
Life cycle of Defects in Open Source
Software Projects

Timo Koponen
1 Department of Computer Science, University of Kuopio

P.O.B 1627, FIN-70211 Kuopio, Finland
timo. koponen@uku. fi

Abstract. We studied the maintenance process from the viewpoint of defect
management and the defect life cycle. First, we outline a model for the defect
life cycle based on ISO/IEC standards, the Framework for Open Source
maintenance process, and the Bugzilla defect management system. Thereafter,
we analyze defects from two Open Source software projects. The aim of the
study was support the maintenance reliability. However, we found that most of
the defects did not follow the life-cycle model. Defects were usually directly
resolved from initial state without being assigned.

1 Introduction

Most Open Source software users are not soft^vare developers or programmers and
they are rarely able to modify or repair software. So it is hard to imagine that software
will be adopted if users do not have confidence in the software itself and in the
maintenance provided Open Source users are often encouraged to report defects and
request enhancements, and for this they need a channel to communicate with
developers. Many projects use dedicated systems such as Bugzilla [1] for defect
reporting and management. These systems provide a communication channel and a
system for maintenance process management.

Nowadays, the reliability of the maintenance process is based on a well-described
process. A standard model of the maintenance process is presented in the Software
Engineering Body of Knowledge (SWEBOK), ISO/IEC 12207 and ISO/IEC 14764
standards [2], [5]. These ISO/IEC Maintenance standards describe the activities
required and their inputs and outputs [2], [5], but it is not known if the standard model
is applicable for Open Source maintenance. In our earlier studies, we described a
framework for the Open Source maintenance process [4] and found it similar to the
ISO/IEC Maintenance standard.

However, a well-defmed process does not provide reliability if it is not followed.
In fact, it is not known if the defects in Open Source projects follow the described
process. This study explored defect management and the life cycle of defects in Open
Source projects. Our first objective was to define a model for the life cycle of the
defect. The second objective was to find the most common life cycles from the case
studies and compare them with the life-cycle model. The third objective was to
evaluate reliability of the maintenance process by analyzing life cycles. The rest of
the article is organized in the following way. Section 2 presents background of the
study. Section 3 introduces the case studies and data. Section 4 explains and analyzes

Please use the following format when citing this chapter:
Koponen, T., 2006, in IFIP Intemational Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 195-200

196 Timo Koponen

the results of the case studies. Section 5 presents related work and Section provides a
brief conclusion.

2 Background

Defect management systems (DMS) allow users to report problems, bugs or
enhancement requests as a defect. They also provide flexible possibilities to track,
control, and assign defects. These features allow the maintenance process to be
managed. Defect management systems present defects as defect reports.

A defect report contains many attributes but we focused on analyzing the
attributes state and resolution of the defect. The state describes the defect's condition,
such as new or resolved. In the Bugzilla defect management system defects can be in
the seven states presented in Table 1. It is not allowed to transit between all states
directly: for example, it is not allowed to transit from closed Xo new. To illustrate the
allowed state changes we drew a state transition diagram (Figure 2), which presents
the allowed state transitions in the Bugzilla defect management system.

Table 1. States of the defect in the Bugzilla defect management system

State Explanation
Unconfirmed Defect has been recently added and it is not confirmed yet.
New Defect has been recently added and others have confirmed it.
Assigned Defect has been assigned to proper person.
Resolved Defect has been resolved but it is in quality assurance.
Verified Defect has been resolved and accepted by quality assurance.
Closed Defect has been resolved, verified and closed
Reopened Defect was resolved but now it has been reopened for some reason.

A defect should be resolved even it does not lead to changes or modification of
software. State does not describe the outcome of the defect so resolution is needed to
express this . Earlier studies have shown that many of the resolved defects do not
cause changes to software [3], Table 2 shows the resolutions that are possible in the
Bugzilla system. Figure 2 and Framework for Open Source Maintenance process [4]
show that the most common defect life-cycles should be similar to those presented in
Table 3. Some of the defects can be classified as duplicate or invalid immediately and
they can be resolved without assignment. On the other hand, a defect that leads to
changes in the source code should always be assigned.

