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ABSTRACT
Programmers are often required to develop in multiple lan-
guages. In an effort to study the effects of programming lan-
guage fragmentation on productivity—and ultimately on a
programmer’s problem solving abilities—we propose a met-
ric, language entropy, for characterizing the distribution of
an individual’s development efforts across multiple program-
ming languages. To evaluate this metric, we present an ob-
servational study examining all project contributions (through
August 2006) of a random sample of 500 SourceForge devel-
opers. Using a random coefficients model, we found a sta-
tistically significant correlation (alpha level of 0.05) between
language entropy and the size of monthly project contribu-
tions (measured in lines of code added). Our results indicate
that language entropy is a good candidate for characterizing
author programing language distribution.

1. INTRODUCTION
The ultimate deliverable for a software project is a source
code artifact that enables computers to meet real-world needs
by solving a set of complex problems. The process of soft-
ware development, therefore, involves both problem solving
and communication of solutions to a computer. We believe
that the languages by which humans communicate solutions
to computers may in fact play a role in the complex processes
by which they generate those solutions.

Baldo et al. define language as a “rule-based, symbolic rep-
resentation system” that “allows us to not simply represent
concepts, but more importantly for problem solving, facili-
tates our ability to manipulate those concepts and generate
novel solutions” [1]. Although their study focused on the ef-
fects of natural language on problem solving, their concept of
language is highly representative of those used in program-
ming activities. Other research in the area of linguistics ex-
amines the differences between mono-, bi-, and multilingual

speakers. One particular study, focusing on the differences
between mono- and bilingual children, found some specific
differences in the subjects’ abilities to solve problems [2].

These linguistic studies prompt us to ask questions about the
effects of working concurrently in multiple programming lan-
guages on the problem-solving abilities of developers. How-
ever, to begin studying that relationship, we first develop a
metric that characterizes the distribution of an author’s de-
velopment efforts across multiple programming languages.

In this paper, we present language entropy as a candidate
metric for measuring the distribution of languages within
an author’s programming contributions. We further provide
preliminary support for a relationship between this metric
and the problem-solving abilities of developers by demon-
strating a significant relationship between language entropy
and programmer productivity, as measured in lines of source
code added to projects per month.

2. QUESTION OF INTEREST
What effect does working in multiple programming languages
concurrently have on a programmer’s productivity?

• Positive Correlation: A programmer contributing in
multiple programming languages may be more produc-
tive due to his or her ability to draw from multiple
programming paradigms. For example, software de-
velopers writing in a functional language such as Lisp
arguably approach a problem differently than those
writing in a purely object-oriented language such as
Java.

• Negative Correlation: A developer contributing in more
than one language may be less productive because he
or she has to context switch between multiple lan-
guages.

• No Correlation: A developer’s productivity may be
independent of his or her programming language dis-
tribution.

3. LANGUAGE ENTROPY
In order to empirically evaluate the correlation between lan-
guage fragmentation and programmer productivity, we re-
quire a metric that accurately characterizes the distribution



of an author’s development efforts across multiple program-
ming languages. In this section we present language entropy
as a candidate metric, detail its calculation, and explain its
behavior in response to changes in the number of languages
a developer uses. For a deeper treatment of entropy as it
relates to software engineering, see [8].

3.1 Definition
Entropy is a measure of chaos in a system. The concept of
entropy originated in thermodynamics but has been adopted
by information theory [7]. For our purposes, we use entropy
as a measure of the evenness with which an author con-
tributes in different programming languages. For example,
if an author is working in two languages and splits his or her
contribution evenly between the two, entropy is 1. However,
a 75-25 split across the two languages yields an entropy of
approximately 0.8 (see Table 1).

% Contribution
A B Entropy

0 100 0
25 75 ∼ 0.8
50 50 1
75 25 ∼ 0.8
100 0 0

Table 1: Entropy Example for two languages, A and
B.

