
Using Developer Interaction Data to Compare
Expertise Metrics

Romain Robbes David Röthlisberger
PLEIAD Laboratory Computer Science Department

Computer Science Department Universidad Técnica Federico
University of Chile Santa Marı́a, Chile
rrobbes@dcc.uchile.cl roethlis@inf.utsm.cl

Abstract—The expertise of a software developer is said to be
a crucial factor for the development time required to complete
a task. Even if this hypothesis is intuitive, research has not yet
quantified the effect of developer expertise on development time.
A related problem is that the design space for expertise metrics is
large; out of the various automated expertise metrics proposed,
we do not know which metric most reliably captures expertise.

What prevents a proper evaluation of expertise metrics and
their relation with development time is the lack of data on
development tasks, such as their precise duration. Fortunately,
this data is starting to become available in the form of growing
developer interaction repositories. We show that applying MSR
techniques to these developer interaction repositories gives us the
necessary tools to perform such an evaluation.

I. INTRODUCTION

Developer expertise is both a major factor in software
projects and has, surprisingly enough, not yet been thoroughly
investigated empirically. Anecdotal evidence is sufficient to
realize that expertise on a given piece of code has a large
impact on productivity: a developer that knows the methods
and classes to use for a given task does not need to consult the
documentation nearly as much. As such, most of the research
on expertise has focused on expert recommendation, where an
expertise metric is computed for each developer, so that the
most suitable developer can be found to help on a given task.

However, there are many possible and competing definitions
of expertise, with few comparisons between them. Without
a clear baseline, it is hard to determine which automated
expertise metric is the best characterization of expertise. The
main obstacle to a comparison of expertise metrics is the lack
of data with which to compare the metrics.

We claim that repositories of fine-grained developer
interactions—recorded with tools such as Mylyn [1], Syde [2],
or Spyware [3]—contain the data needed for a comparison of
expertise metrics. These repositories of developer interactions
contain several relevant data points for expertise metrics:
(1) duration, or the time a developer took to perform a
development task; (2) edits, i.e. the sequence of code changes
that were necessary to perform said task; and (3) selections, or
the code elements that were consulted, during the task imple-
mentation. More widespread sources of data, such as version
control systems, store only the final outcome of a development
session in a commit, and not the actual programmer activity
[4], making them unsuitable for our needs.

We argue that a well-performing expertise metric, should
exhibit the following characteristics: (1) it is inversely corre-
lated with the time taken to perform a given task (experts take
comparatively less time than non-experts for a task of equal
size); and (2) it is also inversely, but less strongly, correlated
with the amount of activity (editions, selections) to perform
a task (experts usually do not perform considerably less edits
than non-experts, but they arguably perform them faster, that
is, the density of navigation, edit actions is higher). The best
estimate of an expertise metric will have a stronger inverse
correlation to the duration, and a weaker correlation with
editions and selection. We also suspect that the effect will
be more strongly felt on larger tasks.

In this paper, we propose a novel approach to automati-
cally evaluate expertise metrics based on the assumptions and
premises mentioned above, using developer activity informa-
tion from a large dataset of more than 1,700 development
sessions1, authored by 31 developers, and belonging to two
development projects. We define two expertise metrics, find
that both metrics exhibit the characteristics highlighted above,
and compare them.

II. RELATED WORK

Several works have defined expertise metrics.
Changes. McDonald [5] presents a recommendation system
that uses Change History and Tech Support heuristic to
perform its recommendations. Change History information is
based on the ”Line 10 rule”, i.e. , the developer whose name
appears on line 10 of the change log—the last person to change
the file—is considered an expert as he or she is the person with
the “freshest” memory of the file. The Expertise Browser of
Mockus and Herbsleb [6] uses the same rule, but also counts
the number of times a given developer changed the file as a
measure for his expertise. A later refinement of this is the work
by Girba et al. [7], where the size of the changes (measured
by the number of lines changed in a commit) is also taken
into account to determine expertise.
Usage. Vivacgua and Lieberman [8] present Expert Finder, a
system that locates experts on java APIs based on their usage

