
29

Chapter 3

A Theory of Disclosure for Security 
and Competitive Reasons: 
Open Source, Proprietary Software, 
and Government Systems

Peter P. Swire*

A.	 Introduction

A previous article, “A Model for When Disclosure Helps Security: What is 
Different about Computer and Network Security?” proposed a model for 
when disclosure helps or hurts security and provided reasons why computer 
security is often different in this respect than physical security.1 This chap-
ter provides a general approach for describing the incentives of actors to 
disclose information about their software or systems. A chief point of this 
chapter is that the incentives of disclosure depend on two largely independ-
ent assessments: (i) the degree to which disclosure helps or hurts security, 

* 	 This chapter draws on discussions with numerous people over the past five years. I 
appreciate comments I received during the drafting of the chapter from Jon Callas, 
Whitfield Diffie, William Kovacic, David Ladd, Mark Lemley, David McGowan, 
and Adam Shostack, participants at the 2005 IPIL/Houston Santa Fe Conference 
“Transactions, Information and Emerging Law,” the ACM Conference on Computer 
and Communications Security, and George Washington Law School IP Workshop. 
Chris Palmer of the Electronic Frontier Foundation has been an especially thorough 
and helpful commentator on the project.

1	 Peter P. Swire, “A Model for When Disclosure Helps Security: What is Different 
about Computer and Network Security?” (2004) 3 J. on Telecomm. & High Tech. L. 
163 [“Security Model”], online: http://ssrn.com/abstract=531782. A slightly updated 
version of the material was published as Peter P. Swire, “A Model for When Disclo-
sure Helps Security: What is Different about Computer and Network Security?” 
in Mark F. Grady & Francesco Parisi, eds., The Law and Economics of Cybersecurity 
(New York: Cambridge University Press, 2006) 29. 



30  Peter P. Swire

and (ii) the degree to which disclosure creates competitive advantages or 
disadvantages for the organization.

Table 1 presents a 2 × 3 matrix in which disclosure for security and com-
petition are assessed for three types of systems or software: open source; 
proprietary software; and government systems. The matrix indicates that 
there is a greater convergence on disclosure between open source and pro-
prietary software than most commentators have believed. For instance, 
open source security experts use secrecy in “stealth firewalls” and in other 
ways. Open-source programmers also often rely on gaps in open source 
licences to gain a competitive advantage by keeping key information secret. 
Meanwhile, proprietary software often uses more disclosure than assumed. 
For security reasons, large purchasers and market forces often lead to dis-
closure about proprietary software. For competitive reasons, proprietary 
software companies often disclose a great deal when seeking to become the 
standard in an area or for other reasons.

Table 1
Security Competition

Open Source Ideologically open; some  
“secret sauce” (Case 1)

Ideologically open; significant 
use of secrecy in practice (Case 2)

Proprietary
Software

Monopolist on source code; 
disclosure based on monop-
sony and market structure 
(Case 3)

Monopolist on source code; 
disclosure based on how open-
standards help profits (Case 4)

Government
Systems

Information sharing dilemma 
(help attackers & defenders); 
public choice model & under-
disclosure (Case 5)

Turf maximization & under-dis-
closure, e.g., FBI vs. local police 
for the credit (Case 6)

Despite this greater-than-expected convergence of practice for open source 
and proprietary software, there are strong reasons to believe that less-than-
optimal disclosure happens for government systems. The tradition of mil-
itary secrecy and the concern about tipping off attackers leads to a culture 
of secrecy for government security. Market mechanisms to force disclosure 
are less likely to occur for government agencies than for private companies. 
Competition for turf, such as the FBI’s reputation for not sharing with local 
law enforcement, further reduces agency incentives to share information 
about vulnerabilities.

Part B of this chapter briefly recaps the relevant portions of the “Security 
Disclosure Model” I proposed in “Security Model.” Part C shows the incen-



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  31

tive problems that exist when large databases are breached and the personal 
data of individuals is leaked. This sort of breach appears to be accompanied 
by significant externalities, so breach-notification statutes or similar measures 
are likely appropriate. Part D looks at the six parts of the matrix, analyzing the 
incentives for disclosure or secrecy for security reasons and competitive rea-
sons, for open source software, proprietary software, and government systems.

This research provides a general approach for determining when disclo-
sure is efficient for society and for describing the incentives actors face in 
disclosure or non-disclosure. The actual decision of whether to disclose in 
a given instance will depend on assessment of the empirical magnitude of 
the factors set forth in this chapter. The research provides, however, the first 
theoretical structure for assessing the issues. This theory is important to the 
design of systems and software in our information-rich age.

B.	T HE MODEL FOR WHEN DISCLOSURE HELPS SECURITY

“Security Model” presented the model for when disclosure of vulnerabilities 
helps security. This part briefly summarizes “Security Model,” with empha-
sis on the aspects that are relevant to the current chapter. In brief, “Secur-
ity Model” analyzed when disclosure would be socially optimal for security, 
taking into account the costs and benefits to all the parties involved.2 This 
chapter continues the investigation of disclosure, looking at the incentives fa-
cing the key actors — those who design software or operate systems. In some 
settings, the incentives for key actors may lead to a large divergence between 
the socially optimal disclosure and the amount of disclosure actually made.

1)	T he Security Disclosure Model3

The Security Disclosure Model begins with a paradox. Most experts in 
computer and network security are familiar with the slogan, “there is no se-

2	 More specifically, the Security Disclosure Model examined when disclosure would 
help “security,” which is defined as “preventing the attacker from gaining control 
of a physical installation or computer system.” “Security Model,” ibid. at 205. The 
Security Disclosure Model does not explicitly address other important goals, such 
as disclosure to promote accountability (e.g., the Freedom of Information Act) or 
preventing disclosure in order to protect individual privacy. Important goals such as 
accountability and privacy should be considered in any overall decisions about the 
best levels of disclosure. Ibid. at 166–67 and 205.

3	 “Security Model,” ibid. at 167–75. 



32  Peter P. Swire

curity through obscurity.”4 For proponents of open source software, reveal-
ing the details of the system will actually tend to improve security, notably 
due to peer review. On this view, trying to hide the details of the system 
will tend to harm security because attackers will learn about vulnerabilities, 
but defenders will not know where to patch the vulnerabilities. In sharp 
contrast, a famous World War Two slogan warns “loose lips sink ships.”5 
Most experts in the military and intelligence areas believe that secrecy is a 
critical tool for maintaining security. Both views — that disclosure helps se-
curity and hurts security — cannot be simultaneously correct, therefore we 
have a paradox. The task of “Security Model” was to explain the conditions 
for when each view, the open source view and the military view, is correct.