3.2 Calculation
The general form for entropy is shown in Equation 1.

E(S) ≡ −
cX

i=1

(pi · log2pi) (1)

In this equation, the variables are defined as follows:

• S: the system

• c: the language count

• p: the proportion of the contribution of language i to
the total contributions S

The general form of entropy can be applied to any number
of languages to generate an entropy value. Two languages,
as shown in Figure 1, produce a parabolic curve. Three
languages produce a three-dimensional shape. Entropy cal-
culations beyond three dimensions are difficult to visualize.

To compute an author’s language entropy we calculate the
proportion for each programming language represented in
the author’s total contribution—pi values in Equation 11.
We then calculate the result of Equation 1 using those lan-
guage proportions.

3.3 Behavior
Language entropy characterizes the developer’s fragmenta-
tion across multiple programming languages. However, be-
cause entropy is based on logarithms, its response to changes
in the number of languages a developer uses is non-linear.
The equation for the maximum possible entropy value for a

1For the purposes of this paper, contribution is defined as
the number of lines of code produced per month.
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Figure 1: 2nd Order Entropy Curve

given number of languages is shown in Equation 2, where c
is the language count.

Emax = log2(c) (2)

Notice that the equation’s maximum value increases as c
increases. Thus, for each additional language in the entropy
calculation, an author’s maximum possible entropy value
rises.2 However, the effect of adding an additional language
diminishes as the total number of languages increases (see
Equation 3 and Table 2).

lim
c→∞

Emax(c + 1)− Emax(c) = 0 (3)

Conversely, the minimum possible language entropy is al-
ways 0, indicating that the author only added lines of code
in a single language (see Table 2).

# of Languages Min. Entropy Max. Entropy

1 0 0
2 0 1
3 0 1.585
4 0 2
5 0 2.322
. . .. . .. . .

49 0 5.615
50 0 5.644

Table 2: Sample Entropy Values

4. DATA
The data set used in this study was previously collected for a
separate, but related work. It was originally extracted from
the SourceForge Research Archive (SFRA), August 2006.
For a detailed discussion of the data source, collection tools
and processes, and summary statistics, see [6].

4.1 Description of the Data Set
The data set is composed of all SourceForge projects that
match the following four criteria: 1) the project is open
source; 2) the project utilized CVS for revision control; 3)
the project was under active development as of August 2006;

2Note that the log operation is undefined at zero; thus, lan-
guages with a pi = 0 must be excluded from the calculation.



Project Author File Revision LOC Final
Rank Rank Rank Rank Rank Rank

C 1 1 2 2 1 1
Java 2 2 1 1 2 2
C++ 4 3 4 4 3 3
PHP 5 4 3 3 4 4
Python 7 7 5 5 5 5
Perl 3 5 9 9 6 6
JavaScript 6 6 6 8 10 7
C# 9 9 7 6 7 8
Pascal 8 10 8 7 8 9
Tcl 11 8 10 10 9 10

Table 3: Top ten programming languages by popu-
larity rankings

4) the project was in a Production/Stable or Maintenance
stage. The data set includes nearly 10,000 projects with con-
tributions from more than 23,000 authors who collectively
made in excess of 26,000,000 revisions to roughly 7,250,000
files [6].

A study by Delorey, Knutson, and Chun [4] identified more
than 19,000 different file extensions in the data set, repre-
senting 107 unique programming languages. The study also
noted that 10 of those 107 languages are used in 89% of the
projects, by 92% of the authors, and account for 98% of the
files, 98% of the revisions, and 99% of the lines of code in
the data set. Table 3 shows the 10 most popular languages
with rankings. Delorey et al. ranked the languages based
on the following 5 factors: 1) total number of projects us-
ing the language; 2) total number of authors writing in the
language; 3) total number of files written in the language;
4) total number of revisions to files written in the language;
and 5) total number of lines written in the language.

4.2 Producing a Data Sample
From the initial data set we extracted a random sample of
500 developers3 along with descriptive details of all revi-
sions that those developers made since the inception of the
projects on which they worked. We then condensed this
sample by totaling the lines of code added by each devel-
oper for each month in which that developer made at least
one code submission. The final step in generating the sample
was calculating the language entropy in each month for each
developer. Note that months in which developers made no
contributions are discarded due to the fact that the language
entropy metric is undefined for zero lines of code.

