
Models of OSS Project Meta-Information:
A Dataset of Three Forges∗

James R. Williams
Department of Computer

Science
University of York

York, United Kingdom
james.r.williams

@york.ac.uk

Davide Di Ruscio
Dipartimento di Ingegneria e
Scienze dell’Informazione e

Matematica
Universitá degli Studi di

L’Aquila
L’Aquila, Italy

davide.diruscio
@univaq.it

Nicholas Matragkas
Department of Computer

Science
University of York

York, United Kingdom
nicholas.matragkas

@york.ac.uk

Juri Di Rocco
Dipartimento di Ingegneria e
Scienze dell’Informazione e

Matematica
Universitá degli Studi di

L’Aquila
L’Aquila, Italy
juri.dirocco
@univaq.it

Dimitrios S. Kolovos
Department of Computer

Science
University of York

York, United Kingdom
dimitris.kolovos

@york.ac.uk

ABSTRACT
The process of selecting open-source software (OSS) for adop-
tion is not straightforward as it involves exploring various
sources of information to determine the quality, maturity,
activity, and user support of each project. In the context of
the OSSMETER project, we have developed a forge-agnostic
metamodel that captures the meta-information common to
all OSS projects. We specialise this metamodel for popular
OSS forges in order to capture forge-specific meta-information.
In this paper we present a dataset conforming to these meta-
models for over 500,000 OSS projects hosted on three pop-
ular OSS forges: Eclipse, SourceForge, and GitHub. The
dataset enables different kinds of automatic analysis and
supports objective comparisons of cross-forge OSS alterna-
tives with respect to a user’s needs and quality require-
ments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

∗This research was supported by the EU through the Auto-
mated Measurement and Analysis of Open Source Software
(OSSMETER) FP7 STREP project (318736).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Theory, Measurement

Keywords
Data mining

1. INTRODUCTION
The creation and adoption of open-source software (OSS)

has been increasing in the last few years [8]. The task
of selecting appropriate OSS for adoption, however, is not
straightforward as it involves exploring numerous, disparate
sources of information to determine whether the project
meets the user’s needs and quality requirements. Unlike
commercial software, which is typically developed within the
context of a particular organisation with a well-established
business plan and commitment to the maintenance, docu-
mentation and support of the software, OSS is very often
developed in a public, collaborative, and loosely-coordinated
manner. This has several implications on the level of quality
of different OSS software as well as on the level of support
that different OSS communities provide to users of the soft-
ware they produce. On the one hand, there exist several
high-quality and mature OSS projects which deliver stable
and well-documented products. Such projects typically also
foster a vibrant expert and user community which provides
remarkable levels of support both in answering user ques-
tions and in repairing reported defects (bugs) in the provided
software [2]. On the other hand, there is also a substan-
tial number of OSS projects that have inactive development
teams, have little user documentation, have a small inactive
community, or have been abandoned entirely [7].

As part of the OSSMETER project1, we are developing a

1www.ossmeter.eu

www.ossmeter.eu

monitoring and analysis platform that enables OSS projects
to be compared on a large number of metrics relating to
all aspects of OSS. This includes metrics for analysing the
source code of the project, the communication channels (e.g.
mailing lists, newsgroups) with which users and developers
communicate, and the bug tracking system(s) of the project.
In this paper we present a dataset consisting of the forge-
related meta-information of OSS projects. This dataset en-
ables this forge-related meta-information to be automati-
cally analysed in a forge-independent and forge-specific man-
ner. Furthermore, it also enables the OSS projects from
different forges to be compared objectively. The dataset
consists of all 233 projects currently hosted by the Eclipse
Foundation, nearly 90,000 projects hosted on SourceForge,
and nearly 470,000 projects hosted on GitHub. The dataset
is available at:
https://github.com/ossmeter/msr14-showcase-forges.

Section 2 presents our domain analysis of OSS projects
and forges which has lead to the development of metamodels
that capture the meta-information from OSS forges. Section
3 describes how these metamodels define the schemata for
a database that stores this meta-information in a homoge-
neous manner. Section 4 summarises how we have populated
the database for three popular OSS forges, whilst section 5
describes the challenges and limitations of doing so. Section
6 presents related work.

2. DOMAIN ANALYSIS OF OSS PROJECTS
Model-Driven Engineering (MDE) [6] is an engineering

approach that treats models as first-class development arte-
facts. Through a series of automatic transformations, high-
level models can be used to generate the final production
system. Focusing development on models allows them to
remain useful and up-to-date, but also allows engineers to
develop systems at the level of the application domain.

The specification of precise models that can be automati-
cally analysed and queried requires a precise definition of the
abstract syntax of those models and the inter-relationships
between model elements. Metamodelling is the process of
defining a collection of concepts and their relationships that
capture a certain domain and expressing them in the form
of a metamodel [6]. Metamodels, therefore, prescribe the
structure and semantics of any models for the domain.