The first step toward resolving the paradox is to examine the effects of 
disclosure on attackers and defenders. Where disclosure on balance helps 
the attackers, then those defending the systems should rationally keep se-
crets. Where disclosure on balance helps the defenders, then disclosure 
should result. 

By focusing on “effects on attackers”6 and “effects on defenders,”7 the 
Security Disclosure Model highlights the conditions under which the open 
source and “military” views are each correct. For open source, the usual 
assumption is that disclosure will not help attackers much or at all in a 
world of rapid communications among attackers, where exploits are rapidly 
learned by others. For open source, the next assumption is that disclosure of 
a flaw will prompt other programmers to improve the design of defences. In 
addition, disclosure will prompt many third parties — all of those using the 
software or the system — to install patches, or to otherwise protect them-
selves against the newly announced vulnerability. In sum, disclosure does 
not help attackers much but is highly valuable to the defenders who create 
new code and install it.

In contrast, the military assumptions highlight the ways that disclosure 
will assist the attackers. For a military base, for instance, the precise loca-
tion of machine guns and other defences is closely guarded. A major goal is 
to hide the defences until it is too late for attackers, and they fall into traps. 

4	 Ibid. at 165 note 2.
5	 Ibid. at 165 note 4.
6	 See ibid. at 165–66. (“The first variable is the extent to which disclosure is likely to 

help the attackers, by tipping off a vulnerability the attackers would otherwise not 
have seen.”)

7	 See ibid. at 166. (“The second variable is the extent to which the disclosure is likely 
to improve the defence.”)



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  33

In terms of disclosure helping defenders, the military traditionally uses its 
chain of command to tell fellow defenders what they need to know. There 
is no general broadcast of security flaws because such a broadcast would 
help the attackers but provide little or no information to fellow defenders.8

An important intermediate case for the present chapter is what I call 
the “information sharing paradigm,” such as when the FBI or CIA is con-
sidering whether to share with officials in other agencies. To the extent the 
information is shared with the “good guys,” then there can be strong as-
sistance to the defenders because they might catch the terrorists before the 
attack occurs. To the extent the information is shared with the “bad guys,” 
however, the information sharing can be the tip off that lets the attackers 
escape or change their plans. This dual effect of information sharing, to help 
defenders and attackers, is a helpful way to understand why it has been so 
important and yet so difficult a topic since the attacks of September 11, 2001.9

A fourth case concerns situations where additional disclosure about 
vulnerability will have small effects on attackers and defenders. An example 
is information in the public domain, such as detailed maps of Manhattan 
or Washington, DC. With maps so readily available in an online age, dis-
closure of one more map will make little difference to the risks of an attack 
against those cities. 

8	 In a workshop on this chapter, John Duffy made an excellent point: The “help-
the-attacker” and “help-the-defender” effects can be described more generally as 
the prices that attackers and defenders face in gathering information about vulner-
abilities. Widespread disclosure reduces information costs, such as when a software 
company publicly releases a patch to help defenders (i.e., users of software). Defend-
ers still face the cost, however, of learning about the patch and deciding whether and 
how to implement it, with the result of substantially less than full implementation 
even of “free” patches.

9	 One forum for extensive study of information sharing has been the Markle Founda-
tion Task Force on National Security in the Information Age (“Task Force”). See 
Markle Foundation, “Task Force on National Security in the Information Age,” 
online: www.markle.org/markle_programs/policy_for_a_networked_society/na-
tional_security/projects/taskforce_national_security.php. I was named an Associate 
to the Task Force in early 2005. My experiences there have confirmed my views 
that information sharing is often helpful but that poorly implemented informa-
tion sharing also poses serious security and privacy risks. For my discussion of 
“The Bush Doctrine of Information Sharing,” see Peter P. Swire, “America Faces 
the World on Privacy Four Years After 9/11” (Keynote Address at the Edinburgh 
Privacy Conference, 5 September 2005) [unpublished], online: www.peterswire.net/
edinburgh_0905.ppt. I am currently writing a law review version of the topic for a 
symposium edition of the Villanova Law Review.



34  Peter P. Swire

Table 2 pulls the four scenarios together. Notably, the open source 
scenario shows reasons for openness, with disclosure having a large “help-
the-defenders” effect and a low “help-the-attackers” effect. The military 
scenario shows the opposite, with disclosure harming the defenders and 
helping the attackers. For information sharing, disclosure helps both the 
attackers and the defenders, making it unclear when to disclose. For the 
public domain, additional disclosure has minor effects.

Table 2
“Help-the-Attackers” Effect

“H
el

p
-t

he
- 

D
ef

en
de

rs
” 

Eff
ec

t Low High

High Open Source Information Sharing

Low Public Domain Military/Intelligence

Greater Disclosure Up and to the Left
Greater Secrecy Down and to the Right

2)	 Why Computer and Network Security Often Varies from 
Other Security10

Table 2 simplifies reality by asserting that open source situations should 
lead to disclosure and military situations should lead to secrecy. A chief goal 
of Table 2 is to organize the reader’s thinking into when there is “no secur-
ity through obscurity” or when instead “loose lips sink ships.” Whatever 
the reader’s prior assumptions about the desirability of disclosure, the 2 × 2 
matrix shows that disclosure in some situations will help security (the open 
source scenario) and in other situations will hurt security (the military/
intelligence scenario).

The next task in “Security Model” was to explain the conditions under 
which each scenario is likely to exist. For instance, one might believe that 
disclosure will help in computer security situations (which may use open 
source software), but hurt in military and other physical security situations. 

10	 This section is based on Parts II and III of “Security Model.” See, generally, “Secur-
ity Model,” above note 1 at 175–207.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  35

“Security Model” explained why there is no logical or necessary differ-
ence between cyber security and physical security.11 Nonetheless, there are 
important reasons why there are commonly differences between the two. 
The organizing concept for when hiddenness helps security is that a hidden 
feature is more likely to be effective against the first attack, but less likely to 
be effective against repeated attacks. For example, imagine a path up to a 
fort that has a pit covered with leaves, with a sharpened stick at the bottom. 
The first time an attacker comes up the path, he might fall into the pit. Even 
if it works the first time, though, later attackers will likely not “fall” for the 
same trick. In short, obscurity may work against the first attackers, but it 
will not work once the attackers learn to watch for the hidden pit.