Ignoring a developer’s “inactive” months is reasonable since
for this study we are more interested in whether lines of code
production is related to language entropy than we are in the
actual magnitude of that relationship. However, our model
does assume that the code was written in the month in which
it was committed. Therefore, months without submissions
represent a confounding factor in this study.

To help account for multi-month code submissions, as well as
the factors identified in [4], we applied several filters to the
data sample. However, analyses of the filtered and unfiltered
data produced approximately equivalent results. Therefore,
we report our results from the more robust, unfiltered data
sample.
3For the purposes of this study, a developer is an individual
who contributed at least one line of code in at least one
revision.

To filter the data, we 1) removed all data points of develop-
ers who submitted more than 5,000 lines of code during at
least three separate months, and 2) removed all remaining
data points for which the month’s submission was greater
than 5,000 lines of code. The first filter was intended to
remove project gatekeepers, who submitted code on behalf
of other developers. If a developer was suspected of being a
gatekeeper, all of his/her contributions were excluded. The
second filter was designed to remove significant quantities of
auto-generated code.

We feel that these two filters are sufficient on the grounds
that in [4], Delorey et al. ultimately controlled for outliers
by capping the annual author contribution at 80,000 lines of
code. Our limit of 5,000 lines of code per month results in
a maximum possible annual contribution of 60,000 lines of
code per author—a bit more conservative.

5. ANALYSIS
!

Figure 2: Box Plot of Lines Added

!

Figure 3: Box Plot of ln(Lines Added)

5.1 Transforming the Data
Figure 2 shows a box plot of the lines added. Three threats
to statistical model assumptions are clearly visible: signifi-
cant outliers, a skewed distribution, and a large data range.
We adjust for all three issues by applying a natural log trans-
formation. Notice in figure 3, which depicts the transformed
data, that there are only minimal outliers, the range is con-
trolled, and the distribution is approximately normal.4

4Statistical models assume specific characteristics about
data. Sometimes data must be transformed before it can be



!Figure 4: Plot of ln(Lines Added) vs. Language
Entropy
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Figure 5: Graph of the First 10 Entropy Curves for
the 2 Language Case

5.2 Selecting a Statistical Model
Figure 4 displays a plot of lines added (on the natural log
scale) versus language entropy, in which each point on the
graph represents one month of work for one developer. First,
be aware that the volume and distribution of data points
(see table 4) is masked by crowding, which causes points to
be plotted over other points. In total, there are 3,940 points
plotted, of which 1,945 points lie on the y-axis at the entropy
value of zero. Thus, nearly half the data consists of months
in which developers submitted code in only one language.5

Further, there is a pattern of curving lines visible at the

accurately analyzed. However, interpretation of the results
must reflect the transformation. In this study, for instance,
the slope of a regression line must be interpreted as a mul-
tiplicative factor since the dependent variable is logged.
5The distribution of the data points with respect to lan-
guage entropy is fairly consistent with [5], in which the au-
thors (referring to the data set of this study) note that for
approximately 65% of projects developers submit code in a
single language per year. For 20% and 12% of projects, de-
velopers submit code in two and three languages per year
respectively.

LE Range Data Points

LE = 0 1,945
0 < LE ≤ 1 1,705
1 < LE 290

Total Data Points: 3,940

Table 4: Distribution of Data Points by Language
Entropy (LE)

bottom of the point cloud between zero and one entropy.
The banding pattern is due to both the nature of the lan-
guage entropy calculation and the lines added. Specifically,
the two metrics partition the data points into equivalence
classes, one for each band on the graph. Data points in
the first equivalence class—the band closest to the x-axes—
correspond to monthly contributions in which all lines but
one were written in the same language. Data points in the
second equivalence class correspond to monthly contribu-
tions in which all but two lines were written in one language.
By the fourth equivalence class the bands are so close that
they blend together on the graph. Figure 5 shows a graph
of the first 10 equivalence classes.

The scatter plot also exhibits a vertical boundary of points
just before entropy of one. This pattern is possibly due to
the sparseness of the data beyond entropy of one (only 290
points).

