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Abstract. Determining what factors can influence the successful 
outcome of a software project has been labeled by many scholars and 
software engineers as a difficult problem. In this paper we use machine 
learning to create a model that can determine the stage a software 
project has obtained with some accuracy. Our model uses 8 Open 
Source project metrics to determine the stage a project is in. We 
validate our model using two performance measures; the exact success 
rate of classifying an Open Source Software project and the success 
rate over an interval of one stage of its actual performance using 
different scales of our dependent variable. In all cases we obtain an 
accuracy of above 70% with one away classification (a classification 
which is away by one) and about 40% accuracy with an exact 
classification. We also determine the factors (according to one 
classifier) that use only eight variables among all the variables 
available in SourceForge that determine the health of an OSS project. 

1 Introduction 

Determining what makes a software project successful has been a research topic 

for well over 20 years. The first model that defined the factors influencing software 

success was published in 1992 by Delone and McLean [1], as the Information 

Systems Success Model. Since then there has been a considerable effort in research 

to determine what can be done to minimize project failure. However, factors that 

influence commercial projects differ from those known as FLOSS or Free/Libre 

Open Source Software. Attempts at remedying this gap have focused on statistical 

models that focus on certain aspects of a software development lifecycle. Only 

recently, has historical data been used to determine the changing nature of factors for 

success during a projects lifecycle[2].  

In this paper we use machine learning in the form of decision trees, to predict the 

development stage of an Open Source project based on project metrics1, project 

 
1 We use the terms metric and attribute to mean the same concept in this paper 
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constraints and circumstance. This model will serve as an indicator of OSS project 

health that will enable developers to determine accurately in what stage their project 

is in and what is necessary to improve project success. For organizations seeking to 

use OSS it can also be used to determine what risks are associated with sponsoring a 

project.  

Previous research has tried to understand which indicators influence a project‟s 

success and how these indicators are interrelated but there have been very few 

working models[3]. What this paper proposes is that, through machine learning we 

can model which available project metrics are of importance in determining OSS 

project health. Our method differs from previous attempts at building a model, which 

were based on statistical correlations that approximated success factors without 

revealing how they actually influenced project‟s status [4-6].  

In the last few years a considerable number of papers have been published that 

have tried to determine what the indicators of OSS project success are and how these 

indicators are interrelated. Often a number of these metrics are empirically tested on 

OSS projects found on SourceForge2, a key OSS depository. In this paper we try to 

estimate the status of a project based on various metrics related to an OSS project. 

We also determine the accuracy of the subjective status of an OSS project in 

SourceForge that is provided by the OSS project leader. To this extent, we extend the 

research work on the problems with reporting the status of a software project [7], to 

OSS projects.  For the purposes of this research we use SourceForge to obtain a data 

sample and use longitudinal data collected from 2006 to 2009. We have limited the 

sample to projects starting in 2005, in order to observe all stages of a project‟s 

lifecycle. 

2 Literature Review 

Recent research on OSS success factors has focused on enlarging the scope of 

influences, common elements found cite factors such as user/developer interest [2], 

the critical number of active developers [8] and software quality [5]. 

Ever since the publication of the Information Systems Success model by Delone 

and Mclean[1] researchers have attempted to define in what way factors that 

influence Open Source Software differ from those of commercial software. Early 

research showed that due to geographical dispersal of developers and lack of formal 

managerial methods, coordination becomes more difficult [9], this has been off-set 

by the proliferation of software forges that act as a single locale for communication 

and development for a project as well as a download site for users. To determine 

which metrics found on a software forge can be used to determine project success, an 

explanation of the IS success model is in order. 

 
2 http://www.sourceforge.net 
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2.2 Open Source Health 

In order to gauge the success of the Open Source projects we studied in this 

paper, we looked into literature on measuring Open Source success.  

Crowston et al. [3] collect data on the bug tracker and the mailing list of the 

projects to determine the health of the projects. They propose that the structure of the 

OSS community determines the health of the community and state that an onion 

structure is one of the better OSS community structures. Subramanian et al. [2] 

measure an Open Source  project‟s success by measuring user interest, project 

interest and developer interest. They measure user interest by calculating the 

number of project downloads and to measure the developer interest in the project, 

Subramanian et al. [2] count the number of active developers in the project.  Finally, 

they measure project activity by calculating the number of files released in the 

project [2].  

