
Licensing Services: An "Open" Perspective 

Vincenzo D'Andrea and G.R.Gangadharan 

Department of Information and Communication Technology, 
University of Trento, 

Via Sommarive, 14, Trento, 38050 Italy 
{dandrea,gr}@dit.unitn.it 

Abstract . Though service orientation is an incipient technology, the 
inherently infinite potentiality of services makes them to proliferate 
seamlessly, serving in myriad domains. Licensing of services enables 
to regulate the commercial use and modifications of service, retaining 
the copyright with owner of the service. With the growing influence of 
open source initiatives today, it becomes a significant topic to analyze 
'open'ing services. In this paper, we present a concept of 'open service' 
and analyze the implications of open source approach on service licenses. 

1 Introduction 

Service oriented computing (SOC) is an emerging distributed systems paradigm, 
addressing the aspects of real world applications, crossing organizational and 
technical boundaries. With a vision of dynamically composing service oriented 
and non-service oriented appHcations, SOC continues to proliferate as a tech­
nology for connecting applications in a loosely coupled manner. Today, web 
services are being used as a component or utility and offer programmatic in­
terfaces to applications. However, many available web services are not even 
considered as providing relevant business value. The majority of attention on 
SOC has been contemplated on its related technical standards and technol­
ogy integration. Managerial issues and business strategy for implementing SOC 
have not been studied intensively. 

One of the relevant issues from this perspective is the role of licensing for 
services. In the case of software, licensing is generally considered the way for 
extending property rights into software. Thus, software licensing [1] is consid­
ered to include all transactions between the Ucensor and the licensee in which 
the licensor agrees to grant the licensee the right to use some specific software 
or contents of information for a specific tenure under predefined terms and 
contracts. 

In [2], the author describes a distributed software licensing framework using 
web services and SOAP. However, [2] addresses a framework using web services 
but does not address licensing of web services itself. The technical contracts of 
web services are described in [3], but business and legal contents of contracts 
are not considered. In [4], we had elaborated the dimensions of web services 

Please use the following format when citing this chapter: 
D'Andrea, V., and Gangadharan, G.R., 2006, in IFIP International Federation for 
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, 
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 143-154 



144 Vincenzo D'Andrea and G.R.Gangadharan 

differing from software and proposed an anatomy of a service license with a set 
of key negotiation issues. 

As the foundations of open source regime rely on licenses, an approach in­
spired by open source could be considered during the process of conceptualizing 
licenses for services. The Free / Open Source Software (FOSS) approach protects 
the unconditional rights of modification and redistribution by the collaborating 
developers, making the source code freely available [5]. Freedom of distribution 
and freedom of modification are the core principles of open source licensing. 
To the best of our knowledge, the idea of making services 'open' is completely 
new and no previous work exists in this field. In this paper, we present a novel 
concept of licensing services, inspired by open source movement. 

The rest of the paper is organized as follows. Section 2 introduces the con­
cept of service oriented computing. Section 3 presents the distinguishing char­
acteristics of services which preclude the direct adoption of software licenses for 
licensing services. Section 4 elaborates licensing of services, describing the issues 
of composition. A comprehensive description of what we mean by 'open' services 
is elucidated in Section 5. Section 6 describes the consequences of adoption of 
open principles in services paradigm, drawing some conclusions. 

2 Service Orientation of Software 

Most of the products fall in a continuum having pure service on a terminal 
point and pure commodity good on the other one [6]. Software, traditionally, 
has been perceived as a product, requiring possession and ownership, in order 
to receive the desired performance. Software-as-a-service [7] is a mechanism 
of renting software where users are subscribed to the software they use. SOC 
allows the software-as-a-service concept to expand to include the delivery of 
complex business process and transactions- as a service, allowing applications to 
be constructed on the fly and services to be' reused everywhere [8]. 

The idea of software composition and refinement instead of software de­
velopment from scratch nowadays is elaborated to the platform-independent, 
distributed and standardized services paradigm [9]. In such paradigm, services 
reflect self-contained processes that can be described, published, discovered and 
invoked in a distributed environment, connecting people, processes, and applica­
tions. Services are intended to represent meaningful business functionality that 
can be federated with other services, to enhance more value to the business 
functionality. 

