS success [3, 11].

For time-invariant variables we have chosen those that define a project in general

terms such as license [4], the operating system that can be used and the programming

language [2] in which the code is written, to determine if they are factors that have

an influence on the project status. Each variable is divided into binary variable

categories such as Strong-Copyleft, Weak-Copyleft and No-Copyleft for license and

after which each project is assigned either the value 0 or 1 to show if it supports a

particular feature.

The time-invariant variables have been further augmented with simple numerical

variables that list the number of features of each category that a project supports. So

for license, there is a variable that would count the number of licenses used by a

project.

License

The license used by a project can influence the amount of support it gets, as it

affects the interests of users and developers [10]. Software licenses can be broadly

divided into three groups based on the level of restrictiveness that would determine

whether users can distribute derivatives or modify the software (copy free).

These categories are Strong-Copyleft, Weak-Copyleft and No-Copyleft. Licenses

such as GPL (General Public License) and BSD (Berkeley Software Distribution)

License are grouped into these categories depending on whether they support issues

such as „copy free‟ or not. Various research papers already use this division of

licenses and where licenses fall into [9, 10]. However, numerous licenses cannot be

exactly assigned to any of the three categories because they do not conform to the

GPL format. As far as possible, they are assigned based on the effect these licenses

have on user and developer choices.

Operating System

The operating system used for development and use of a project can have a

severe impact on its popularity as it determines how many users it could potentially

reach as well as what type of license the developer intends to use [2]. Traditionally

open source software has used UNIX, Linux and its derivatives for development,

which caused OSS to be somewhat excluded from other operating systems such as

Windows and Mac OS X. With the popularity of languages such as a Java that make

portability possible Windows has become an increasingly more popular for OSS

developers. Previous research[2] has indeed focused on these three categories of

operating system: the Windows-family, UNIX (also includes Linux and POSIX) and

a other category that includes MAC OS X. They prove that UNIX and Linux type

operating system have a negative correlation with user interest, but a positive

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 7

correlation with developer interest and explain this based on the roots of the OSS

community who frequently started their career on UNIX and Linux machines.

We have expanded the number of OS groupings to also include „OS

Independent‟ as a category to denote the increasing popularity of portability. Mac OS

X has also been grouped into a separate category as an acknowledgement of its

increasing popularity. Other operating systems were left out of this study. The

increase in number of categories should allow for better rules to be deduced from our

data mining efforts.

Similar to the license variables these categories denote binary variables and an

outside category has been added that counts the number of operating systems

supported by a project.

Programming Language

The effects of the programming language used in a project has previously solely

focused on the C-family of languages, while others where either excluded from study

or aggregated into one category [2, 3]. This study intends to rectify this deficiency to

also include popular languages such as Java and PHP as separate categories without

denying the continued importance of C-type languages.

Because the C programming language was used for the implementation of UNIX

is has remained popular with UNIX and Linux developers ever since [2]. Despite

memory allocation problems it has remained a favorite for projects that have more

stringent processing and real-time requirements. Through the prevalence of high

quality compilers and the importance of derivative languages (C++ C# and Visual

C++) the use of C can be associated with more developers and project activity [2].

For our study we have expanded the number of language categories to 5 and

included „C-family‟, „Java‟, „PHP‟, „Python‟ and „Others‟ as separate categories.

3.4 Time-variant variables

The three success measures previously mentioned that have their roots in the IS

Success Model also have their equivalents in OSS projects found on SourceForge.

These are Project Activity (number of files, bug fixes and patches released), User

Activity (number of downloads) and Developer Activity (number of developers per

project). Crowston et al. (2006)[3] discovered that these measures are interrelated as

developers are often users which means that the number of downloads and

developers is thus correlated. Project Activity is also closely correlated with User

Activity as the latter often download the latest software releases, developers tend to

flock to such projects as well. We use the above three metrics as the basis for our

time-variant variables.

Other variables include the number of donors, forum posts, mailings lists, feature

requests and „Service Requests‟ that allow users to ask for help from developers. Our

dataset also includes the project age in days from 2009 backwards as a control

variable. Combined, we have constructed a dataset that contains 38 variables

including 35 independent variables and three variations of one dependent variable,

i.e. project status with 7, 4 and 2 project statuses.