Other authors such as Stewart et al. [10] find that licence choice (i.e. how 

restrictive the licence is) and organizational sponsorship (i.e. its affiliation with a for-

profit company or university) determine how successful the OSS projects are. In 

addition to these measures, Sen et al. [11] also find subscriber base (i.e. the number 

of individuals who chose to be updated about the project developments) and number 

of developers to reflect the ”healthiness” of an OSS project [11]. Chenglur-Smith et 

al.[12] work on similar lines, and predict that a OSS project‟s age and size help in 

the sustainability of the project (i.e. its ability to retain interest and continue to attract 

developers) [12]. Amrit and Hillegersberg [13], on the other hand, explore the core-

periphery shifts of development activity and its impact on OSS project health. They 

find that a steady movement of developers away from the core of the software code  

is indicative of an unhealthy OSS project [13].  

Regarding the techniques used to analyse OSS data, English and Schweik [14] 

produce a six-part classification for OSS projects. They base this classification on 

phone interviews with OSS developers, manual coding of a sample of OSS projects 

from SourceForge.net, and theoretical insights from Hardin‟s “Tragedy of the 

Commons”. English and Schweik operationalize these definitions and test them on 

110,933 SourceForge projects, with low error rates. Wiggins and Crowston [15] 

extend this research and analyse another SourceForge data set. Of 117,733 projects, 

they classify 31% as abandoned at the Initiation stage, 28% as abandoned at the 

Growth stage, and 14% as successful at both the Initiation and Growth stages.  

Though the dependent variables of English and Schweik [14] are well thought 

out, they do not explore the relationship of their classification with the existing 

classification of projects in SourceForge. Furthermore, their focus is by and large to 

determine the number of successful and unsuccessful OSS projects and to classify 

projects into their six categories. In this paper, we also try to determine the factors 

that affect the heath of an OSS project. Specifically, we try to predict the subjective 

classification provided by the project managers and developers of the different 

SourceForge projects in order to (1) check the validity of the subjective classification 

and (2) if the classification is indeed valid, one can use the classifier to determine the 

variables that affect project health. 



4 James Piggot and Chintan Amrit 

 

2.3 Success Factors 

Previous research has focused on using three well known metrics to determine 

project success with the added benefit they have corresponding metrics on 

SourceForge [2, 3].  

The use of longitudinal data from past projects hosted by SourceForge.net to 

determine OSS success is also an innovation in recent studies [2]. They divide the 

independent variables into two groups; time-variant and time-invariant and 

determined how they affect the success measures. The outcome of this study 

validates the idea of using historical data, as they have proved that past levels of 

developer and user interest influence present interest. The effect of this change in 

popularity is that lead-developers and project managers should better anticipate the 

future need for resources and manage both the internal and external network size of a 

project [16]. 

The choice of software license can also have a detrimental influence on the 

success of a project [4]. They find that if more effort is necessary to complete the 

project, developers tend to choose less restrictive licenses such as those from the No-

Copyleft or Weak-Copyleft categories as opposed to Strong-Copyleft. This even 

holds true when developers prefer to use more restrictive licenses to ensure that 

derivative work is adequately protected. The choice of license can be influenced by 

external factors such as royalties and network effects. As such the preferred license 

can differ from the optimal license. Other research has shown that when a project has 

managed to pass through the initial stages of its lifecycle with a less than optimal 

license it will not severely influence future success [17]. 

A difficult topic to study relates to determining what factors influence OSS 

projects in both the initial stage and in the growth stage. As data from a project‟s 

initial stages is often absent, this resolves to determining what time-invariant factors 

can influence the growth stage. Research has found that the initial stage of an OSS 

project is indeed the most vulnerable time period as a project competes for 

legitimacy with other similar projects in attracting developers.  

3 Methodology 

3.1 Data and variable definitions 

In order to build a model that approximates the status value of a software project 

on SourceForge we need to gather factors that might influence developers to assign a 

particular value of status.  
Table 1: Overview of SourceForge‟s status classification 

Classification  

Number 

Development Stage 

1 Planning 

2 Pre-Alpha 

3 Alpha 

4 Beta 

5 Production / Stable. 

6 Mature 
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7 Inactive 

 

3.2 Dependent variables 

To determine the success of software project we try and categorize what status 

(stage) of development a project has reached.  

3.2.1 Project Status 

The current progress of a software project can be placed in one of five 

development stages according to the System development life cycle: these are 

Requirements Planning, Analysis, Design, Development and Maintenance [2]. 