The apphcation of SOC model (see Figure 1) to web resources is manifested 
by web services to provide a loosely coupled model for distributed processing. 
Web services are the enabling technology, standardized to construct and inte­
grate applications and organizational interfaces as services, using the Internet 
as the communication medium and open Internet-based standards [10]. A ser­
vice is represented by an interface part defining the functionality visible to the 
external world as a means to access the functionality and an implementation 



Licensing Services: An "Open" Perspective 145 

UDDI 

WSDL 

Publish / '^ Fiwd 

1 / 
fC:>.% 

f^y:^>'^S^s, Bind ,..,, ., ^ , ,, 

^fW^''^^ ^^4~-----^8^> 
SOAP 

Fig. 1. Service Oriented Computing (Instances with Web Service) 

part realizing the interface. The Web Services Definition Language (WSDL) 
is an XML based interface definition language, describing services as a collec­
tion of messages (abstract descriptions of the data being exchanged) and port 
types (abstract collections of operations), separated from their concrete net­
work deployment or data format bindings. Directories of services are necessary 
in order to find services usable for a specific application. Universal Description, 
Discovery, and Integration (UDDI) enables publishing and accessing WSDL 
specifications in directories. Simple Object Access Protocol (SOAP) is a plat­
form and language independent protocol, providing a way of communication 
between applications. 

3 Dimensional Analysis of Software and Services 

Software is an intangible asset, protected by copyright. Being a digital work, 
it can be vulnerable for perfect copying, and unfimited copies identical to the 
original can be made. Software is an experience good, whose value is not quan­
tifiable without consumption. Thus, the socio-economic analysis of software 
signifies distribution strategies. While services (see Figure 2) present several 
similarities with software, we claim that it is not possible to adopt the software 
[11] and/or component [12] licensing models directly for licensing services. The 
reproduction of services could vary in the levels of interface, implementation, 
and execution (see Section 5 for details). Further, composition of services [13] 
is significant in reproduction of value added services. The following characteris­
tics of services associated by functional and non-functional properties differing 
appreciably from software become the cornerstones for licensing of services: 

Configurability: Generally software serves as a standalone application li­
censed by shrink-wrap or click-wrap licenses. In contrast, web services are not 



146 Vincenzo D'Andrea and G.R.Gangadharan 

Discoverable 

Composab le / - - '••'-•--' \ Discrete 

Semces 

Configurable y —-\ AutonomoTis 

Intercoimected 

Fig. 2. Service Characteristics 

targeted as standalone applications. The rationale behind web services is making 
network-accessible operations available anywhere and anytime. The counterpart 
of a software application in terms of services is a reconfigurable composition of 
distributed services. Service implementation may involve many steps, executed 
in distributed manner, supporting interoperability and location transparency 
[14]. In contrast to software components, consumers are not required to down­
load them for local use. 

Discreteness: Software ranges from small fragments to sophisticated appli­
cations. The separation of a software package will not be meaningful as it was 
originally intended to function. Similarly, services can also vary in complex­
ity of functions. A service, as a self-contained software module, semantically 
encapsulates discrete functionality [8]. 

Autonomy: Unlike general software and components, services are con­
nected to other services and clients using message based methods. They do 
not require knowledge of any internal structures or context at the client or ser­
vice side. Thus, loose coupling allows service providers to modify the service 
interfaces, without impacting consumers. 

Interconnectedness: Software programs run on infrastructures and con­
sumers are responsible for maintaining the infrastructure on which the software 
executes. In case of services, functionality and reliability can be affected by 
problems in the network between consumers and services. The availability and 
performance of a service could not be directly guaranteed. 

4 Towards Licensing Services 

All the characteristics of SOC lead to composability, to form composite services 
by combining elementary and/or composite services. Service composition [15] is 
related to the implementation of a web service whose internal logic involves the 
invocation of operations offered by other web services. Services can be composed 



Licensing Services: An "Open" Perspective 147 

(see Figure 3a) as a part of composite service, encapsulating individual services 
and exposing a different set of operations. Another perspective on composition 
(see Figure 3b) is by defining the invocation order of individual services [16]. 
Service composition allows a recursive process of composition of services i.e. 
a composed service can be composed with an other elementary and/or com­
posite service. Thus, individual services can be composed up to any levels of 
hierarchies. 

(a) a») 

Fig. 3. Service Composition (a) by Encapsulation and (b) by Sequencing 

Besides the functional operations, from the point of view of a service con­
sumer, it is important to consider also other, non-functional, aspects of service 
provisioning, such as the cost or the reliability of a service. These aspects are 
collectively referred to as Quality of Service (QoS) or non-functional properties 
of a service. The QoS of a composite service is derived from the aggregation of 
QoS of each individual services, where the aggregation could be a simple com­
bination such as adding the cost of individual services, or taking the maximum 
among the performances of the individual services to estimate the response 
time of a composite service. For other aspects, the combination requires the 
definition of a specific model, such as combining security aspects or rehability, 
availability, scalability and so on. 