8 James Piggot and Chintan Amrit

3.5 Dataset sampling

SourceForge.net is the largest web portal for the development of Open Source

Software, it acts as a repository for code, as a tracking system for bugs and features

and as a communication outlet for those involved in software development. As of

November 2012 it hosts some 300,000 projects that differ in a wide range of

categories such as intended audience, the topic of the project, the license used as well

as technical attributes in which projects can distinguish itself; programming

language, OS supported as well as the Graphical User Interface used. For the purpose

of this study it is impossible to gather data directly from SourceForge through a

screen scraper as the servers of Sourceforge.net cannot distinguish this activity from

more nefarious ones such as a Denial of Service attack.

The dataset used has thus been obtained through a third source which has made

the data publicly available [18]. FlossMole.org contains data collected for the period

2006 to December 2009 from which a dataset was compiled of 125,700 projects.

Unfortunately, many projects had missing data, due to the fact that no data was

entered by developers, or project portals were not maintained, or the screen scraper

that collected data often did so wrongly, which corrupted portions of the dataset.

Our dataset initially contained 125,700 projects and most projects had incomplete

data for the time period 2006 to 2009. Hence, upon cleaning the data we were left

with 28,282 rows in our database,

4 Experiment Methodology

We used the SPSS 2.0 decision tree analysis able to analyze the data and predict

project status. In our research we chose the CHAID[19] and the CART[20] method

of data classification, in order to handle over 35 independent variables some of them

being categorical, numeric and non-parametric.

Decision trees can suffer from over-training, whereby the trees continue to grow

and might afterwards not be able to validate test-data because it uses rules learned

from the training data that are incompatible with the test data. Both CHAID and

CART use different ways to limit the growth of decision trees.

CHAID

Which stands for „Chi-squared Automatic Interaction Detection‟ uses a statistical

stopping rule to keep the tree from growing to impossible sizes. CHAID has the

advantage of being able to handle categorical variables. Other research using this

method indicate that it excels at analyzing all the factors that can possible influence a

dependent variable but it‟s result at predicting these value with subsequent data

samples is often poor.

CART

Also known as „Classification and Regression Trees‟ builds a tree based on

theory quite different from CHAID. CART uses a non-parametric approach which

can work with both categorical and numerical variables, and also has the ability to

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 9

model the complex interactions among the variables[20]. It first grows the tree to its

full size and afterwards it prunes the tree until the accuracy of the tree is similar for

both the training dataset and the test dataset.

The reason why we chose CHAID and CART is that while both classifiers can

work with categorical variables and use different theoretical models, they are also

comparable in some aspects (lift in response)[21].

Cross Validation

With both methods of growing a decision tree we have used our dataset in two

ways. The first is cross-validation of the entire data sample whereby data is

partitioned multiple times over in both trainings sets to build the tree and test sets to

validate the tree.

This is a process whereby data is manually split into training and test sets. For

the purposes of this study we used a 50-50 data split in order to avoid overtraining.

5 Results

Below are the results of for each of the three types of project status. The results

include both the CHAID tests as well as the Cross-validation and data-split methods.

The accuracy with which our classification tree has been able to determine the

correct project status can be seen in tables 2 and 3.

5.1Data split

The results in table 2 have been obtained through a 50-50 data split (to prevent

overtraining) and represents the results of the training set. The method obtained two

results of importance; the first is the exact match of 39.6 % whereby of the 24582

data samples 9729 achieved the correct corresponding status value. For a 7-fold

category this result can be considered acceptable (as compared to 1/7 ~ 0.14 for

random chance). The second method, or 1-away result, shows what percentages of

data samples either had exactly the correct status value, or were just 1 value off the

mark. The accuracy for this is 76.2 % and suggests that the results are closely

distributed around the correct value. This result validates the decision tree that was

grown from the rules deduced from this test.

10 James Piggot and Chintan Amrit

Table 2 Results of the CHAID decision tree with 7 stage project status

Exact match = 39.6%.

Number of hits / total cases = 9729 / 24582.

1-away match = 76.2%.

(Number of hits + number of 1-away hits) / total cases

= (9729 + 9013) / 24582.

5.2 Cross-validation

For the cross-validation method, the final score seems to closely match those of

the data split method. However, for status value corresponding to Planning (1) and

Inactive (7) the results differ significantly, as this method partitions the data set

multiple times it would average out the more extreme values obtained through the

data-split method.
Table 3: Status results through cross-validation.

Exact match = 40.7%.

Number of hits / total cases = 19929 / 48966.

1-away match = 76.0%

(Number of hits + number of 1-away hits) / total cases

= (19929 + 17294) / 48966.

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 11

Both results validate our method to classify software projects found in

SourceForge.

5.3 Four stage project status: Planning, Alpha, Beta and Stable

In table 4 are the results of our efforts to classify projects in the four categories

popularly described in literature. The test results were obtained using the CHAID

method with a 50-50 split of the dataset.