Another way to describe a projects progress is through terms such as Planning, 

Alpha, Beta and Stable. Shifts in progress are marked by improvements in 

completeness, consistency, testability, usability and reliability [2].  

SourceForge.net maintains a system of 7 status designations (Table 1). The 

numbers 1 through 6 are for Planning, Pre-Alpha, Alpha, Beta, Production/Stable 

and Mature The last status is an outside category for projects that are Inactive. 

Previous research [2] makes it clear that it can be expected that projects reaching 

advanced stages of their life cycle will be more in favor with users and those in 

earlier stages, as their input goes beyond mere maintenance. As more users make use 

of the software, they also generate more bug reports, feature requests and 

feedback/suggestions. In turn developers develop more patches. As such, the latter 

stages of development are marked by more development activity related to patches, 

bugs and feature requests. The use of historical data in previous research [2] shows 

that increased numbers of developers and users will show later on in increased 

project activity. To better mark this relationship between different time periods 

within a project we have selected projects on SourceForge that have valid data from 

a period of four years from 2006 to 2009. The 7 stage status category used by 

SourceForge is considered by some [2, 11], an awkward use of the typical lifecycle 

definitions used in software development. SourceForge uses only vague descriptions 

for each, and much is left to developers to decide the status their project is in. 

Especially the difference between pre-alpha and alpha, as well as between 

production/stable and mature, may be cause for confusion. To overcome this, we also 

consider the binary project status representing whether the project is active, and the 

project status variable that has four categories; namely Planning, Alpha and Beta and 

Stable. To achieve the four stages of the project status, we collapsed the inactive and 

planning stages to the Planning stage; we aggregated the stages Pre-Alpha, Alpha to 

Alpha stage and Production/Stable and Mature to the mature category. 

Projects on SourceForge.net can also be differentiated along a different 

dimension, that of project activity. It can be reasonably assumed that both projects in 

the planning stages and those that are inactive do not have either code to download 

or developers to work on the project. As such they should be markedly different from 

those projects of which code is available for download and alteration. We propose to 



6 James Piggot and Chintan Amrit 

 

check for ways in which projects that are inactive differ from those that are active, 

apart from the aforementioned variables. 

3.3 Time-invariant variables 

Variables that can influence the success of an OSS project can be divided into 

two groups – time-invariant factors and time-variant factors. The variables included 

have been previously identified in literature as affecting OSS success [3, 11]. 

For time-invariant variables we have chosen those that define a project in general 

terms such as license [4], the operating system that can be used and the programming 

language [2] in which the code is written, to determine if they are factors that have 

an influence on the project status. Each variable is divided into binary variable 

categories such as Strong-Copyleft, Weak-Copyleft and No-Copyleft for license and 

after which each project is assigned either the value 0 or 1 to show if it supports a 

particular feature. 

The time-invariant variables have been further augmented with simple numerical 

variables that list the number of features of each category that a project supports. So 

for license, there is a variable that would count the number of licenses used by a 

project.  

License 

The license used by a project can influence the amount of support it gets, as it 

affects the interests of users and developers [10]. Software licenses can be broadly 

divided into three groups based on the level of restrictiveness that would determine 

whether users can distribute derivatives or modify the software (copy free). 

These categories are Strong-Copyleft, Weak-Copyleft and No-Copyleft. Licenses 

such as GPL (General Public License) and BSD (Berkeley Software Distribution) 

License are grouped into these categories depending on whether they support issues 

such as „copy free‟ or not. Various research papers already use this division of 

licenses and where licenses fall into [9, 10]. However, numerous licenses cannot be 

exactly assigned to any of the three categories because they do not conform to the 

GPL format. As far as possible, they are assigned based on the effect these licenses 

have on user and developer choices. 

Operating System 

The operating system used for development and use of a project can have a 

severe impact on its popularity as it determines how many users it could potentially 

reach as well as what type of license the developer intends to use [2]. Traditionally 

open source software has used UNIX, Linux and its derivatives for development, 

which caused OSS to be somewhat excluded from other operating systems such as 

Windows and Mac OS X. With the popularity of languages such as a Java that make 

portability possible Windows has become an increasingly more popular for OSS 

developers. Previous research[2] has indeed focused on these three categories of 

operating system: the Windows-family, UNIX (also includes Linux and POSIX) and 

a other category that includes MAC OS X. They prove that UNIX and Linux type 

operating system have a negative correlation with user interest, but a positive 



How Healthy is my Project? Open Source Project Attributes as Indicators of Success 7 

 

correlation with developer interest and explain this based on the roots of the OSS 

community who frequently started their career on UNIX and Linux machines.  