“Security Model” explored in detail the factors that affect when an 
attack is very unique — much like a first-time attack — or instead has low 
uniqueness and is like a repeated attack in which learning occurs. The func-
tion for uniqueness (U), or the usefulness of hiddenness for the defence, is 

U = f(E, N, L, C, A)

Under this terminology, “high uniqueness” refers to situations where hid-
denness is effective, due to a combination of high values of initial effective-
ness (E) and ability to alter the defence (A), and low values for the number 
of attacks (N), learning from previous attacks (L), and communication 
among attackers (C). “Low uniqueness” refers to situations where the values 
are reversed.

Using this approach, major categories of computer and network secur-
ity turn out to have much lower uniqueness than typical physical attacks. 
For firewalls, mass-market software, and encryption, the analysis is similar. 
They are all subject to repeated attacks (high N), attackers learn from previ-
ous attacks whether they succeed or not (high L), and they can communi-
cate the exploit to other attackers (high C). Even if a hidden defensive trick 
is effective against an initial attack (high E), the effects of repeated, low-
cost attacks will generally overwhelm the usefulness of hidden defences. 
Defenders can issue patches and new versions of the software (high A), 
but repeated attacks will, once again, soon reveal any secrets. In short, the 
open source assumptions are often a good approximation of reality for these 
computer-security situations. Disclosure of vulnerabilities can enlist others 
to write improved code (increasing A) and encourage other users to patch 
their systems (increasing A). Along with this high help-the-defenders effect, 

11	 Ibid. at 175.



36  Peter P. Swire

disclosure will often have a low help-the-attackers effect because communi-
cation among attackers is already effective.

The equation suggests a different outcome for physical attacks on a mil-
itary installation. For many physical attacks, the first attack is crucial (very 
low N). People might die in the first attack, which is far different than the 
costs to an attacker of trying to hack a firewall or software package. Even if 
attackers get into the fort, they might not capture the entire thing (low L), 
and they might not be able to radio out to their comrades what they learn 
(low C). Under such circumstances, hidden defences can be quite useful 
against the first attack, and defenders can often alter the location and types 
of defences before a second or third attack (high A). In short, the military/
intelligence assumptions seem to be a good approximation of reality. Dis-
closure about defences, perhaps by a spy, will help the attackers but provide 
little or no benefit to the defenders.

“Security Model,” explained in greater detail using the variables just 
discussed, demonstrates some situations where secrecy will help, even for 
computer and network security.12 Notable examples include encryption and 
other private keys and passwords; situations under which it is difficult to 
discover software flaws; and surveillance where attackers do not learn about 
the surveillance in the course of the attack.13 Similarly, “Security Model” 
explained some situations in which disclosure will help even for military 
and other physical security.14 Examples include disclosure for deterrence 
(which helps the defenders by reducing the likelihood of attack); material 
that is already in the public domain; and situations in which there are re-
peated attacks (high N) and disclosure will help defenders learn how to 
respond (increasing A).15

More complete explanations of these topics are available in “Security 
Model.” For now, the hope is that the reader has a basic sense of the ap-
proach. “Security Model” sought to explain when disclosure would either 
aid or harm overall security. The current chapter focuses instead on the 
incentives of actors to make the best level of disclosure.

12	 Ibid. at 186–87 and 190–93 (indicating instances in which disclosure will hurt the 
defender and help the attacker).

13	 Ibid.
14	 Ibid. at 206.
15	 Ibid.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  37

C.	 SECURITY BREACH NOTIFICATION TO INDIVIDUALS

The discussion of incentives to disclose security flaws begins with a topic that 
has recently been the subject of intense legislative activity: notification about 
security breaches to the individuals whose data has been compromised.16

1)	D escribing the Externality

The problem is straightforward to describe. The first party is the organ-
ization that holds personal information in a database. The second party is 
the attacker — the outside hacker or malicious insider who is trying to get 
the data. The third parties are those whose personal information is in the 
database. The personal information may include items that create risks of 
harm to the third parties if the data is leaked. For instance, disclosure of 
bank account numbers might allow theft from the accounts, and disclosure 
of social security numbers might let the second party or others perpetrate 
identity fraud.

What is the incentive of the first party (the organization holding the 
data) to disclose the information or prevent it from being disclosed? It is 
possible that the incentives of the first party are aligned with those of the 
third parties. This is true, for instance, when two conditions are met: (i) 
third parties become aware of leaks of their data from the database; and (ii) 
market or other mechanisms are effective in disciplining the first party for 
data leaks.17

If these conditions are not met, however, then the first party will likely 
have an incentive to under-invest in protecting the data of third parties. 
Consider the possibility that leaks of data are hard to trace back to the first 

16	 See, for example, US, Bill S. 751, Notification of Risk to Personal Data Act, 109th 
Cong., 2005, [Notification Act] (proposing a bill that would require disclosure of 
unauthorized acquisitions of such information).

17	 Discipline on the first party might occur in the market if its reputation is harmed 
in the event of breaches. Discipline might also occur, for instance, through legal 
mechanisms. An example would be if the third parties could sue for losses caused by 
the data breach. 

The difficulty of tracing data leaks has also been a longstanding argument in 
favour of legislation or other measures to protect the privacy of individual informa-
tion against sale or other intentional disclosure by the first party. See, for example, 
Peter Swire, “Markets, Self-Regulation, and Government Enforcement in the Protec-
tion of Personal Information by the U.S. Department of Commerce” (1997), online: 
www.ntia.doc.gov/reports/privacy/selfreg1.htm (examining the “uses and limitations 
of self-regulation” regarding the protection of personal information).



38  Peter P. Swire

party where the leak occurred. This possibility happens often for personal 
data. It is usually very difficult for an individual, for instance, to figure 
out which of the databases containing her social security number was the 
source of a leak. Once a leak occurs, the individual may eventually discover 
that a criminal has used her bank account or social security number. The 
source of the leak, however, very often cannot be traced.

Untraced leaks from a database thus create a classic externality. In en-
vironmental protection, the factory (the first party) faces the cost of pro-
tecting against leaks, but the actual harms are on the third parties who 
are downstream from water pollution or downwind from air pollution.18 
In such circumstances, the factory has an incentive to pollute more than 
is desired by society. Much of environmental law consists of efforts to get 
the first party to face accurate incentives, so that the private decision by the 
factory owner matches the socially optimal decision, which includes effects 
on third parties.