Table 4 Results of CHAID for 4 stage project status

 Categories. Accuracy.

 1. 2. 3. 4. Exact

match

1-

away

1

.

1877 2081 157 73 44.8%

2

.

1270 5049 1274 858 59.4%

3

.

424 2405 1837 1327 30.7%

4

.

201 1621 1384 2094 39.5%

 45.4%

 86.0%

Growing method; CHAID.

Exact match = 45.4%.

Number of hits / total cases = 10857 / 23932.

1-away match = 86.0%.

(Number of hits + number of 1-away hits) / total cases

= 20598 / 23932.

The accuracy of 45.4% is better than the score for the 7-fold status category,

though its predictive value is especially undermined by the low score in its efforts to

classify projects in Beta stage. This could be seen as proof that this stage is a

subjective stage that is hard to classify through machine learning. The 1-away score

of 86.0 % once again proof that the scores are distributed around the correct value

though for a 4-fold category the value loses in importance.

This result validates that out method works to determine the correct stage in its

lifecycle a software project is in.

12 James Piggot and Chintan Amrit

5.5 Binary Project Status: Active and Inactive

We get an accuracy of 82.4% for classification of projects based on a binary

status of active or inactive. The results can be considered to be better, if we consider

that the inactive state is an aggregation of the Planning status and the Inactive status,

they share many things in common but also have crucial differences for the former

can have developers assigned to it.

Table 5, Results of CHAID for a binary project status

5.6 Cross validation result.

The cross-validation method seems better able to determine whether a project is

active (1), because the method splits the dataset 10 times and tests each iteration we

can presume that the lower score for the above 50-50 data split is an aberration.

Table 6: Results of CHAID, CV for binary project status

This result of 82.8% accuracy shows that our method can successfully distinguish

active projects from inactive projects.

6. Discussion

The results of our classification show a nearly 40% accuracy for an exact match

of the subjective classification and a 76% 1-away match (Table 2) indicates that

subjective classification performed by the OSS project leader is quite accurate and

correlates with the project data. This is quite unlike what is reported for commercial

projects [7]. The errors and implications of this finding can be a subject for future

research.

By using the CART method of decision tree analysis, we obtained a model for

status classification, as shown in Figure 1. The tree shows that numerical metrics

such as downloads, donors, developers and forum posts are far more explanatory of

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 13

project health than time-invariant metrics such as license used, or the operating

system supported.

Figure 1: The CART decision tree for our data

This is in-line with earlier research [2]. However, this should not be surprising as

those time-invariant metrics are usually decided upon when the project is initiated,

and change little over its lifecycle. When they do change, they change only to suit

users and developers. On the other hand, time-variant metrics, by their definition,

can gauge what popularity a project has presently obtained. The order of importance

that metrics have taken in the model is also as expected and follows established

literature [2, 3].

In the early stages of a project lifecycle, the ability to attract developers is of vital

importance in order to be able to develop software along the stated goals. In the latter

stages of the software life cycle, it can be expected that users and developers

generate more forum posts. This model also shows that the number of donors is an

indication as to whether the project has status 4, 5 or 6. This can serve as an

indicator, for example, that a project sponsor can have a positive influence on project

success. This is in line with the findings of Stewart et al.[10].

The number of SVN commits relates to the number of changes developers have

uploaded to the central software repository on SourceForge. In the model (Figure 1)

14 James Piggot and Chintan Amrit

it is closely related with the number of developers on a project in the early stages of

the software lifecycle. The number of CVS commits denotes the number of official

software releases and surprisingly is not part of the model obtained.

The choice of license is also not an important factor in determining whether a

project will be able to continue to succeed in the growth stage. This validates other

research [10, 17] but for the most part contradicts long established views on how a

project would compete for resources.

Even though our dependent variable is the SourceForge subjective classification

done by the OSS project leaders, we can definitely say that given the predictive

accuracy of 1-away classification, the classification model does reflect the

stage/health of the OSS projects. As validation of this claim, we find that most of the

important variables are also mentioned by other authors[2, 3, 5, 6]

With our model we have managed to predict the status of a project with

reasonable accuracy. The model in figure 1 shows this when status 7 (inactive) is

reached after a combination of few downloads few active developers and only a

small number of bug reports have been generated.

7. Conclusion
We make two primary contributions with this research: (i) we demonstrate that

the subjective project status (especially the 1-away value) reflects the actual health of

the OSS project. This finding is in line with that of [2] and shows that, in this respect

OSS projects differ from commercial projects [7] (ii) we determine the variables that

affect project status and in turn affect project health based on nearly 30 K projects

over a period of four years.