We have expanded the number of OS groupings to also include „OS 

Independent‟ as a category to denote the increasing popularity of portability. Mac OS 

X has also been grouped into a separate category as an acknowledgement of its 

increasing popularity. Other operating systems were left out of this study. The 

increase in number of categories should allow for better rules to be deduced from our 

data mining efforts. 

Similar to the license variables these categories denote binary variables and an 

outside category has been added that counts the number of operating systems 

supported by a project. 

Programming Language 

The effects of the programming language used in a project has previously solely 

focused on the C-family of languages, while others where either excluded from study 

or aggregated into one category [2, 3]. This study intends to rectify this deficiency to 

also include popular languages such as Java and PHP as separate categories without 

denying the continued importance of C-type languages. 

Because the C programming language was used for the implementation of UNIX 

is has remained popular with UNIX and Linux developers ever since [2]. Despite 

memory allocation problems it has remained a favorite for projects that have more 

stringent processing and real-time requirements. Through the prevalence of high 

quality compilers and the importance of derivative languages (C++ C# and Visual 

C++) the use of C can be associated with more developers and project activity [2]. 

For our study we have expanded the number of language categories to 5 and 

included „C-family‟, „Java‟, „PHP‟, „Python‟ and „Others‟ as separate categories. 

3.4 Time-variant variables 

The three success measures previously mentioned that have their roots in the IS 

Success Model also have their equivalents in OSS projects found on SourceForge. 

These are Project Activity (number of files, bug fixes and patches released), User 

Activity (number of downloads) and Developer Activity (number of developers per 

project). Crowston et al. (2006)[3] discovered that these measures are interrelated as 

developers are often users which means that the number of downloads and 

developers is thus correlated. Project Activity is also closely correlated with User 

Activity as the latter often download the latest software releases, developers tend to 

flock to such projects as well. We use the above three metrics as the basis for our 

time-variant variables. 

Other variables include the number of donors, forum posts, mailings lists, feature 

requests and „Service Requests‟ that allow users to ask for help from developers. Our 

dataset also includes the project age in days from 2009 backwards as a control 

variable. Combined, we have constructed a dataset that contains 38 variables 

including 35 independent variables and three variations of one dependent variable, 

i.e. project status with 7, 4 and 2 project statuses. 
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3.5 Dataset sampling 

SourceForge.net is the largest web portal for the development of Open Source 

Software, it acts as a repository for code, as a tracking system for bugs and features 

and as a communication outlet for those involved in software development. As of 

November 2012 it hosts some 300,000 projects that differ in a wide range of 

categories such as intended audience, the topic of the project, the license used as well 

as technical attributes in which projects can distinguish itself; programming 

language, OS supported as well as the Graphical User Interface used. For the purpose 

of this study it is impossible to gather data directly from SourceForge through a 

screen scraper as the servers of Sourceforge.net cannot distinguish this activity from 

more nefarious ones such as a Denial of Service attack. 

The dataset used has thus been obtained through a third source which has made 

the data publicly available [18]. FlossMole.org contains data collected for the period 

2006 to December 2009 from which a dataset was compiled of 125,700 projects. 

Unfortunately, many projects had missing data, due to the fact that no data was 

entered by developers, or project portals were not maintained, or the screen scraper 

that collected data often did so wrongly, which corrupted portions of the dataset.  

Our dataset initially contained 125,700 projects and most projects had incomplete 

data for the time period 2006 to 2009. Hence, upon cleaning the data we were left 

with 28,282 rows in our database, 

4 Experiment Methodology 

We used the SPSS 2.0 decision tree analysis able to analyze the data and predict 

project status. In our research we chose the CHAID[19] and the CART[20] method 

of data classification, in order to handle over 35 independent variables some of them 

being categorical, numeric and non-parametric.  

Decision trees can suffer from over-training, whereby the trees continue to grow 

and might afterwards not be able to validate test-data because it uses rules learned 

from the training data that are incompatible with the test data. Both CHAID and 

CART use different ways to limit the growth of decision trees. 