1As a development session we consider a consecutive collection of devel-
oper interactions; a session ends with a commit or if more than two hours
time has elapsed between two interactions.



of the API. Ma et al. [9] also present an expert recommender
based on usage expertise.
Defects. Anvik and Murphy [10] use bug reports as the
primary source of information for their expertise metric.
Interaction data. Fritz et al. [11] investigated whether in-
teraction data from Mylyn’s Degree of Interest indicates
knowledge of the source code viewed, by having subjects fill
out a questionnaire, and found that recent interactions where
associated with a higher knowledge of the source code. Later,
Fritz et al. [12] expanded the Degree of Interest in a Degree
of Knowledge, and compared it to Mockus and Herbsleb’s
expertise recommender, finding an improvement according to
developer feedback.
Fine-grained changes. Hattori et al. [13] proposed a finer-
grained definition of ownership, based on recorded developer
interactions, instead of ones recovered from the versioning
system. They also propose to use the notion of forgetting to
obtain a more realistic notion of expertise decaying with time.

Our approach differs from these related works by contribut-
ing an automatic process to compare expertise metrics, based
on fine-grained developer activity information, while other
approaches use more coarse-grained information (e.g. based
on source code history or bug reports), or rely on developer
feedback—expensive to gather, and potentially subjective—to
evaluate the expertise metrics for a given source artifact.

III. METHODOLOGY

A. Data gathering

The Mylyn [1] tool offers integration with defect tracking
systems: a developer submitting a bug fix via Mylyn will
upload his Mylyn interaction history as an attachment to the
bug fix. As a consequence, there are now several thousands of
bug fixes in the Eclipse bug tracker with developer interaction
histories attached, principally in two projects, Mylyn itself,
and the Plugin Development Environment (PDE).

To gather the data necessary for this experiment, we down-
loaded all the 9,280 bugs reports with a Mylyn attachment in
Eclipse’s bugzilla repository (http://bugs.eclipse.org) that were
online and publicly visible on July 6th, 2012. We then applied
filters on the data, namely: (1) we kept all the data originating
from the Mylyn and PDE projects, and (2) we filtered out
interaction histories which did not contain any edits.

We also downloaded the git repositories of Mylyn and PDE,
in order to compute expertise metrics based on version control
histories. However, not all the entities present in a development
session were successfully associated to files present in the
repository. We thus filtered out development sessions for which
more than half of the events could not have any expertise value
computed. For the remaining sessions, we removed the events
with missing information while computing the expertise value
associated with each session.

B. Expertise metrics

In this study, we compare two expertise metrics to illustrate
our approach for empirically evaluating expertise metrics using
developer activity information. A “naı̈ve” expertise metric, that

equates expertise on a given entity to the amount of commits
a given developer performs on it, and a “decay” expertise
metric that, similar to Hattori et al. [13], takes into account
the recency of the changes.
Computing expertise metrics. Our expertise metrics are
defined at one point in time, and for a given developer,
respective to other developers. At time t, to obtain the expertise
of developer d on the source code entity e, we: (1) compute the
raw expertise metric (according to one of the variants below),
giving us a positive value, for each possible developer; and
(2), normalize the expertise value as the ratio of the expertise
of d on the sum of the expertise of each developers, yielding
an expertise value between 0 and 1.

Exp(d, e, t) =
RawExp(d, e, t)∑

d′∈D RawExp(d
′, e, t)

(1)

Expertise variants. The raw naı̈ve expertise ExpNaive is
simply the sum of commits that d performed on the file that
contains e, until time t.

ExpNaive(d, e, t) =
∑

c∈C
WN(c, d, e, t) (2)

WN(c, d, e, t) =

{
1 V alid(c, d, e, t)

0 otherwise
(3)

V alid(c, d, e, t) = Author(c, d)∧Changes(c, e)∧Date(c) < t
(4)

The decay expertise metric ExpDecay also counts the
number of changes perform by d on the file that contains e,
until t, but also applies a liner decaying factor: the weight of
each commit c is 1, divided by the number of days between
t and the date of the commit. As such, changes performed
earlier in the past have a smaller weight than recent changes,
showing the propensity of people to forget what they learned
over time.