Utilising metamodels to capture different aspects of OSS
projects, in particular the meta-information from the host-
ing forge, enables these projects to be represented in a homo-
geneous manner. A standardised representation of an OSS
project’s forge-related meta-information enables the unified
analysis of usually-disparate OSS projects. Moreover, it
enables cross-forge comparisons, allowing users to contrast
OSS alternatives with respect to their needs and quality re-
quirements.

To develop metamodels of OSS forges, we performed an
iterative analysis of OSS projects: specifying the models of
real OSS projects, and refining their metamodels as new con-
structs were encountered. Each OSS project shares a com-
mon set of information, which we capture independent of the
forge-specific information. We now present the metamodel
that expresses the common features of all OSS projects,
and also describe a specialisation of this metamodel for the
Eclipse OSS forge.

2.1 The Common Forge Metamodel

Base Forge
metamodel

GitHub
metamodel

SourceForge
metamodel

Google Code
metamodel

Eclipse
metamodel

Redmine
metamodel

Figure 1: The forge metamodel hierarchy: the com-
mon meta-data is captured in a forge-agnostic meta-
model, which is specialised for each OSS forge.

shortName : String
description : String
year : int
active : boolean
lastExecuted : String

Project

url : String
CommunicationChannel

url : String
BugTrackingSystem

ProjectRepository

created_at : String
updated_at : String
url : String

VcsRepository

url : String
License

name : String
NamedElement

homePage : String
Person

Role

oath : String
LocalStorage

0..* 0..*

0..*

0..*

0..1

0..1

0..*

0..*

0..*

bugTrackingSystemscommunicationChannels

vcsRepositories

storage

roles

persons

licenses

projects

parent

Figure 2: The metamodel capturing concepts com-
mon between OSS forges.

There is a set of concepts related to OSS projects that are
independent from the forge that hosts the project. This set
includes: information related to the project’s version control
system(s), communication channels (e.g. forums, mailing
lists), and bug tracking system(s), as well as the licenses
of the project, and information related to the people who
contribute in some manner to the project.

We capture this information in a forge-agnostic meta-
model; each OSS forge then specialises the metamodel to
include any extra meta-information it provides, in a similar
way to which object-oriented code can be specialised. Fig-
ure 1 illustrates the metamodel hierarchy, whilst the forge-
agnostic metamodel, developed by analysing a number of
forges, is shown in figure 2. We now briefly describe the
specialisation for the Eclipse forge. Specialisations and de-
scriptions for other forges, including GitHub, SourceForge
and Google Code can be found in [5].

2.2 Eclipse Forge Specialisation
The Eclipse Foundation2 provide a hosting system for

projects that contribute to the Eclipse integrated develop-
ment environment. Unlike forges such as SourceForge3 or
GitHub4, Eclipse prescribes a rigorous set of requirements
that a project must meet in order to be hosted in their forge.
Furthermore, new projects are initially entered into an incu-
bation period until they meet the standards to be accepted
as a full Eclipse project.

2www.eclipse.org
3www.sourceforge.net
4www.github.com

https://github.com/ossmeter/msr14-showcase-forges
www.eclipse.org
www.sourceforge.net
www.github.com

paragraphUrl : String
descriptionUrl : String
downloadsUrl : String
homePage : String
projectPlanUrl : String
updateSiteUrl : String
status : ProjectStatus

EclipseProject

url : String
Article

type : ReleaseType
date : String
link : String

Release

type : ReviewType
state : ReviewState
endDate : String

Review

Project

EclipsePlatform

0..*

0..*

0..*

0..*

articles

reviews

platforms

NamedElement

releases

CommunicationChannel

description : String
type : MailingListType
archiveUrl : String

MailingList

Wiki

Documentation

NntpNewsGroup

type : NewsGroupType
EclipseNewsGroup

- main

<<enumeration>>
NewsGroupType

- creation
- graduation
- release
- promotion
- continuation
- termination

<<enumeration>>
ReviewType - scheduled

- completed
- tentative

<<enumeration>>
ReleaseType

- main

<<enumeration>>
MailingListType

- preproposal
- proposal
- incubation
- mature
- toplevel
- archived

<<enumeration>>
ProjectStatus

- successful

<<enumeration>>
ReviewState

Figure 3: The specialisation of the common metamodel for the Eclipse forge.

Figure 3 presents our specialisation of the forge-agnostic
metamodel for the Eclipse forge. The specialisation adds ex-
tra meta-information – such as a project description, down-
loads, and the project’s homepage on the Eclipse website –
as well as information related to the reviewing process of the
project, any related documentation articles, and its list of
releases. Furthermore, contributors to a project are assigned
rôles, namely mentor, committer, and leader.