Table 2. Resolutions of defects in the Bugzilla defect management system

Resolution Explanation
empty Defect does not have resolution yet
Fixed Defect is fixed and changes have been made
Works for me Defect does not occur in other users' systems
Won't fix Defect is not a fault or real problem; or it is a feature
Invalid Defect is invalidly reported or information is missing
Duplicate Defect is a duplicate

Life cycle of Defects in Open Source Software Projects 197

Table 3. Expected defect life-cycles

Resolution Life-cycle
Fixed Unconfirmed->New->Assigned->Resolved->Verified->Closed
Other Unconfirmed^Resolved->(Verified)->Closed

3 Case studies

To study the life cycles of defects in the real world, we collected and analyzed defects
of the Apache HTTP Server and Mozilla Firefox. These are widely used and their
quality is highly appreciated so they are representative case studies. We selected a
two-year time-period for analysis, and all the defects reported between September
2003 and September 2005 were analyzed. This sampling produced 1266 defects from
Apache and 27681 from Mozilla. The resolutions of the analyzed defects are
presented in Table 4.

Resolution

Apache
Mozilla

Table 4. Resolution of the defect in Apache and Mozilla

Duplicate Fixed Invalid Won't Works Later Remind
fix for me

162 288 370 84 33 5 1
10038 2414 3404 714 3730 0 0

Not
resolved
323
7381

Table 4 shows that Apache had 943 resolved defects and Mozilla had 20 300
resolved defects. However, not all of the resolved defects led to a change or
modification of software. In the case of Apache, 288 defects (less than 31 percent of
all resolved defects) ended up fixed, and in the case of Mozilla 2414 defects (less than
12 per cent of resolved defects) ended up fixed. Furthermore, there were also two
additional resolutions, Remind and Later, in the Apache. Those states were rarely
used.

However, the final state and resolution does not explain defect processing and the
defect management process so we analyzed the life cycles of the defects in both case
studies. Table 5 presents the most common defect life-cycles in the Apache and
Mozilla projects.

Table 5. Two most common defect life-cycles in the Apache and Mozilla projects

Apache Mozilla
247 New-^Resolved 3764 Unconfirmed^Resolved->Verified
511 New->Resolved->Closed 11133 Unconfirmed-^Resolved

A direct transition from the state new to the state resolved is the most common
life-cycle of defects in the Apache project. There was no significant use of the state
unconfirmed. However, according to Bugzilla [1] unconfirmed should be the initial
state of the defect. Furthermore, there was also a new state, needinfo, meaning that the
defect report did not contain all the necessary information.

A direct transition to the state resolved is also very common in Mozilla. However,
in this case, it was usually from unconfirmed to resolved. In addition, it seems to be

198 Timo Koponen

very uncommon to close a defect, so most defects end up resolved. Furthermore, we
found state transitions that were not allowed, such as a transition from verified or
resolved to unconfirmed. However, all state transitions were allowed in the Apache
project.

4 Results

As the cases in the previous section show, the defect life cycles do not correlate with
the life-cycle model and the state of the defect transits almost directly to the state
resolved. Furthermore, Table 4 also shows that most of the defects did not lead to a
change or modification of software. In case of the Apache, over 800 of 943 defects
transited directly from the state new to the state resolved. The most common life cycle
in the Apache project is presented with bold black line in Figure 2.

#»WUrwcw5mve<t jssjfta^ / ^ ^** B^*X X M '^^'^^ P \ x H - '̂**'*'*̂ H

Figure 2. The most common defect life cycle in the Apache (Black bold line) and in the
Mozilla (Gray bold line)

According to the life cycle model it means that those defects did not lead to
changes in the source code. The resolutions of the defects in the Apache project are
presented in Table 7. It shows that there were also defects that led to change or
modification.

Project
Apache
Mozilla

Table 7.

Duplicate
65
5409

Resolution of defects with most common life cycle

Fixed Invalid Later Won't fix Works for me
142 236 2 47 0
246 2443 0 326 2709

As we see in Table 4, only about 290 defects, which is about 30 per cent, lead to
fixes. However, these defects should have followed the life cycle model. Surprisingly,
142 of 288 defects that led to source code changes were changes directly from the
state new to resolved. Furthermore, there were other almost direct jumps to the state
resolved, which together covered 237 of 288 fixed defects (82 per cent). Thus, only
51 of 288 defects (18 per. cent) that were fixed followed the life cycle model and went
through the states new, unconfirmed, assigned and resolved. If we then look at
Mozilla, we can see in Table 6 that over 16 000 of 20 300 defects jumped directly

Life cycle of Defects in Open Source Software Projects 199

from the state unconfirmed or new to resolved. The most common life cycle in the
Mozilla project is presented with bold gray line in Figure 2.