Similarly, for protection of information in the database, the data holder 
(the first party) faces the cost of protecting against leaks, but the actual harms 
are on the third parties who suffer from the leaks. The incentives of the first 
party are thus to permit more leaks — more disclosure — than is desirable.

2)	 What, if Anything, to Do About the Externality?

Given the likelihood of an externality, the next question is what measures, 
if any, to take in response. Description of the externality shows that the 
problem arises from lack of disclosure to third parties about data leaks by 
the first party. A tailored response to that problem would be to change in-
centives so that third parties learn of the leaks.

California was the first to take this approach when it enacted Senate 
Bill 1386 in 2002.19 In the wake of large data leaks early in 2005, many other 
states moved to create breach notification statutes. As of December 2005, 
at least eighteen states have passed legislation,20 and Congress is seriously 
considering a federal breach-notification standard.21

18	 For one explanation of the basic theory of environmental externalities, see US, Con-
gressional Budget Office, “Federalism and Environmental Protection: Case Studies 
for Drinking Water and Ground-Level Ozone” (November 1997) c. 1, online: www.
cbo.gov/showdoc.cfm?index=250&sequence=2.

19	 Cal. Civ. Code § 1798.82 (West Supp. 2005).
20	 BNA Privacy Law Watch, online: www.bna.com/products/ip/pwdm.htm.
21	 See US, Bill H.R. 3140, Consumer Data Security and Notification Act of 2005, 109th 

Cong., 2005 (a bill requiring “consumer reporting agencies, financial institutions, 



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  39

The California statute essentially provides that individual notice shall 
be given to California residents “whose unencrypted personal information 
was, or is reasonably believed to have been, acquired by an unauthorized 
person.”22 The breach is to be disclosed in writing without unreasonable 
delay, with certain exceptions.23 “Personal information” means a person’s 
name in combination with any listed data element, such as social security 
number, driver’s licence number, or “[a]ccount number, credit or debit card 
number, in combination with any required security code . . . that would 
permit access to an individual’s financial account.”24

In terms of the best approach for breach notification, I would like to 
make a few suggestions based on my experience with system owners, con-
sumer groups, and regulators. The goal is to avoid both under-disclosure 
and over-disclosure. Under-disclosure quite likely exists in the absence of 
a statute (because of the incentives for under-disclosure described above). 
Over-disclosure could also be a problem. For first parties, there would be 
the expenses of first-class postage to very large classes, perhaps even for 
small and everyday levels of security flaws. For consumers, a blizzard of 
disclosures would swamp the signal in the noise. That is, consumers who 
received numerous notices would not know how to respond to the subset 
that posed a serious threat. Individual consumers would generally prefer to 
get notice when there are reasonable measures they should take in response.

To avoid both under- and over-disclosure, it makes sense to look at a 
security breach as a systemic issue over time. First, there should likely be a 
sunset on breach-notification statutes. We are at the early stages of know-
ing how to implement such statutes, and the sunset would likely spur better 
re-examination of the issue over time. Second, we should seriously consider 
a two-step regime. For more serious breaches, there would indeed be first-
class mail notice to individuals, especially where there are concrete steps the 
individuals should take in response to the risks. For less serious breaches, 

and other entities to notify consumers of data security breaches involving sensitive 
consumer information”); Notification Act, above note 16, (a bill requiring “Fed-
eral agencies, and persons engaged in interstate commerce, in possession of data 
containing personal information, to disclose any unauthorized acquisition of such 
information”).

22	 Above note 19, § 1798.82(a).
23	 Ibid., §§1798.82(a), (c), and (g). Email notices are only allowed if they comply with 

federal law regarding electronic signatures. § 1798.92(g)(2). In our current world of 
spam and phishing attacks, email notices might easily be filtered out or ignored by 
the recipient.

24	 Above note 19, §1798.82(e).



40  Peter P. Swire

which do not merit this individualized notice, there should be mandatory 
reporting to some agency such as the Federal Trade Commission. This sort 
of reporting would serve two major goals. It would mean that significant 
breaches, which do not merit notice to individuals, would be subject to ac-
tion by the database holder. In this way, significant-but-not-major breaches 
would be addressed by data holders. In addition, it would allow the Federal 
Trade Commission to accumulate data about breaches, preparing the way 
for better re-examination of breach notification statutes over time.

More can be said about the best system for handling security-breach 
notification. For purposes of this chapter, the recent legislative activity 
shows the importance of addressing the incentives of organizations to pro-
vide the proper level of disclosure about security issues.

D.	 INCENTIVES FOR DISCLOSURE AND SECRECY FOR SECURITY 
AND COMPETITIVE REASONS

Part C of this chapter, on breach notification, concerned disclosure of in-
formation about third parties (customers) for data held by a first party (the 
system owner). The key point of this discussion was to show a potentially 
significant externality — that the system owner would not expend resources 
to protect third parties against harm from release of their data.

This part engages in a wider inquiry into incentives of system owners 
and software writers (“first parties”) to disclose information or keep it secret. 
A new concept here is that system owners have a distinct calculus based on 
two different motives, the “security motive” and the “competitive motive.” 
The security motive concerns the incentive of the first party to disclose or 
not, based on achievement of the security goals of the first party and other 
parties. Notably, what is the rational calculus for when disclosure will help 
(“there is no security through obscurity”) or when instead secrecy will lead 
to better security (“loose lips sink ships”)?25 The competitive motive con-
cerns the incentive of the first party to win in the marketplace against its 
competition. Notably, the first party will seek to determine when greater se-
crecy will help it competitively, such as with trade secrets, or when, instead, 
greater openness will enhance competitiveness, such as when use of an open 
standard attracts more business for a software writer.

25	 As in “Security Model,” security is defined as “preventing the attacker from gaining 
control of a physical installation or computer system.” “Security Model,” above note 
1 at 205.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  41

The two motives are generally analyzed separately in this chapter. In 
many instances, the security motive will not have a large effect on a com-
pany’s bottom line — the question is whether enhanced security or secrecy 
is more effective at protecting security. In other instances, the security mo-
tive does significantly affect the bottom line, and analysis of the security 
motive proceeds here based on what helps the security of the affected par-
ties. By contrast, the competitive motive includes all the incentives that a 
company faces that are not based on achieving security for itself or for other 
relevant parties. To the extent that disclosure for security purposes affects a 
company’s bottom line, then analysis of the security motive will affect the 
rational degree of disclosure for competitive purposes.