Analyzing the characteristics of services as discussed in Section 3, depicts 
the nature of services diflPering from software and/or components and rises a 
requirement for licensing services. Questions of ownership and distribution could 
impede composition, thereby impacting the reuse of services. Thus, the license 
of a service [4] is defined as not only the description of the terms and conditions 
for the use of service as in the case of software, but also a detailed description 
of clauses regarding reuse. 

Though the concept of arbitrarily mixing and matching the services from 
different providers seems interesting, the basic clauses of service licenses would 
enforce certain terms and conditions on composition. To illustrate the issues 
that could arise in the context of licensing web services, we consider a simple 



148 Vincenzo D'Andrea and G.R.Gangadharan 

scenario where i^ is a restaurant service providing the following operations: 
RQ, information on location and opening hours; Ri, the facility for reserving 
table; R2^ a catalogue of specialty cuisines; i?3, a daily recipe for one of the 
specialty cuisine. Another service, F , a restaurant finder service uses R, for 
the following operations: Fi , a restaurant locator giving a list of restaurants 
close to a given location and using RQ (as well as similar operations for other 
restaurants); F2, for intermediating table reservation, using Ri; F3, a daily 
recipe randomly selected among the recipes provided by the restaurants Hsted 
using F (in the case of R, it will use operation R^). The license terms of R 
may deny the provision of Rs to other services intended for providing recipe 
information exclusively or may require attribution for the use of R^. The license 
terms of R can even require the same set of terms and conditions for any 
hierarchy of composed services, even the successive compositions use F. In this 
case, the license terms of F will have to comply with i?, for the request and 
deny provision of F3 to other services intended to provide the recipe information 
exclusively. Another restaurant service, 5 , has a similar set of operations 5o, 5 i , 
«S'2, S3 as i?, but having a different license that freely allows the use of operations 
anywhere. If F uses also 5 , then it could be possible to have a different license 
when F3 presents a recipe chosen from S. Even in this simple scenario, it is 
apparent that the composition of licenses could easily bring to incompatibility 
between the composed services. 

The license compatibility is a complex issue, requiring careful attention be­
fore attempting to merge licenses. The licensing of a composed service would be 
based on the licenses used in different service and the way they are combined 
together. As composition of services is established dynamically ('just-in-time') 
and composed service is created on-the-fly, the license of composed service would 
be program generated and needed to be validated by analyzing the licenses of 
composing services. 

5 'Open'ing Services 

Free software is a matter of the users' freedom to run, copy, distribute, study, 
change and improve the software. According to [17], it refers to four kinds of 
freedom, for the users of the software: 

1. The freedom to run the program, for any purpose (freedom 0). 
2. The freedom to study how the program works, and adapting to the needs 

(freedom 1). 
3. The freedom to redistribute copies (freedom 2). 
4. The freedom to improve the program, and release improvements to the 

public, so that the whole community benefits (freedom 3). 

Open source software, as a superset of free software, exists in a plethora 
of initiatives today, representing a variety of technology innovations and ap­
proaches [18]. Some of the key conditions of Open Source Definition (for au­
thoritative definition, see [19]) are as follows: 



Licensing Services: An "Open" Perspective 149 

1. The software should be freely redistributable. 
2. The software must include source code, and must allow distribution in 

source code as well as compiled form. 
3. The software must permit modifications and derived works, and must allow 

them to be distributed under the same terms as the license of the original 
software. 

4. The rights attached to the software must apply to all to whom the software 
is redistributed without the need for execution of an additional license. 

5. The license must not discriminate against any person or group of persons 
or any field of endeavor. 

Following FOSS definitions [17, 19], we define an 'Open Service' as follows: 

1. An 'Open Service' should be free for use. 
2. The source code of the interface (WSDL descriptions) as well as the 

implementation of an 'Open Service' should be available. 
3. The service implemented by creating a new service using the source 

code and interface of an 'Open Service' should be freely distributable 
as an independent service. The modification of interface and imple­
mentation should be permitted. 

4. The service using an 'Open Service' as part of a composite service 
should be freely distributable as an independent service, even when 
using a separate interface. The modification of interface and imple­
mentation should be permitted. 