It is immediately apparent that the distribution of the data
is different during months in which developers contributed
code in only one language (zero entropy), versus months
in which they contributed code in more than one language
(greater than zero entropy). Therefore, it would be inap-
propriate to apply a simple linear regression model to the
full range of the data. Instead, we use a random coefficients
model which allows us to estimate a mean for the group at
zero entropy, as well as fit a regression line to the rest of
the data. These two groups could be analyzed separately,
but fitting them under one model allows us to pool the data
when computing the error terms, which results in tighter
confidence intervals and a more efficient analysis.

5.3 Adjusting for Serial Correlation
A final concern is the potential for serial correlation in the
data (i.e., the data correlates with itself) as a result of the
measurements being taken over time. Estimating the mean
of data that is self-correlated requires statistical adjustment
in order to produce accurate results. The data sample in this
study contains an average of eight months of measurements
per developer, which is insufficient to confidently identify a
serial correlation. However, to be conservative we assume
serial correlation is present in the data and account for it in
our analysis.

6. RESULTS
Table 5 shows estimates (on the natural log scale) of the
model parameters, with confidence intervals and two-sided
p-values. All three parameters are statistically significant
with p-values less than 0.0001. Such small p-values allow us
to confidently conclude that the relationship between lan-
guage entropy and lines added is not due to random chance.
The low error terms, which result in narrow confidence in-
tervals around the parameter estimates, give us confidence
that our sample size is sufficient to accurately estimate the



Lower Upper Standard
Parameter Estimate 95% CL 95% CL p-value Error DF

zeroEntropyGroupMean 4.0690 3.9208 4.2172 <.0001 0.07542 425
nonZeroEntropyGroup 2.2870 2.1014 2.4726 <.0001 0.09411 196
nonZeroEntropySlope -0.6963 -0.9646 -0.4280 <.0001 0.13600 181

Table 5: Model Parameter Estimates

population variance. Further, since the data sample was
randomly selected (as described in section 4.1), we conclude
that the patterns in the data sample characterize the entire
SourceForge population. However, since this is an obser-
vational study, we cannot infer causality. Therefore, the
remainder of the discussion of results describes the observed
relationship between language entropy and lines added.

In Table 5, the zeroEntropyGroupMean is an estimate of the
mean of the data points at zero language entropy (the zero
group, or ZG). The nonZeroEntropyGroup represents the
estimated difference between the ZG mean and the intercept
of the regression line for the non-zero entropy data (the non-
zero group, or NZG). The very low p-value for this parameter
indicates that the ZG mean is significantly different from the
trend in the NZG. Adding the first two parameter estimates
gives the estimate for the intercept of the NZG regression
line (6.3560). The third parameter, nonZeroEntropySlope,
represents the slope of the NZG regression line, which is
negatively correlated with language entropy.

The magnitudes of these parameter estimates make more
sense on the original scale. However, because the analysis
is performed on log-transformed data, the back-transformed
estimates must be interpreted differently. Specifically, the
ZG mean and the intercept of the NZG regression line both
represent medians on the original scale. Also, the slope
of the NZG regression line becomes a multiplicative factor,
which means that an increase in language entropy results in
a multiplicative increase in lines added.

Thus, for months in which a developer submits code in one
language (ZG), the developer contributes, on average, 58
lines of code (95% confidence interval from 50 to 68 lines of
code). However, extrapolating the trend in the NZG, which
represents months in which developers submitted code in
more than one language, one would expect the ZG median to
be 576 lines of code—a significant difference. Note, though,
that this difference considers both highly and marginally
active developers equally. The marginally active developers,
who make only a few small contributions, and for whom a
productivity increase is less interesting, may be significantly
pulling down the ZG median (See section 7.4 for further
discussion).

Lastly, for months in which a developer submits code in
more than one language, the developer’s monthly contribu-
tions decrease by an estimated 6.7% for each 0.1 unit in-
crease in language entropy. For a 1.0 unit increase in lan-
guage entropy, a developer’s monthly contribution drops by
approximately 50% on average.