The analysis here focuses on three categories of actors: (i) open-source-
software writers, (ii) proprietary software writers, and (iii) government 
agencies. The three categories generate quite different and interesting re-
sults. In addition, the three categories map the terrain: private actors with a 
presumption of disclosure (open source); private actors with a presumption 
of secrecy (proprietary software where source code is not revealed); and 
public-sector actors.

Table 1 summarizes the more detailed discussion below. The table shows 
the key findings for open source, proprietary, and government actors, for 
both the security and competitive motives.

1)	C ase One: Security Incentives and Open Source Software

The first case examines, from a security standpoint, the incentives to dis-
close or not for designers and users of open source software.26 Here is where 
the maxim that “there is no security through obscurity” has its greatest 
support. Proponents of open source, including the GNU General Public 
License, are proud that there is far greater disclosure than for proprietary 
software:

The twist in the principal open-source model — including the General 
Public License (“GPL”), among the oldest and best-known public li-
cence — is that if the software is distributed to third parties, it MUST 
be distributed using the open source licensing model, making the model 
“self-perpetuating.” Thus, instead of guarding the “secret sauce,” the 

26	 For a discussion of the legal, technical, and developmental differences between open 
source and proprietary software, see Jonathan Zittrain, “Normative Principles for 
Evaluating Free and Proprietary Software” (2004) 71 U. Chicago. L. Rev. 265 at 
268–73.



42  Peter P. Swire

GPL-Open Source approach not only makes it available but also man-
dates that all “secret sauce improvements” are made available in the same 
manner.27

Even here, however, there turns out to be unsuspected areas where hidden-
ness — the use of “secret sauce” — is used for security purposes.

a)	 When hiddenness can help open source security
As the previous quote indicated, any use of hiddenness for open source soft-
ware seems inherently contradictory. After all, the GNU General Public Li-
cense, Version 2.0, says to those who distribute software under that licence: 
“[Y]ou must give the recipients all the rights that you have. You must make 
sure that they, too, receive or can get the source code.”28 The heart of the 
open source requirement, as the name implies, is that the source code will 
be open. It may seem, thus, that there can be no secrecy.

Nonetheless, there are at least three respects in which secrecy can be 
and is used to help security for open source software. The first, password 
and encryption key secrecy, is entirely uncontroversial and was discussed 
in detail in “Security Model.” Even encryption experts, who argue most 
vehemently against “security through obscurity,” agree that passwords and 
encryption keys should remain secret.29 It is good common sense that re-
vealing one’s passwords will help the attackers but not provide any benefit 
to defenders. Modern encryption systems are designed, in fact, to have the 
clearest possible separation between the password or key (kept secret) and 
the rest of the cryptosystem (kept open so that other experts can test for 
flaws).30 In short, a secret key or password is essential to use the system, but 
there is no benefit to allowing outsiders to have the key.

27	 Randall M. Whitmeyer, “Open Source Legal Issues and Controversies” (7 August 
2004), online: www.techjournalsouth.com/news/article.html?item_id=649.

28	 “GNU General Public License,” online: www.gnu.org/copyleft/gpl.html [“GNU 
General Public License”]. For an extensive set of links about the GNU Public 
Licence, see Groklaw, “GPL Resources,” online: www.groklaw.net/staticpages/index.
php?page=20050131065655645.

29	 “Security Model,” above note 1 at 190–91.
30	 Interview with Whitfield Diffie, Vice President, Sun Fellow & Chief Security Of-

ficer, Sun Microsystems (9 September 2005). Research for this project included an 
enlightening conversation with Whitfield Diffie, one of the authors of the founda-
tional Diffie-Hellman algorithm for public key encryption. Diffie observed that the 
“security through obscurity” debate may have been led somewhat astray because 
techniques for separating the key from the cryptosystem were well developed for 
encryption but much less developed (and perhaps not applicable) for other security 



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  43

The second area of potential secrecy involves surveillance by the de-
fenders. As discussed in “Security Model,”31 disclosure about surveillance, 
and especially its sources and methods, often helps the attackers more than 
the defenders. With surveillance, there is typically low learning by attackers 
(L), because the surveillance is designed specifically to make it difficult for 
attackers to detect. Because of this low L, it is often rational for defend-
ers to keep surveillance techniques secret. (Also as described in “Security 
Model,” secret surveillance may or may not be ultimately desirable, based 
on concerns including privacy, accountability, and long-run improvement 
of the security of systems.32)

One common type of surveillance by defenders is an intrusion detec-
tion system, which seeks to detect the existence and nature of intrusions 
by attackers.33 Intrusion detection software is available in both proprietary 
and open source forms.34 Logically, there appear to be advantages to keep-
ing some aspects of intrusion detection software secret, much as one would 
try to keep secret the placement of hidden cameras that watch for burglars.

Secrecy is even more important, though, for the aspect of intrusion 
detection software known as “honeypots,” which “emulate real running 
operating systems to serve as a bait for potential attackers.”35 The idea of 
a honeypot is that the intruder is attracted to the honey — the apparently 
sweet target. The honeypot is under surveillance, however, and the de-
fenders thereby learn about the type and number of attacks. Honeypots 
are available in open source code, and are used regularly by open-source 
programmers,36 yet they rely on secrecy. Having a honeypot obviously will 
not work if the intruder knows that it is a fake. The use of honeypots illus-
trates how surveillance relies on secrecy, even for open source systems.

problems. For situations in which it is not feasible to separate the key from the rest 
of the security system, the clear distinction between hidden elements (the key) and 
public elements (the system) would not be sustainable. 

31	 “Security Model,” above note 1 at 191–93.
32	 Ibid. at 193.
33	 For a detailed set of questions and answers about intrusion detection, see: SANS 

Institute, “Intrusion Detection FAQ,” online: www.sans.org/resources/idfaq [“Intru-
sion Detection FAQ”]. SANS Institute defines “intrusion detection” as “the art of 
detecting inappropriate, incorrect, or anomalous activity.” 

34	 Snort is one well-known intrusion detection system that is open source. See “About 
Snort,” online: www.snort.org/about_snort.

35	 Alexander Prohorenko, “Open Source Intrusion Detection: No-cost System Lock-
down” (9 November 2004), online: www.devx.com/security/Article/22442.