CHAID  

Which stands for „Chi-squared Automatic Interaction Detection‟ uses a statistical 

stopping rule to keep the tree from growing to impossible sizes. CHAID has the 

advantage of being able to handle categorical variables. Other research using this 

method indicate that it excels at analyzing all the factors that can possible influence a 

dependent variable but it‟s result at predicting these value with subsequent data 

samples is often poor. 

CART  

Also known as „Classification and Regression Trees‟ builds a tree based on 

theory quite different from CHAID. CART uses a non-parametric approach which 

can work with both categorical and numerical variables, and also has the ability to 
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model the complex interactions among the variables[20]. It first grows the tree to its 

full size and afterwards it prunes the tree until the accuracy of the tree is similar for 

both the training dataset and the test dataset. 

The reason why we chose CHAID and CART is that while both classifiers can 

work with categorical variables and use different theoretical models, they are also 

comparable in some aspects (lift in response)[21]. 

Cross Validation 

With both methods of growing a decision tree we have used our dataset in two 

ways. The first is cross-validation of the entire data sample whereby data is 

partitioned multiple times over in both trainings sets to build the tree and test sets to 

validate the tree. 

This is a process whereby data is manually split into training and test sets. For 

the purposes of this study we used a 50-50 data split in order to avoid overtraining. 

5 Results 

Below are the results of for each of the three types of project status. The results 

include both the CHAID tests as well as the Cross-validation and data-split methods. 

The accuracy with which our classification tree has been able to determine the 

correct project status can be seen in tables 2 and 3. 

5.1Data split 

The results in table 2 have been obtained through a 50-50 data split (to prevent 

overtraining) and represents the results of the training set. The method obtained two 

results of importance; the first is the exact match of 39.6 % whereby of the 24582 

data samples 9729 achieved the correct corresponding status value. For a 7-fold 

category this result can be considered acceptable (as compared to 1/7 ~ 0.14 for 

random chance). The second method, or 1-away result, shows what percentages of 

data samples either had exactly the correct status value, or were just 1 value off the 

mark. The accuracy for this is 76.2 % and suggests that the results are closely 

distributed around the correct value. This result validates the decision tree that was 

grown from the rules deduced from this test. 



10 James Piggot and Chintan Amrit 

 

Table 2 Results of the CHAID decision tree with 7 stage project status 

 
 

Exact match = 39.6%.   

Number of hits / total cases = 9729 / 24582. 

1-away match = 76.2%.   

(Number of hits + number of 1-away hits) / total cases  

= (9729 + 9013) / 24582. 

5.2 Cross-validation 

For the cross-validation method, the final score seems to closely match those of 

the data split method. However, for status value corresponding to Planning (1) and 

Inactive (7) the results differ significantly, as this method partitions the data set 

multiple times it would average out the more extreme values obtained through the 

data-split method.  
Table 3: Status results through cross-validation. 

 
 

Exact match = 40.7%.   

Number of hits / total cases = 19929 / 48966. 

1-away match = 76.0%  

(Number of hits + number of 1-away hits) / total cases  

= (19929 + 17294) / 48966. 
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Both results validate our method to classify software projects found in 

SourceForge. 

5.3 Four stage project status: Planning, Alpha, Beta and Stable 

In table 4 are the results of our efforts to classify projects in the four categories 

popularly described in literature. The test results were obtained using the CHAID 

method with a 50-50 split of the dataset. 

 
Table 4 Results of CHAID for 4 stage project status 

 Categories. Accuracy. 

 1. 2. 3. 4. Exact 

match 

1-

away 

1

. 

1877 2081 157  73 44.8%  

2

. 

1270 5049 1274 858 59.4%  

3

. 

424 2405 1837 1327 30.7%  

4

. 

201 1621 1384 2094 39.5%  

 45.4%  

 86.0% 

 

Growing method; CHAID. 

Exact match = 45.4%.  

Number of hits / total cases = 10857 / 23932.  

1-away match = 86.0%.  

(Number of hits + number of 1-away hits) / total cases  

= 20598 / 23932. 

 

The accuracy of 45.4% is better than the score for the 7-fold status category, 

though its predictive value is especially undermined by the low score in its efforts to 

classify projects in Beta stage. This could be seen as proof that this stage is a 

subjective stage that is hard to classify through machine learning. The 1-away score 

of 86.0 % once again proof that the scores are distributed around the correct value 

though for a 4-fold category the value loses in importance.  