3. THE DATABASE SCHEMA
The forge metamodel definitions in the previous section

are used to define the database schema. If a relational
database was chosen to store the forge meta-data, one could
use an object-relational mapping from each class in the meta-
model to tables in the database. However, forge-specific in-
formation would need to be stored in separate tables. As the
forge-specific metamodels all inherit from the same forge-
agnostic metamodel, we can store all projects together, no
matter which forge they belong to, by using a schema-less
database.

For this, we use MongoDB as the database, and use Pongo5

as a means of defining the schema. Pongo is a template-
based POJO generator for MongoDB, which is built atop
the MongoDB Java driver6. With Pongo, an engineer can
define a model of the data to be stored using a textual mod-
elling language called Emfatic7. Pongo then uses this model
to generate strongly-typed Java classes, which can be used
to work with the database at a more convenient level of ab-
straction. For each class in the data model, a POJO class
is created that extends the core Pongo class and provides
support for querying the database in an intuitive manner.
Any changes made to objects are cached until a synchronise
method is invoked.

The four metamodels discussed in the previous section –
forge-agnostic, GitHub, SourceForge, and Eclipse – have all
been specified in Emfatic and we have used Pongo to gen-
erate the appropriate Java code. The next section describes
the modules that we have developed to import projects from

5http://code.google.com/p/pongo/
6http://docs.mongodb.org/ecosystem/drivers/java/
7http://www.eclipse.org/epsilon/doc/articles/
emfatic/

these three OSS forges. Each importer uses the Pongo-
generated classes to create new entries in the database.

4. DATA COLLECTION PROCESS
In this section we summarize how the data has been col-

lected from the different forges. Importers have been devel-
oped by taking into account the specificities of each forge.
The importers have been developed in Java, and conceptu-
ally each importer consists of a corresponding Java class im-
plementing two methods: importAll, and importProject.
The former is the entry point of the importer and it retrieves
the list of every project hosted by the considered forge. For
each project, the importProject method is executed and it
uses the Pongo-generated code to create and save the project
information using the retrieved meta-data. All projects, no
matter their forge, are stored in the same MongoDB collec-
tion. In the following, the importAll and importProject

methods of each developed importer are summarized.

4.1 Eclipse forge
The collection of data from the Eclipse forge has been done

by exploiting a public API that permits the gathering of
project meta-data from a JSON representation of them. The
importAll method retrieves the list of all the hosted Eclipse
projects. The details of each project are then retrieved by
means of the method importProject, identifying projects by
a unique projectId. However, not all of the information of a
given Eclipse project is available via this API. For instance,
the committers and the list of supported platforms of a given
project are available only from the Web pages of the project.
This has required the development of specific HTML parsers
for retrieving the meta-data not available via the API but
is necessary to full represent an Eclipse project.

4.2 GitHub
GitHub provides users with complete and advanced APIs

that enable the retrieval of all the information of the hosted
projects. This allowed us to develop the importAll and
importProject methods without any workarounds, such as
HTML parsing. Unfortunately, there is not a way to directly
retrieve the list of all the hosted projects. At the link https:

//api.github.com/repositories?since=id it is possible to
retrieve 100 projects having identifiers greater than id. Thus

http://code.google.com/p/pongo/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.eclipse.org/epsilon/doc/articles/emfatic/
http://www.eclipse.org/epsilon/doc/articles/emfatic/
https://api.github.com/repositories?since=id
https://api.github.com/repositories?since=id

the importAll method iterates on the value of the attribute
id, and for each value executes the importProject method
on sets of 100 projects. The meta-data of a given project are
available at https://api.github.com/repos/projectId, where
projectId is a string identifying the considered project.

4.3 SourceForge
Similarly to the previous forges, SourceForge provides APIs

for retrieving information of the hosted projects. In partic-
ular, given a projectId, the corresponding meta-data repre-
sented in a JSON document is available at http://sourceforge.
net/api/project/name/projectId. Unfortunately, the API
also does not provide the means to retrieve the list of ev-
ery project hosted by SourceForge. A workaround we have
implemented to solve this problem exploits the Web inter-
face of the SourceForge projects directory. In particular, at
the link http://sourceforge.net/directory/?page=id it
is possible to retrieve a list of 25 projects where id is an in-
teger identifying a directory page. The importAll method
iterates on the identifier id, and for each value it parses the
corresponding HTML page in order to retrieve the list of 25
project identifiers to be used for executing the importPro-

ject method.