36	 Ibid.



44  Peter P. Swire

Along with passwords and surveillance, the third area of potential se-
crecy is anything outside the scope of an open source licence, such as the 
GNU General Public License or others approved by the Open Source Initia-
tive.37 Even for the GNU Public License, the most widely used, there appear 
to be significant ways that programmers can use secrecy. One notable way 
is for programmers to use non-standard configurations and settings for the 
system. The term “configurations” is used in computer systems essentially 
to refer to the choice of software and other components in ways that affect 
system function.38 The term “settings” has been defined as “[p]arameters of a 
system or operation that can be selected by the user.”39 The terms “configura-
tions” and “settings” do not appear in the GNU General Public License, but 
the text of the licence seems to permit users to create or alter configurations 
and settings.40

The importance of non-standard configurations and settings was high-
lighted to me by an experienced open source programmer, Jon Callas, who 
said: “I’m not afraid to use a little secret sauce.”41 Callas gives the example of 

37	 It is not my intention here to enter the debate about what should be considered a 
true “open source licence.” At the time of this writing, the Open Source Initiative 
has recognized over fifty licences as qualifying for its service mark. For a list of 
licences, helpful definitions, and links about the relevant terms, see “Open Source 
Licence,” online: http://en.wikipedia.org/wiki/Open-source_license. 

38	 See National Communications System Technology & Standards Division, Telecom-
munications: Glossary of Telecommunication Terms (1996), online: www.tiaonline.
org/market_intelligence/glossary/index.cfm?term=%26%23TOZRR%23M%0A 
(Configuration is, “[i]n a communications or computer system, an arrangement of 
functional units according to their nature, number, and chief characteristics . . . . 
Configuration pertains to hardware, software, firmware, and documentation.”).

39	 Glossary — Networking Terms Related to Remote Scope, online: www.micro2000.
co.uk/products/remotescope/glossary.htm.

40	 See “GNU General Public License,” above note 28. For instance, paragraph 0 of the 
licence states: “Activities other than copying, distribution and modification are not 
covered by this License; they are outside its scope. The act of running the Program is 
not restricted . . . .”

41	 Email from Jon Callas, Founder, Chief Technical Officer & Chief Security Officer, 
PGP Corp., to author (20 September 2005) (on file with author). The term “secret 
sauce” may trace back to the “special sauce” in a McDonald’s ad that played often 
during the childhood of many current-day programmers: “Two all beef patties, spe-
cial sauce, lettuce, cheese, pickles, onions on a sesame seed bun.” Readers who can 
illuminate the history of the terms “secret sauce” or “special sauce” in programming 
are welcome to contact the author.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  45

secret sauce he implemented for Secure Socket Layers (SSL), a cryptograph-
ic protocol that provides secure communications on the Internet. He says:

In the generic case of SSL, we want secure interoperation of arbitrary 
web browsers and web servers. In the case I mentioned where I did some 
tweaks to SSL’s security I didn’t want interoperability, I only want *my* 
systems to interoperate, so there is usefulness in combining nonstandard 
configurations with a standard architecture.42

Using unknown and non-standard configurations and settings can have 
significant advantages to system owners. Notably, this use of obscurity can 
frustrate standardized attacks by “script kiddies” or other inexpert hack-
ers.43 Even for more skilled attackers, it may be rational to shift to an easier 
target when a target initially resists an attack.44 It may thus be rational for a 
defender to use hidden and non-standard configurations and settings even 
where they would not withstand a determined attack. In terms of the mod-
el for when disclosure helps security, the non-standard configurations and 
settings increase the uniqueness — they reduce N (the number of attacks 
against a particular defence) — and make it more like a first-time attack. In 
such circumstances, hiddenness is more likely to be effective. In the words 
of Jon Callas: “Obscurity is camouflage, security is armor.”45 Either can 
be useful, depending on the circumstances. They can also be useful when 
working together, much like tanks that are often camouflaged.46

A second current example of secrecy in open source software, the so-
called “stealth firewall,”47 fits the idea of camouflage. A standard way to 

42	 Ibid.
43	 For discussion of script kiddies, who are unskilled programmers who merely follow a 

script rather than understanding how to write code themselves, see Swire, “Security 
Model,” above note 1 at 180 note 21.

44	 See ibid. at 189 (discussing how relatively strong security may shift an attack to a 
different target).

45	 Email from Jon Callas, above note 41.
46	 See “Tank Research and Development,” online: http://en.wikipedia.org/wiki/

Tank_research_and_development. Indeed, some experts emphasize the need for 
stealth technologies, believing that “the future of tanks lies in invisibility rather 
than invincibility.” For an essay on tank camouflage when tanks were introduced 
in World War I, see Patrick Wright, “Cubist Slugs” (2005) 27(12) London Review of 
Books, online: www.lrb.co.uk/v27/n12/wrig01_.html.

47	 The discussion here of stealth firewalls is based on (i) Interview with Chris Palmer 
(14 April 2005); and (ii) Michael Shinn & Scott R. Shinn, “Stealth Firewalling with 
Linux,” Linuxworld Magazine (27 February 2005), online: http://linux.sys-con.com/
read/48126.htm.



46  Peter P. Swire

attack a firewall is to scan it, checking its existence and behaviour. A nice 
attribute of a stealth firewall is that it does not have to have an IP address 
that is scannable. The stealth firewall thus resists a common attack.

In this example, the source code for the stealth firewall may well be 
open source. The defence, however, depends on hiddenness from observa-
tion by the attacker. More generally, “Security Model” described the useful-
ness of hiddenness where the attacker has low learning (L) from attacks.48 
Similar to stealth firewalls, intrusion detection systems and other surveil-
lance by the defender are more effective if attackers cannot tell how they 
operate.49 Once again, the low level of L from prior attacks means that hid-
denness is more likely to be effective, even against repeated attacks. Disclo-
sure of the details of a stealth firewall or an intrusion detection system helps 
the attackers, but offers little likelihood of helping the defenders.

b)	 Implications of hiddenness in open source security
The discussion here highlights the incentives for open source programmers 
to use secrecy to produce a low N, such as through non-standard configura-
tions and settings, or a low L, such as through stealth firewalls and hidden 
intrusion detection systems. These strategies will often be permitted under 
open source licences because the secrecy is not at the level of source code 
that must be disclosed under the licence.

These reasons to use secrecy have not been highlighted in the open 
source literature to date. Some open source proponents may be uncomfort-
able using the secrecy strategies discussed here, believing they smack too 
much of “security through obscurity.” However, the examples used here 
came directly from interviews over time with open source programmers, 
who responded to the question: “Where, if anywhere, is there secrecy to 
promote the security of open source systems?” Within the overall paradigm 
of open source software, which so emphatically emphasizes the security 
advantages of disclosure, there are situations where secrecy appears to im-
prove security. Those situations, as described here, fit well into the model of 
disclosure presented in “Security Model.”