5. Derived services and modified services must be allowed and be ca­
pable of distribution. 

6. The license must not discriminate against any person or group of 
persons or any field of endeavor. 

7. The license agreement must provide an 'Open Service' "as is" with 
no warranties either to functional and/or non-functional properties 
or non-infringement of third party rights. 

8. The license must not place restrictions on composition with other 
services and on distribution of composed services. 

Open service perspective enhances the quality properties of a service, lever­
aging the availability of the source code and the right to modify it. Beyond 
composition, the 'open'ness of service makes the class of derivative service, a 
service being modified and re-distributed with more value addition. 

Now, we exemplify the freedom and openness exclusively associated with 
'open'ing of services, varying in the levels of interface and implementation and 
in the levels of composition and execution. 

1. Service Usage 
Service usage describes the freedom to execute a service by other applica­
tions, for any purpose. The basics of 'open'ing service allows the use (exe­
cution) of service by any other service oriented and/or non-service oriented 
applications, adhering the given open service license. 



150 Vincenzo D'Andrea and G.Ft.Gangadharan 

2. Service Implementation 
With the opening of service, we are provided with the freedom to know how 
the service works and could be adapted to our needs, making the source code 
of service interface as well as service implementation freely available. 
a) A service is described by WSDL. Service orientation obligates WSDL 

code to be available publicly for service discovery, and composition. 
b) In addition, an 'open' service allows the availability of the source code 

of implementation (the real functionality of a service). 
c) The source code of a service wrapping the functionality of another pro­

prietary software partially or fully, can be available publicly with ser­
vice interface and implementation, except the source code of proprietary 
software being wrapped in the given service. Consider a spell checker 
service wrapping PWP-^ spell check API. As PWP is proprietary, its 
source code can not be available. However, a service can use the PWP 
spell checker API for spell checking operation. Thus, an 'open' service 
wrapping the PWP spell checker API allows users to read the source 
code of interface and implementation of the service except the source 
code of the wrapped system. 

3. Service Redistribution 
Service redistribution describes the freedom to distribute a service as a 
separate service. Further, any entity can create a new service which would 
use the interface of an 'open' service, without the need to implementing the 
service realization. 
a) Separate and independent service: replica of an 'open' service: 

Opening of service allows to create independent services, attributing to 
the 'open' service. Let SA be an 'open' service providing a spell check­
ing operation for words, say, Spell{word). Consider SA provides this 
service by wrapping PWP spell checker API. Let SB be an another 
independent service, providirig the same Spell{word), created by repli­
cating the source code of implementation and WSDL of the 'open' SA-
Albeit SA and SB are performing the same operations, SA and SB are 
two different services, executed separately. 

b) Separate but dependent service with same interface: This is 
a common scenario in SOC; our perspective stresses the attention on 
licensing aspects. 'Open'ing service adds value to a service by distribut­
ing the service, not requiring to implement the service again. Let SB be 
a service providing a spell checking operation Spell{word) for words, 
using (copying) the WSDL interface Spell{word) of 'open' SA- SB is 
designed in such a way that Spell{word) of SB directly invokes the 
operation of SA ? executing on the host of 5^ . 

Prom a service consumer perspective, in both cases, SA and SB are provid­
ing exactly the same Spell{word) interface, thus they are interchangeable 
in an application on the consumer side. The two implementations of SB are 

^ PWP is a fictitious name for a Proprietary Word Processor. 



Licensing Services: An "Open" Perspective 151 

not distinguishable. Theoretically, there will not be any differences in per­
formances of both the services, apart from possible network latency between 
SA and SB-

4. Service Derivation & Distribution 
Service derivation and distribution offer the freedom to improve the ser­
vice, and release improvements to the public, so that the whole community 
benefits. Opening of services allows to perform modifications on the WSDL 
interface and implementation of the service and thus, derived services are 
created. Derived services could be executed independently (together with 
separate interface and implementation) or could use the implementation of 
the parent service. 
a) Separate and independent service: replica of an 'open' service 

with modified interface and implementation: Now, consider the 
case similar to 3(a) with interface of the open service SA be modified in 
SB' The modified interface of SB provides Spell (sentence) which com­
poses a pa r se r0 and repeated invocation of the code derived from SA, to 
access PWP API. Now, SA and SB are the different services, executing 
independently. Spell (sentence) of SB is derived and improved version 
(having an own additional functionahty parser()) of Spell(word) of SA-

b) Separate but dependent service with modified interface and 
implementation: Consider a service SB similar to the case of 3(6), 
but with modified WSDL interface as well as implementation of the 
open service SA- Spell (sentence) of SB comprises a parser() and re­
peated invocation of the spell checking operation provided by SA via 
the interface Spell(word). Thus, the word spell checking operation of 
SB is executed in the host of SA (invoking repetitively the service of 
Spell(word) of SA) for spell checking of a given prose Spell(sentence). 