5. CHALLENGES AND LIMITATIONS
The development of the importers summarized in the pre-

vious section has demanded some efforts to deal with a num-
ber of challenges. In particular, there are two main cases
that we had to manage with respect to the different ways
that each forge provides for accessing its data:

• Forges like GitHub provide open APIs or Web Services
that can be used to extract the meta-data in a struc-
tured way;

• Forges like SourceForge and Eclipse require parsing
HTML pages in order to retrieve meta-data that is
not available in the exported APIs.

The development of the different importers had to take
into account the APIs restrictions that some of the forges
apply. In particular, the rate limit for the GitHub APIs is
5,000 requests per hour for authenticated users, or 60 re-
quests per hour for unauthenticated users. As such, our
GitHub importer will enter an idle state once the rate limit is
reached, and will automatically restart when possible. Due
to network problems that may occur during the importing
process, we have implemented mechanisms that permit the
importers to restart from where they left off. Without such
a mechanism, in case of network disconnections, importers
have to be re-executed from scratch, losing the meta-data of
the projects already imported.

The main limitations of the proposed approach are related
to the time required to collect data. For instance, importing
the meta-data of 400,000 GitHub projects can take more
than two days. This might raise some problems in case of
keeping the dataset up to date with the latest information
on the forges.

6. RELATED WORK
In [3] the authors presents GHTorent, a tool suite for mon-

itoring the GitHub public event time line. In particular,
GHTorent uses the GitHub API to collect data and extract,
archive and share queryable meta-data. In this paper we go

further by proposing a collection of interrelated metamodels
that allow OSS projects to be represented in a homogeneous
manner, even though these projects exist in heterogeneous
sources (i.e. not limited to GitHub).

FLOSSMole [4] is a similar initiative to OSSMETER; it
aims to collect and freely redistribute in different formats
the data of open source software. Differently from OSSME-
TER, however, the FLOSSMole project does not provide the
instruments to analyse data, that are simply collected and
made publicly available.

In [1] the authors exploits the facilities of FAMIX8 to inte-
grate information retrieved from different sources, like ver-
sion control systems, bug reports and source code. Even
though we share the idea of having the same model to rep-
resent concepts retrieved from different sources, in the meta-
models discussed in this paper we mainly focus on project
meta-data. Thus, we present only that information (e.g.,
SVN and Bugzilla addresses) required by further tools for
having access to the data to be analyzed. Consequently, dif-
ferently from [1] in the proposed models we do not represent
fine grained information like a specific line of source code,
or a particular thread in the bug tracking system.

7. CONCLUSION
In this paper we have presented a dataset containing the

forge-related meta-information of over 500,000 projects. The
dataset enables cross-forge comparisons of OSS projects, as
well as provides the basis for the OSSMETER project to
apply standardised quality metrics to any OSS project, in-
dependent of where it is hosted.

8. REFERENCES
[1] G. Antonio, M. Di Penta, H. Gall, and M. Pinzger.

Towards the integration of versioning systems, bug
reports and source code meta-models. In Procs of
Workshop on Software Evolution Through
Transformation (SETra 2004), pages 83–94,
Amsterdam, 2004. Elsevier.

[2] K. Crowston, H. Annabi, and J. Howison. Defining
open source software project success. In Procs of the
24th International Conference on Information Systems
(ICIS 2003), pages 327–340, 2003.

[3] G. Gousios. The ghtorrent dataset and tool suite. In
Procs of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[4] J. Howison, M. Conklin, and K. Crowston. Flossmole:
A collaborative repository for floss research data and
analyses. International Journal of Information
Technology and Web Engineering, 1(3):17–26, 2006.

[5] U. of L’Aquila. D2.1 - domain analysis of OSS projects.
Technical Report YCS-2012-475, University of
L’Aquila, 2013. Available at
http://www.ossmeter.org/publications.

[6] D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. IEEE Computer,
39(2):25–31, 2006.

[7] C. M. Schweik, R. English, Q. Paienjton, and S. Haire.
Success and abandonment in open source commons:
Selected findings from an empirical study of

8http://www.moosetechnology.org/docs/famix

https://api.github.com/repos/projectId
http://sourceforge.net/api/project/name/projectId
http://sourceforge.net/api/project/name/projectId
http://sourceforge.net/directory/?page=id
http://www.moosetechnology.org/docs/famix

sourceforge.net projects. In Procs of the 2nd Workshop
on Building Sustainable Open Source Communities
(OSSCOMM 2010), pages 91–101, 2010.

[8] D. Spinellis and V. Giannikas. Organizational adoption
of open source software. Journal of Systems and
Software, 85(3):666–682, Mar. 2012.

	Introduction
	Domain Analysis of OSS Projects
	The Common Forge Metamodel
	Eclipse Forge Specialisation

	The Database Schema
	Data Collection Process
	Eclipse forge
	GitHub
	SourceForge

	Challenges and Limitations
	Related Work
	Conclusion
	References