As a policy matter, the next question is whether there are external-
ities or other reasons to be concerned about harm from secrecy as used by 
open source programmers. The answer appears to be no. The uses of “secret 
sauce,” such as stealth firewalls or non-standard configurations, affect the 

48	 See “Security Model,” above note 1 at 176.
49	 The role of secrecy for effective surveillance is discussed ibid. at 191–93. See also 

“Intrusion Detection FAQ,” above note 33.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  47

system owners themselves. There does not appear to be any significant ex-
ternality where the failure to disclose leads to harm to others. In contrast to 
the large externality, discussed above, for disclosures of security breaches, 
the analysis here does not support any call for legislation or other measures 
with respect to disclosure for open source systems.

2)	C ase Two: Competitive Incentives and Open Source Software

For open source programming today, the use of secrecy is likely even more 
prevalent for competitive reasons than for the security reasons just discussed. 
My discussion in this section is deliberately somewhat provocative — the 
emergence of large firms in open source software and large corporate-users 
of open source software has changed practices considerably in the last dec-
ade. My prediction is that secrecy for competitive reasons will become an 
increasingly evident part of the open source world in the coming years.

a)	 The openness of open source software
As with the security discussion, it is important to begin with an under-
standing about the baseline of open source disclosure before examining 
ways that hiddenness also exists.

Open source software eschews key legal and technological measures 
that are used by proprietary software companies to protect their work. Most 
fundamentally, open source licences such as the GNU General Public Li-
cense require disclosure of the source code.50 For those who wish to reverse 
engineer a proprietary program, it is often expensive and difficult to do so 
and get usable source code. The closed or hidden nature of proprietary code 
often creates a large obstacle for those who wish to compete with the pro-
prietary company. By contrast, the readability of open source code means 
that a competent coder may be able to quickly equal or surpass the insights 
of the person who wrote the original code.

Open source software not only lacks technical protection against com-
petition and disclosure, but it lacks traditional legal protections. The “copy-
left” nature of the GNU General Public License means that a later coder 
is forbidden from getting a copyright on material derived from licensed 
code.51 If the open source movement is successful in ongoing patent disputes   

50	 “Open Source Initiative,” online: www.opensource.org/docs/definition.php.
51	 “GNU General Public License,” above note 28.



48  Peter P. Swire

such as the SCO litigation,52 then patents will not be available to protect, at 
least, most open source code, nor, according to one expert in the field, will 
trade secret protection be available: “[T]rade secret protection is singularly 
inapplicable to open source software. The accessible and open source code 
would almost always defeat the trade secret status by disclosing the secret.”53

The commitment to openness in the open source movement goes be-
yond these technological and legal commitments to openness. The ideology 
of free software, developed most prominently by Richard Stallman and the 
Free Software Foundation,54 has had a powerful influence on a vast com-
munity of programmers. The view that free software is morally superior 
to proprietary software is accompanied, in turn, by influential academic 
commentary that provides theoretical explanations for how the open source 
movement initially developed and why it seems especially well-suited to 
creating software in a networked setting.

Yale Professor Yochai Benkler has offered a clearly defined theory for 
situations in which open source collaboration will have particular advan-
tages over a proprietary approach: “[T]here will be conditions under which 
a project that can organize itself to offer social-psychological rewards re-
moved from monetary rewards will attract certain people, or at least certain 
chunks of people’s days, that monetary rewards would not.”55 Benkler em-
phasizes three conditions. First, the project must be modular, so that many 
people can contribute incrementally over time. Second, the project should 
have the right level of lumpiness, so that individuals can make contribu-
tions of a manageable size. Third, “a successful peer production enterprise 
must have low-cost integration, which includes both quality control over 
the modules and a mechanism for integrating the contributions into the 
finished product.”56 The peer-review aspect of open source production can 

52	 The SCO Group has sued IBM and other companies, with a principal allegation 
being infringement of patents that it says applies to code contributed to open source 
projects. See Amended Complaint, SCO Group, Inc. v. IBM (16 June 2003), Utah, 
No. 03-CV-0294 (Dist. Ct.), online: www.sco.com/scoip/lawsuits/ibm/ibm-25.pdf.

53	 Greg R. Vetter, “The Collaborative Integrity of Open-Source Software” (2004) Utah 
L. Rev. 563 at 588.

54	 Richard Stallman is the President and Founder of The Free Software Foundation. 
Free Software Foundation, GNU’s Who-GNU Project, online: www.gnu.org/
people/people.html. For more information about the Free Software Movement or 
Stallman, see Free Software Foundation, online: www.fsf.org.

55	 Yochai Benkler, “Coase’s Penguin, or, Linux and The Nature of the Firm” (2002) 112 
Yale L.J. 369 at 378 [Benkler].

56	 Ibid. at 378–79.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  49

serve this integration function. Where all three conditions exist, a peer-
production process, based on openness, can succeed, even in the absence of 
substantial monetary awards.

b)	 Hiddenness and the competitive incentives of open source 
users

Before looking at the incentives that face those who create open source 
code — the coders, developers, programmers, and so on — it is useful first 
to examine the users of that code. As open source code becomes more per-
vasive in modern organizations, decisions about openness versus hidden-
ness will increasingly turn on the needs of these open source users, such as 
manufacturers, services companies, government agencies, and so on. These 
users have their own imperatives about what should be disclosed.

Take the example of the widget manufacturer who uses open source 
code for standard tasks, such as supply-chain management, inventory con-
trol, or product testing. Using expertise about the widget sector, suppose 
that persons working for the manufacturer find a way to cut costs by 5 
percent. They write new code, for use inside the company, that implements 
the cost-cutting measures.

Next, suppose you are the chief information officer (CIO) for the 
manufacturer, and you meet with the company president to decide whether 
to disclose the new code. As CIO, you might try to explain the beliefs of the 
open source community, including the importance of giving back code for 
use by the broader community.57 The president is likely to be unimpressed, 
and perhaps even incredulous: “You mean we should tell our competitors 
how to get the 5 percent savings, after we invested all that time and money 
to learn how to do it!?”

This story of the widget manufacturer can be generalized. Corporations 
routinely make decisions about what to disclose or keep secret for competi-
tive purposes. Confidential business information is a broad category, with 
common examples including business strategies, research that is not fully 
protected by patents, know-how relevant to ongoing operations, and trade 
secrets. To the extent that release of code will tip off competitors or other-

57	 For one influential discussion of the philosophy of the free software movement, see 
Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source 
by an Accidental Revolutionary, rev. ed. (Beijing: O’Reilly, 2001).