This result validates that out method works to determine the correct stage in its 

lifecycle a software project is in.  
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5.5 Binary Project Status: Active and Inactive 

We get an accuracy of 82.4% for classification of projects based on a binary 

status of active or inactive. The results can be considered to be better, if we consider 

that the inactive state is an aggregation of the Planning status and the Inactive status, 

they share many things in common but also have crucial differences for the former 

can have developers assigned to it. 

 
Table 5, Results of CHAID for a binary project status 

 

5.6 Cross validation result. 

The cross-validation method seems better able to determine whether a project is 

active (1), because the method splits the dataset 10 times and tests each iteration we 

can presume that the lower score for the above 50-50 data split is an aberration.  

 
Table 6: Results of CHAID, CV for binary project status 

 
 

This result of 82.8% accuracy shows that our method can successfully distinguish 

active projects from inactive projects.  

6. Discussion 

The results of our classification show a nearly 40% accuracy for an exact match 

of the subjective classification and a 76% 1-away match (Table 2) indicates that 

subjective classification performed by the OSS project leader is quite accurate and 

correlates with the project data. This is quite unlike what is reported for commercial 

projects [7]. The errors and implications of this finding can be a subject for future 

research. 

By using the CART method of decision tree analysis, we obtained a model for 

status classification, as shown in Figure 1. The tree shows that numerical metrics 

such as downloads, donors, developers and forum posts are far more explanatory of 
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project health than time-invariant metrics such as license used, or the operating 

system supported.  

 
Figure 1: The CART decision tree for our data 

 

This is in-line with earlier research [2]. However, this should not be surprising as 

those time-invariant metrics are usually decided upon when the project is initiated, 

and change little over its lifecycle. When they do change, they change only to suit 

users and developers. On the other hand, time-variant metrics, by their definition, 

can gauge what popularity a project has presently obtained. The order of importance 

that metrics have taken in the model is also as expected and follows established 

literature [2, 3]. 

In the early stages of a project lifecycle, the ability to attract developers is of vital 

importance in order to be able to develop software along the stated goals. In the latter 

stages of the software life cycle, it can be expected that users and developers 

generate more forum posts. This model also shows that the number of donors is an 

indication as to whether the project has status 4, 5 or 6. This can serve as an 

indicator, for example, that a project sponsor can have a positive influence on project 

success. This is in line with the findings of Stewart et al.[10]. 

The number of SVN commits relates to the number of changes developers have 

uploaded to the central software repository on SourceForge. In the model (Figure 1) 
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it is closely related with the number of developers on a project in the early stages of 

the software lifecycle. The number of CVS commits denotes the number of official 

software releases and surprisingly is not part of the model obtained. 

The choice of license is also not an important factor in determining whether a 

project will be able to continue to succeed in the growth stage. This validates other 

research [10, 17] but for the most part contradicts long established views on how a 

project would compete for resources. 

Even though our dependent variable is the SourceForge subjective classification 

done by the OSS project leaders, we can definitely say that given the predictive 

accuracy of 1-away classification, the classification model does reflect the 

stage/health of the OSS projects. As validation of this claim, we find that most of the 

important variables are also mentioned by other authors[2, 3, 5, 6]  

With our model we have managed to predict the status of a project with 

reasonable accuracy. The model in figure 1 shows this when status 7 (inactive) is 

reached after a combination of few downloads few active developers and only a 

small number of bug reports have been generated.  

7. Conclusion 
We make two primary contributions with this research: (i) we demonstrate that 

the subjective project status (especially the 1-away value) reflects the actual health of 

the OSS project. This finding is in line with that of [2] and shows that, in this respect 

OSS projects differ from commercial projects [7] (ii) we determine the variables that 

affect project status and in turn affect project health based on nearly 30 K projects 

over a period of four years. 

Our research shows that with a limited set of just 8 variables (Figure 1), we can 

gauge the status of a software project on SourceForge. Analyzing these 8 attributes 

of the OSS project can help alert Project controllers that their project is either poorly 

supported or will become obsolescent in the near future due to lack of developer 

interest. For prospective developers and sponsors this model can give an idea, 

whether a project is on track to pass through the early difficult stages of a software 

life cycle on schedule and is in fact not already failing.  

We think our results can provide further research opportunities in projects that 

also suffer from users and developers being flooded with data, whose accuracy 

cannot be interpreted easily. Crowd funding sites such as Kickstarter3 offers an index 

of project that are considered „popular‟ and „most funded‟ but there may be lopsided 

metrics as projects size, ambition and accessibility can negatively influence them. 
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