Our research shows that with a limited set of just 8 variables (Figure 1), we can

gauge the status of a software project on SourceForge. Analyzing these 8 attributes

of the OSS project can help alert Project controllers that their project is either poorly

supported or will become obsolescent in the near future due to lack of developer

interest. For prospective developers and sponsors this model can give an idea,

whether a project is on track to pass through the early difficult stages of a software

life cycle on schedule and is in fact not already failing.

We think our results can provide further research opportunities in projects that

also suffer from users and developers being flooded with data, whose accuracy

cannot be interpreted easily. Crowd funding sites such as Kickstarter3 offers an index

of project that are considered „popular‟ and „most funded‟ but there may be lopsided

metrics as projects size, ambition and accessibility can negatively influence them.

REFERENCES
[1] W. H. DeLone and E. R. McLean, "The DeLone and McLean model of information

systems success: a ten-year update," Journal of Management Information Systems,

vol. 19, pp. 9-30, Spr 2003.

[2] C. Subramaniam, et al., "Determinants of open source software project success: A

longitudinal study," Decision Support Systems, vol. 46, pp. 576-585, 2009.

3 http://www.kickstarter.com/

How Healthy is my Project? Open Source Project Attributes as Indicators of Success 15

[3] K. Crowston, et al., "Information systems success in free and open source software

development: theory and measures," Software Process Improvement and Practice,

vol. 11, pp. 123-148, 2006.

[4] S. Comino, et al., "From planning to mature: On the success of open source

projects," Research Policy, vol. 36, pp. 1575-1586, 2007.

[5] S. Y. T. Lee, et al., "Measuring open source software success," Omega, vol. 37, pp.

426-438, 2009.

[6] V. Midha and P. Palvia, "Factors affecting the success of Open Source Software,"

Journal of Systems and Software, 2011.

[7] A. P. Snow and M. Keil, "The challenge of accurate software project status

reporting: a two-stage model incorporating status errors and reporting bias,"

Engineering Management, IEEE Transactions on, vol. 49, pp. 491-504, 2002.

[8] A. Mockus, et al., "Two Case Studies of Open Source Software Development:

Apache and Mozilla," ACM Transactions on Software Engineering and

Methodology, vol. 11, pp. 309-346, 2002.

[9] J. Wang, "Survival factors for Free Open Source Software projects: A multi-stage

perspective," European Management Journal, 2012.

[10] K. J. Stewart, et al., "Impacts of license choice and organizational sponsorship on

user interest and development activity in open source software projects,"

Information Systems Research, vol. 17, pp. 126-144, 2006.

[11] R. Sen, et al., "Open source software licenses: Strong-copyleft, non-copyleft, or

somewhere in between?," Decision Support Systems, 2011.

[12] I. Chengalur-Smith, et al., "Sustainability of free/libre open source projects: A

longitudinal study," Journal of the Association for Information Systems, vol. 11, p.

5, 2010.

[13] C. Amrit and J. van Hillegersberg, "Exploring the impact of socio-technical core-

periphery structures in open source software development," Journal of Information

Technology, vol. 25, pp. 216-229, 2010.

[14] R. English and C. Schweik, "Identifying success and abandonment of FLOSS

commons: A classification of Sourceforge. net projects," Upgrade: The European

Journal for the Informatics Professional VIII, vol. 6, 2007.

[15] A. Wiggins and K. Crowston, "Reclassifying success and tragedy in FLOSS

projects," Open Source Software: New Horizons, pp. 294-307, 2010.

[16] R. Sharda and D. Delen, "Predicting box-office success of motion pictures with

neural networks," Expert Systems with Applications, vol. 30, pp. 243-254, 2006.

[17] J. Wang, et al., "Human agency, social networks, and FOSS project success,"

Journal of Business Research, 2011.

[18] J. Howison, et al., "FLOSSmole: A collaborative repository for FLOSS research

data and analyses," International Journal of Information Technology and Web

Engineering (IJITWE), vol. 1, pp. 17-26, 2006.

[19] G. V. Kass, "An exploratory technique for investigating large quantities of

categorical data," Applied statistics, pp. 119-127, 1980.

[20] L. Breiman, et al., Classification and regression trees: Chapman & Hall/CRC, 1984.

16 James Piggot and Chintan Amrit

[21] D. Haughton and S. Oulabi, "Direct marketing modeling with CART and CHAID,"

Journal of Interactive Marketing, vol. 11, pp. 42-52, 1997.