ExpDecay(d, e, t) =
∑

c∈C
WD(c, d, e, t) (5)

WD(c, d, e, t) =

{
1

t−Date(c) V alid(c, d, e, t)

0 otherwise
(6)

Aggregating expertise at the level of sessions. So far, we
described the computation of the expertise of a single code
entity. To calculate the expertise of a developer with respect to
a task, we compute the expertise for each entity in the session,
for the developer that sent the mylyn interaction history, at a
time t, which is the start of the session. This yields a list
of expertise metrics between 0 and 1, for each entity in the
session (excluding entities with missing information). We then
perform a weighted average of each entity, where the weight
is the number of occurrences of the entity in the session, and
obtain a single expertise value for d at time t.

Expertise(d, s) =

∑
e∈EntitiesExpEntity(e, d, s)

NumberOfEvents(s)
(7)

ExpEntity(e, d, s) = Exp(d, e, Start(s))× Freq(e, s) (8)



C. Validation

As described in the introduction, we are interested in an
expertise metric that is: (1) negatively correlated with time, and
(2) weakly correlated with the actual activity in the session.

We compute several additional metrics for each sessions.
They are: (1) Time, the length of time of the session, which
is the difference between the timestamps of the last and the
first events; (2) Files, the number of individual files that were
edited or viewed during the session; (3) Edits, the number
of edition events during the session; and (4) Selections, the
number of selection events during the session.

To evaluate the accuracy of the metrics (that is, how well an
expertise metric explains decreasing amount of time spent or
of navigation, edit activity), we compute the overall correlation
between ExpNaive, ExpDecay, and Time, Edits, and
Selections. We also want to investigate whether the expertise
is a more important factor for larger tasks. As such, we also
compute similar correlations, but on the first, second, third and
fourth quartiles of the data as determined by the Files metric.

To be less sensible to outliers, we report the non-parametric
Spearman correlation instead of the Pearson correlation. We
use the asymptotic variant of the Spearman correlation as the
exact variant is sensitive to ties. In the tables showing corre-
lations with expertise, correlations which are not significant at
α = 0.05 are displayed in parenthesis; correlations above a
threshold of 0.15 are highlighted in bold.

IV. RESULTS

A. General results

We first examine the correlations between the basic metrics,
without considering expertise yet. Table I shows the correla-
tions between time, edits, and selections, across all sessions,
and also across development session quartiles. From the table,
we observe the following:

• Time and Edits, and Time and Selections, are cor-
related. The correlations are however not perfect: there
are other factors at play beyond the raw size of the task
that influence its duration. Most likely, expertise is such
a factor, and its effect is hopefully measurable.

• Selections and Edits are very strongly but not perfectly
correlated, which means that some sessions are more
exploratory in nature than others.

• If we look at the behavior of these correlations among
quartiles of the data, we do not see explicit trends, with
the exception that larger sessions feature a slightly higher
correlation between Selections and Edits.

Metrics All Q1 Q2 Q3 Q4
Time & Edits 0.66 0.61 0.38 0.35 0.52
Time & Selections 0.73 0.59 0.39 0.34 0.61
Selections & Edits 0.90 0.78 0.89 0.90 0.93

TABLE I
SPEARMAN CORRELATIONS BETWEEN BASIC METRICS

Metric All Q1 Q2 Q3 Q4
Time -0.15 (-0.04) -0.12 -0.13 -0.32
Edits 0.05 0.10 0.18 0.14 (0.03)
Selections (0.01) 0.10 0.20 0.12 (-0.09)

TABLE II
SPEARMAN CORRELATIONS OF NAIVE EXPERTISE

Metric All Q1 Q2 Q3 Q4
Time -0.22 (-0.02) -0.16 -0.21 -0.35
Edits (-0.04) (0.07) (0.09) 0.12 (-0.09)
Selections -0.08 0.09 0.11 (0.1) -0.16