The cases presented above are only a partial view of all the possible combi­
nations of derivation (or not) from the source code, modification (or not) of the 
service interface, and relationship between services (compositional properties). 
Due to space constraints, the most common and significant cases of SOC have 
been illustrated and summarized in Table 1. 

Table 1. Partial view of 'open'ing of services 

Interface 
Unmodified 
Modified 
Unmodified 
Modified 

Implementation 
Unchanged 
Derived 
Unchanged/Derived 
Unchanged/Derived 

Composition 
No 
No 
Yes 
Yes 

Case 
3(a) 
4(a) 
3(b) 
4(b) 



152 Vincenzo D'Andrea and G.R.Gangadharan 

6 Consequences and Conclusions 

The 'open'ing of services significantly contributes to the development of new 
services from existing services by adding new operations. Consider Sx be an 
open service. Sy could be developed by extending Sx in any of the ways dis­
cussed in Section 5, keeping 5 r as 'open'. A new service Sz could be developed 
by incorporating 5y, which in turn provides access to Sx operations. Sz could 
even enhance 5 x , with additional operations. 

Free services inspired by FOSS licenses could make value addition by com­
position, resulting composed services as 'free'. Thus, free services (with free 
licenses) could create a chain effect on composition of services to be free, even 
if one of the composing service may be not 'free'. 

Let Sp and SQ be the two individual services of a composite service S. Sp 
and SQ may be licensed by free or proprietary licenses not imposing restrictions 
on the use in a composition. The composition of Sp and SQ inspired by FOSS 
scheme, is illustrated in Table 2. Making services free will be highly beneficial 

Table 2. Service composition enriching 'Free Culture' 

SP 

Free 
Free 
Proprietary 

SQ 

Free 
Proprietary 
Proprietary 

S = {SP,SQ} 
Free 
Free 
Free 

for government sectors, education, and non-profitable organizations to explore 
and enjoy the benefits of services. 

'Open'ing services may raise an emergent question of how a service provider 
could profit by providing services. Many OSS business models are in practice of 
the community [20]. Some of these business models could be adaptable to the 
'open' service context. 

1. Support Seller: 'Open' services could adopt this scheme where revenue 
comes from media distribution, branding, training, consulting, and custom 
development. 

2. Service Enahler: An 'open' service could be created and distributed pri­
marily to support access to revenue-generating on-line services. 

3. Sell It, Free It: Like traditional commercial softwares, services would 
begin their product Hfe cycle as closed and then are converted as 'open' 
service when appropriate. 

4. Brand Licensing: An 'open' service provider can charge other service 
providers/ aggregators/ consumers for the right to use its brand names and 
trademarks in creating derivative services. 

Further, a copyright holder can release his/her works under any license, 
including multiple licenses and users of that work are allowed use under one of 
the licenses they choose [21]. Dual licensing is a business model for open source 



Licensing Services: An "Open" Perspective 153 

software exploitation based on the idea of simultaneous use of both open source 
and proprietary licenses [22]. Several open source projects, including MySQL, 
Perl, and Qt use dual licensing for their business model. Following the dual 
licensing strategy, a service can be licensed under open source inspired license 
as well as a proprietary license. 

According to GPL [23], the distribution of GPL'd software must include 
source code. A GPL'd apphcation delivered as a web service is not actually 
distributed to the end user. Hence, in this case, the application license does not 
require to disclose the source code. The nature of web services allows users to 
interact with the application via an interface, without downloading the software. 
This can result against the 'freedom' of GPL, i.e. users consuming services 
without having access to the source code as delivered by the providers, retaining 
the rights to modify arid distribute. More precisely, GPL acts on the source code, 
but not on the use of source code by a service. Consider a service wrapping 
FWP2 instead of PWP (a Proprietary Word Processor). As FWP is a GPL'd 
software, a wrapper for FWP is also GPL'd code. However, GPL does not 
restrict the use of this FWP wrapper provided by a web service. Since, the 
service is using only the execution of FWP (not the source code of FWP), GPL 
does not effect the licensing of composite services based on 'FWP wrapper' 
service. Even the draft version of GPL3 [24] is silent about this issue. 