7. LIMITATIONS
In the following subsections we identify several limitations
of this study.

7.1 Non-Contributing Months
The developers in our data set did not always contribute
to projects in contiguous months. For example, a developer
might contribute changes in April, skip May, and contribute
again in June. For the purposes of this study we assumed
that developers submitted contributions in the same months
in which those contributions were written. We took steps
to help ensure our assumption (see Section 4.2). However,
we do not have an empirical foundation for applying a cap
of 5,000 lines to monthly programmer contributions. Also,
we have not empirically validated our method of identifying
gatekeepers.

7.2 SourceForge
Our inferences are limited to developers on SourceForge.
Therefore, we cannot make general conclusions about other
software development environments. Also, the SourceForge
archive obscures certain information about developers (such
as the identity of gatekeepers).

7.3 Productivity Measure
Despite its utility in this preliminary study, lines of code is
a weak measure of programmer productivity. Further stud-
ies should extend the analysis of language entropy to other
productivity models.

7.4 Marginally Active Developers
Developers who make only small contributions per month
may bias the analysis results. Such developers are probably
less likely to write in multiple languages in a given month,
in which case filtering marginally active developers could re-
duce the disparity between the estimated mean of the group
who wrote in only one language and the trend of the remain-
ing data. Thus, it would be interesting to add an indicator
variable to the model to distinguish such developers from
those who regularly contribute more significant volumes of
code.

8. FUTURE WORK
In this section we outline avenues for future research.

8.1 Establishing Causality
This study establishes a correlation between language en-
tropy and the size of developer contributions for the Source-
Forge population. To understand the cause of the observed
relationship we need to run controlled, randomized experi-
ments. We believe that such efforts, in combination with
corporate case studies (as described in section 8.2), will
provide meaningful results from which practitioners may
make better-informed decisions regarding project-developer
assignments and the adoption of new languages and frame-
works.

8.2 Corporate Case Studies



Running a more robust analysis of language entropy utiliz-
ing data from industry projects would allow us to expand
our inferences into the corporate domain, at which point we
could ask a number of important questions, including:

• If my company is already maintaining a large code base
in COBOL, how would my developers’ productivity be
affected by an additional project in Java?

• My company already supports products in different
languages. Will my developers be more productive if
I assign each one to a specific language, as opposed to
spreading them across languages?

8.3 Paradigm Relationships
Many of the languages in our study cluster by paradigm
(Java, C++, and C#, for example). Switching between
programming languages that share a common paradigm may
not be as cognitively difficult as switching between languages
from different paradigms. We expect changes in entropy to
affect a programmer working within a single paradigm less
than one working across multiple paradigms.

8.4 Commonly Grouped Languages
In this study we examine the effect of language entropy on
productivity across all languages. However, some languages
are commonly used together (e.g., many web projects are
based on Java, JavaScript, and HTML). Is the cognitive
burden of context switching between languages reduced for
developers who work across a set of commonly grouped lan-
guages?

8.5 Language Entropy as a Productivity Mea-
sure

To better understand the relationship between language en-
tropy and other productivity metrics, we need to determine
whether language entropy provides new information beyond
the metrics already presented in the literature. If shown
to be complementary, language entropy can be incorporated
into more complex productivity models [3].

9. CONCLUSIONS
The results of this study suggest a correlation between lan-
guage entropy and programmer productivity. However, be-
cause our study is observational, we cannot infer that the dif-
ferences in language entropy caused the observed variation
in productivity. Nevertheless, since the data was randomly
selected, we can make inferences to the general SourceForge
community for those developers who actively worked on Pro-
duction/Stable or Maintenance projects from 1995 through
August 2006. Specifically, we can make two inferences:

1. For those developers who wrote in multiple languages,
higher language entropy is negatively correlated with
the number of lines of code contributed per month.

2. For months in which developers submitted code in a
single language, their contributions were significantly
smaller than the trend suggested by the rest of the
data.

The primary objective of this study was to develop a metric
with which we could investigate the relationship between an

author’s ability to solve software problems and the distri-
bution of programming languages within his or her project
contributions. The relationship between language entropy
and productivity in this initial study demonstrates that lan-
guage entropy is a good candidate for measuring the dis-
tribution of an author’s development efforts across multiple
programming languages. This result, therefore, justifies fur-
ther research into the relationship between language entropy
and the problem-solving abilities of developers.
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