TABLE III
SPEARMAN CORRELATIONS OF DECAY EXPERTISE

B. Naive expertise metric

We then examine the correlations of the basic metrics with
our naı̈ve expertise metric, in Table II. Overall, we see that:
• There is a weak, but significant, negative correlation

between the ExpNaive and Time. If we analyze the
correlations by quartiles, we see that the correlation for
the first quartile is very weak and non-significant. The
correlation grows across quartiles, as the size of tasks
grows. For the larger quartile, the correlation is as high
as -0.32, which, although not a strong correlation, is
still remarkable, especially if compared to the correlation
between Time and Edits (0.52).

• The relationship between ExpNaive and Edits is hard
to describe: we observe some correlation, but they are
certainly weaker than the correlation with time. Most of
them are positive correlations, which comforts us in the
belief that ExpNaive is describing a different aspect than
Time and Edits, which are positively correlated.

• We can make similar observations with respect to the
relationship between ExpNaive and Selections. The
correlations are positive, but overall weaker than the
negative correlation of ExpNaive and Time.

Our first attempt at defining an expertise metric is encour-
aging: We defined a metric that is negatively correlated with
Time, but not strongly correlated with Edits or Selections.

C. Does decay lead to a better expertise metric?

Table III presents the correlations we observed between
ExpDecay, our expertise metric that takes into account decay,
and Time, Edits, and Selections. Our first observation is that
its overall behavior is similar to the ExpNaive. Both metrics
have negative correlations with Time, which increase with
larger tasks. Both metrics have relatively weak correlations
with Edits and Selections by themselves. However, several
factors lead us to believe that the ExpDecay is a better
indicator of expertise than ExpNaive:
• The negative correlation with Time is stronger: the

overall correlation for all sessions goes from -0.15 to -
0.22, a 50% increase. We see increases in all quartiles that
previously featured a significant correlation, with most
pronounced effects in the second and the third quartile.

• The correlation with Edits and Selections is weaker:
the values across the board are overall lower, and ad-
ditionally, 5 of the measurements are not statistically
significant, up from 3 for ExpNaive.



For all of these reasons, we think that ExpDecay better
isolates the actual expertise of a developer, and is hence a
better expertise metric overall. However, ExpDecay is still a
fairly naive metric and more sophisticated metrics (e.g. metrics
taking into account the extent of the change to a source artifact
per commit) are likely to (negatively) correlate better with
time spent and number of selections, edits. With the proposed
approach, we can easily automatically test whether any newly
defined expertise metrics shows a higher correlation.

V. THREATS TO VALIDITY

Construction validity. Missing information may be the source
of errors in the measurement. In particular, we were not able to
find the change history of all the files that were changed in the
development sessions. We took measures to limit this effect,
by discarding sessions with too much missing data, but we
cannot guarantee to not have introduced a bias in the data in
this way. The fact that developers where Mylyn users means
that Mylyn itself may have an impact on their productivity,
introducing systematic errors in the measurements.
Statistical conclusion validity. In this study, we present only
correlations between our variables of interest. It is well-known
that correlation does not imply causation, as such we cannot
be certain other variables are at play. In addition, we did not
attempt to predict the time taken in a development session
based on the expertise metrics and/or other metrics.
External Validity. Due to the scarcity of publicly available
interaction data repositories, our findings concern two projects
only (Mylyn and PDE). We cannot be sure the findings extend
to other projects, or if they do, whether the magnitude of the
effects are similar.
Internal validity. Our validation of expertise measurement
takes the assumption that a better expertise measurement is
more strongly (negatively) correlated to the time taken to
perform a task. There may be other aspects to expertise that
render this assumption incorrect.

Our expertise computation taking into account forgetting
may be too naive. There are other aspects of expertise that we
did not take into account, such as the size of the changes, etc.
In particular suppose class A and B were both modified twice
by developer X, they should have the same expertise value for
X. If however class A has been furthermore heavily modified
by other authors, X’s expertise for B should be higher. This is
achieved to some extent by the fact that the total expertise
for a class is constant and shared between all developers,
but this may have undesired side effects as well. Different
development styles regarding committing of changes also
influence the expertise metrics, that is, a developer committing
very frequently even small changes to an entity will have a
high expertise on this entity than a developer who commits less
often. However this does not concern the evaluation framework
itself, but the two metrics we define; additional metrics should
sidestep these issues.