Nowadays, standards are 'open' in SOC. But, the services developed using 
these standards are unfortunately 'closed'. If services are 'open', service con­
sumers can add value beyond the concept of composition. Hence, we introduced 
the concept of open services in this paper and analyze the impacts of open source 
inspired licenses on SOC. The wedding of services with open source would be 
beneficial for both communities, spreading services 'open'ly. In our future work, 
we aim to embed formal licenses in services and make legally enforceable service 
composition. 

References 

1. Classen, W.: Fundamentals of Software Licensing. IDEA: The Journal of Law 
and Technology 37(1) (1996) 

2. Clarke, N.: Distributed Software Licensing Framework based on Web Services and 
SOAP. http://www.dsg.es.ted.ie/'^dowlingj/students/clarken/clarken_02.pdf 
(May 2002) 

3. Tosic, v., Pagurek, B.: On Comprehensive Contractual Descriptions of Web Ser­
vices. In: Proceedings of the IEEE e-Technology, e-Commerce, and e-Service 
(FEE). (2005) 444-449 

4. D'Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Pro­
ceedings of the IEEE Web Services Based Systems and Applications (ICIW'06), 
Guadeloupe, French Caribbean. (2006) 

^ FWP is a fictitious name for a free word processor. 



154 Vincenzo D'Andrea and G.R.Gangadharan 

5. Feller, J., Fitzgerald, B.: A Framework Analysis of the Open Source Software 
Development Paradigm. In: Proc. of the 21st Annual International Conference on 
Information Systems. (2000) 58-69, 

6. Wikipedia: Service. http://en.wikipedia.org/wiki/Services (Accessed on 
27.12.2005) 

7. Bennett, K., Layzel, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.: 
Service-Based Software: The Future for Flexible Software. In: Proceedings of 
the Asia-Pacific Software Engineering Conference (APSEC). (2000) 214-221 

8. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica­
tions of the ACM 46(10) (2003) 25-28 

9. D'Andrea, V., Marchese, M., Gangadharan, G.R., Ivanyukovich, A.: Towards a 
Service Oriented Development Methodology. In: Proceedings of the Eighth World 
Conference on Integrated Design and Process Technology, Beijing, China. (2005) 

10. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Ser­
vices Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Rehable Messaging, and More. Prentice Hall P T R (2005) 

11. Kendra, G.: The Anatomy of a Technology License. Michigan's Lawyer's Weekly 
16(34) (2002) 

12. Chavez, A., Tornabene, C , Wiederhold, G.: Software Component Licensing: A 
Primer. IEEE Software 15(5) (1998) 47-53 

13. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi­
tectures, and Applications. Springer Verlag (2004) 

14. Golan, M.: Service Oriented Architecture expands the vision of Web 
services. http://www-128.ibm.com/developerworks/webservices/library/ws-
soaintro.html (2004) 

15. Alvarez, P.A., Baares, J.A., Ezpeleta, M.J.: Approaching Web Service Coordi­
nation and Composition by means of Petri Nets. In: Proceedings of the 3rd 
International Conference on Service Oriented Computing. (2005) 185-197 

16. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International 
Journal of Web and Grid Services 1(1) (2005) 1-30 

17. Free Software Foundation: The Free Software Definition. 
http://www.fsf.org/licensing/essays/free-sw.html (Accessed on Jan. 2006) 

18. Brown, A., Booch, G.: Reusing Open Source Software and Practices: The Impact 
of Open Source on Commercial Vendors. In: Proc. of 7th International Conference 
on Software Reuse. (2002) 123-136 

19. Open Source Initiative: The Open Source Definition. 
http://opensource.org/docs/definition.php (Accessed on Jan. 2006) 

20. Raymond, E.: The Magic Cauldron, ht tp: / /www.catb.org/ esr/writings/magic-
cauldron/magic-cauldron.html (1999) 

21. Wikipedia: Dual license. http://en.wikipedia.org/wiki/Dual_license (Accessed on 
29.12.2005) 

22. Valimaki, M.: Dual Licensing in Open Source Software Industry. Systemes d' 
Information et Management (2003) 

23. Free Software Foundation: GNU General Public License. 
http://www.gnu.org/copyleft/gpl.html (Accessed on Jan. 2006) 

24. Free Software Foundation: GNU General Public License Version 3. 
http://gplv3.fsf.org (Accessed on Jan. 2006) 