According to the life cycle model, those defects did not cause changes in the
source code. The resolutions of the analyzed defects from the Mozilla project are
presented in Table 4: only about 2400 defects were fixed, which is less than 12 per
cent. However, these defects should have followed the expected life cycle and others
should have jumped more or less directly to resolved. Surprisingly only 246 of
11 133 defects that jumped directly from unconfirmed to resolved were fixed.
However, there were other almost direct jumps to resolved, such as from unconfirmed
to resolved V\2i new, which together covered 1652 of 2414 fixed defects (68 per cent).
Thus, 748 of 2414 defects (31 per cent) that led to fixing followed the expected life
cycle or went through at least the states new or unconfirmed, assigned and resolved.
There were also 14 defects that could not be classified into either group because they
had so many state changes.

Despite the number of defects, both cases have similar characteristics. The
proportion of defects that led to changes (fix) was relatively small. Most of the
defects transited directly to the state resolved and it was possible to have a resolution.
It seems that developers just pick up a defect and resolve it without assigning, and
they did not update the state of the defect before it was resolved. However, the state
of the defect does not tell the whole truth since defect management systems allow
users to leave comments without changing the status of the defect. There were also
discussions in the mailing lists, which we did not analyze in this study.

5 Related Work

To our knowledge, this is the first work that studies a defect life cycle in Open Source
projects. However, the defects and defect management systems have been previously
studied from other viewpoints. Mockus et al. [6] has studied defects and changes of
the source code in the Apache and Mozilla projects. They compare the numbers of
changes and defects per developer in commercial projects. Furthermore, they measure
defect density in the projects and compare it with the size of the source code. Huntley
[7] has studied the defects of the Apache and Mozilla projects from the viewpoint of
Organizational learning. Fisher et al. have combined version control and defect
information in their studies [8] creating a release history from the version control
system and bug tracking system. They describe the changes of the source code and
defects from the release history viewpoint.

5 Conclusion

We studied maintenance process and expected that the life cycle of defects would be
similar to the maintenance process, with several states during the process. However,
the study shows that the defect life cycle in two well-known Open Source Software

200 Timo Koponen

projects was much more straightforward. The state of the defect was set to resolved
directly after the initial state. More surprisingly, the outcome of the defect did not
seem to have any relation with its life cycle: even the defects led to changes they were
not assigned. The states of the defect could be simplified to open and closed. These
two states are enough to cover 84 per cent of all defects in the Apache project and 79
per cent in the Mozilla project. So, the usage of a defect management system does not
seem to be efficient in the Open Source projects studied. It is generally claimed that
defect management is a crucial part of maintenance, leading to the assumption that
users cannot rely on the maintenance of Open Source Software.

To improve maintenance reliability from the user's viewpoint, these software
projects should use defect management more intensively or publish a document
explaining the procedures in use. At least, developers should assign a defect when
they start working with it so that users and other developers could see that the defect
is being dealt with. Unfortunately, similar data have not been published concerning a
proprietary project. In our experience, proprietary projects have a similar type of
defect life cycle.

7 References

1. Bugzilla.org, 2005. http://www.bugzilla.org
2. ISO/IEC. ISOAEC 12207:1995/Amd 2002: Software Engineering: Software life cycle

processes. ISO/IEC, 2002.
3. T. Koponen and V. Hotti. Defects in open source software maintenance - two case studies -

apache and mozilla. In Proceedings of The 2005 International MultiConference in
Computer Science and Computer Engineering, Las Vegas, NV, USA, 2005. CSREA Press.

4. T. Koponen and V. Hotti. Open source software maintenance process framework. In 5-
WOSSE: Proceedings of the fifth workshop on Open source software engineering, pp. 1-5,
New York, NY, USA, 2005. ACM Press.

5. IEEE Computer society. Guide to the Software Engineering Body of Knowledge (SWEBOK).
IEEE Computer society, Los Alamitos, Califomia, USA, 2001.

6. A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. MethodoL, 11 (3):309-346,
2002

7. C. Huntley. Organizational learning in open source software projects: An analysis of
debugging data IEEE Transactions on Engineering Management, 50(4), 2004.

8. M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version
control and bug tracking systems. In ICSM '03: Proceedings of the Inter- national
Conference on Software Maintenance, pp. 23, Washington, DC, USA, 2003. IEEE
Computer Society.