VI. CONCLUSIONS AND FUTURE WORK

The expertise of a developer is a valuable asset for a
company. However, the best way to measure the expertise of

a developer on a piece of code is still up for debate. As a
result, several expertise metrics have been proposed, but how
to evaluate their quality and accuracy is not trivial.

In this paper, we proposed to mine developer interaction
data repositories to evaluate the respective merits of various
expertise metrics. These interaction data repositories contain
the sequence of activities that developers took to finish a given
task, including the overall time elapsed to perform the task.

We hence propose to use the time taken to finish a task as a
way to measure the effectiveness of tentative expertise metrics.
The rationale behind this is that a good expertise metric should
be both negatively correlated with the time taken to perform
a task, and weakly correlated with the actual task activity.

We defined two expertise metrics based on the past activity
on the entities involved in the actual task, and found that
both metrics performed according to our expectations. That
is, both metrics exhibited the characteristics described above.
Furthermore, the expertise metric that discounts older activity
on an entity was found to be a better expertise metric than the
one that did not: it exhibited a stronger negative correlation to
time, and a lower correlation to the task activity.

In future work, we plan to use the same framework to
evaluate additional expertise metrics, with the aim to find
better estimators of the expertise of developers. We plan to
investigate several aspects that have been proposed in the
literature, such as finer characterizations of the changes made
to entities, the usage of entities in other tasks, and other metrics
such as expertise based on vocabulary.

REFERENCES

[1] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in SIGSOFT FSE, M. Young and P. T. Devanbu, Eds.
ACM, 2006, pp. 1–11.

[2] L. Hattori and M. Lanza, “Syde: a tool for collaborative software
development,” in ICSE (2), J. Kramer, J. Bishop, P. T. Devanbu, and
S. Uchitel, Eds. ACM, 2010, pp. 235–238.

[3] R. Robbes and M. Lanza, “Spyware: a change-aware development
toolset,” in ICSE, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds. ACM,
2008, pp. 847–850.

[4] R. Robbes and M. Lanza., “Versioning systems for evolution research,”
in IWPSE, 2005, pp. 155–164.

[5] D. W. McDonald, “Evaluating expertise recommendations,” in GROUP.
ACM, 2001, pp. 214–223.

[6] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in ICSE, W. Tracz, M. Young, and
J. Magee, Eds. ACM, 2002, pp. 503–512.

[7] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers
drive software evolution,” in IWPSE. IEEE Computer Society, 2005,
pp. 113–122.

[8] A. S. Vivacqua and H. Lieberman, “Agents to assist in finding help,” in
CHI, T. Turner and G. Szwillus, Eds. ACM, 2000, pp. 65–72.

[9] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recommen-
dation with usage expertise,” in ICSM. IEEE, 2009, pp. 535–538.

[10] J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in MSR. IEEE Computer Society, 2007, p. 2.

[11] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity
indicate knowledge of code?” in ESEC/SIGSOFT FSE, I. Crnkovic and
A. Bertolino, Eds. ACM, 2007, pp. 341–350.

[12] T. Fritz, J. Ou, G. C. Murphy, and E. R. Murphy-Hill, “A degree-
of-knowledge model to capture source code familiarity,” in ICSE (1),
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010,
pp. 385–394.

[13] L. Hattori, M. Lanza, and R. Robbes, “Refining code ownership with
synchronous changes,” Empirical Software Engineering, vol. 17, no. 4-5,
pp. 467–499, 2012.


	Introduction
	Related Work
	Methodology
	Data gathering
	Expertise metrics
	Validation

	Results
	General results
	Naive expertise metric
	Does decay lead to a better expertise metric?

	Threats to validity
	Conclusions and future work
	References