50  Peter P. Swire

wise reduce profits, the rational corporate decision maker will decide to 
keep the code in-house.58

Open source proponents hope and expect that open source code will 
pervade business organizations in the future. If and as this occurs, public 
release of that code will increasingly provide clues to competitors about 
the activities of the company that used and modified the code. The incen-
tives for open source users to keep their competitive secrets will then be in 
conflict with the norm of open source programmers to disclose the code.59

c)	 The puzzle of why corporations invest in producing open 
source software

Along with the incentives for secrecy for open source users, there is the 
well-recognized puzzle about why individuals and firms will rationally 
develop open source code. Benkler’s theory coherently sets forth certain 
conditions under which social-psychological rewards can provide the mo-
tivation.60 Later, he briefly examines what he calls “indirect appropriation 
mechanisms.”61 He writes, “These range from the amorphous category of 
reputation gains to much more mundane benefits, such as consulting con-
tracts, customization services, and increases in human capital that are paid 
for by employers who can use the skills gained from participation in free 
software development in proprietary projects.”62

The discussion here, by contrast, emphasizes that the appropriation 
mechanisms are often direct rather than indirect.63 More surprisingly, the 

58	 Note that this discussion does not assume that the secrets would be protected 
against a determined adversary, such as one who resorted to industrial espionage. In 
business competition, it will often be rational not to disclose information if keeping 
the information secret simply raises costs to competitors or reduces the likelihood 
that they will learn the competitive secrets.

59	 The extent to which the open source community can develop strategies to reduce 
such conflict with incentives for users to guard competitive secrets is a topic for fur-
ther research. For instance, in some settings, source code might be released in ways 
that do not reveal corporate secrets. If readers are aware of such efforts to reconcile 
these conflicting norms of secrecy and disclosure, the author would be glad to learn 
of them.

60	 See Benkler, above note 55 at 378–79.
61	 Ibid. at 424.
62	 Ibid. at 424–25 (footnote omitted).
63	 As the draft of this chapter was being completed, Ronald Mann released an excel-

lent working paper that addresses the puzzle of why corporations are investing large 
sums in open source software. Ronald J. Mann, “The Commercialization of Open 
Source Software: Do Property Rights Still Matter?” online: http://papers.ssrn.com/



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  51

economics of open source programming increasingly relies on (at least temporary) 
secrecy. The incentives facing those developing open source systems rely on 
secrecy in at least three distinct and substantial ways: staying ahead of the 
curve; systems integration and related services; and web services.

d)	 Hiddenness and the competitive incentives of open source 
developers

Significant incentives exist for secrecy on the part of open source develop-
ers in order to stay ahead of the curve, offer system integration and related 
services, and create open source code in ways that do not trigger disclosure 
obligations under the relevant licence.

i)	 Staying ahead of the curve
As I spoke to open source programmers about secrecy and openness, one 
who preferred not to be identified said, “I always try to stay six months 
ahead of the curve.”64 This programmer has regularly contributed code to 
various open source projects. He does not disclose, however, some aspects 
of his work that will give him a competitive advantage. A similar point has 
been made by Robert Lefkowitz, former director of Open Source Strategy 
at Merrill Lynch: “And then, there’s the secret sauce for which you wish to 

sol3/papers.cfm?abstract_id=802805. Professor Mann agrees with arguments made in 
this chapter that the financial incentives for investment are direct, as opposed to the 
indirect approach emphasized by Benkler, ibid. at 19–20. Professor Mann explains 
that much of open source investment follows the classic “value chain” model, which 
dictates that a company should “foster the commoditization of those portions of the 
stack in which the company does not have a core competency, so that it can earn 
high(er) returns for those portions of the stack in which it can defeat its competi-
tors.” Ibid. at 20. Essentially, the open source approach serves as a precommitment 
strategy, in which the major open source corporations cannot profit directly from 
sales of Linux or other open source software, but all of them become committed to 
an open source approach. 

Professor Mann makes a number of points that are similar to those made here, 
including his description of how open source companies are able to profit from 
services. Nonetheless, it is not clear how well his precommitment strategy explains 
the large investments he documents. The company-specific returns emphasized in 
this chapter seem like a more straightforward way to explain the investments of 
hundreds of millions or billions of dollars by individual companies.

64	 The programmer’s reluctance to be named is a sign, perhaps, of the culture of open-
ness that is prevalent in the open source community. Admitting that one is holding 
back information from the community can be a source of shame.



52  Peter P. Swire

capture an innovation premium. You can take that open source stuff, add 
your secret sauce, and create some very nice commercial products.”65

The idea of staying ahead of the curve is a powerful one. Although it 
is sometimes risky to be out front, there may be a substantial first-mover 
advantage in a particular market niche.66 More generally, there are ongoing 
advantages to being somewhat ahead of the curve. As your competitors 
work to catch up to where you were at one point, you can seek to keep your 
lead through ongoing investment.

For writers of software, the payoff can come in various forms, such as 
through general reputation or positive reviews from satisfied clients. Applied 
to open source programmers, the idea of staying ahead of the curve suggests 
the business sense of what the anonymous programmer has done — release 
some code to the community to build reputation, while holding some valu-
able code back in order to provide premium service to clients. 

The idea of staying ahead of the curve is essentially one of temporary 
secrecy. In a rapidly changing environment, getting the source code from a 
year or two ago will often not be very satisfying. Purchasers will be motiv-
ated to go to the suppliers of up-to-date solutions.

ii)	 Systems integration and services
Why have corporate giants such as IBM and many others invested so heav-
ily in open source in recent years? The elegant peer-production model of Yo-
chai Benkler is designed to explain why individual programmers will seek 
social-psychological rewards rather than monetary profit.67 That model, by 
its own terms, does not apply to profit-maximizing corporations. The pro-
posal here is that the corporations will differentially invest in ways that the 
competitive advantage does not need to be disclosed under the open source 
licences. A major category of corporate effort is in the area of systems inte-
gration and related services.

IBM employee Michael Nelson said it succinctly: “We take very valu-
able open source software, and build it into a suite of services that’s even   

65	 “Open Source Gets Down to Business” Technology Review (25 July 2003), online: 
www.technologyreview.com/Infotech/13258/?a=f (interview with Robert Lefkowitz, 
former Director of Open Source Strategy, Merrill Lynch).

66	 See Jonathan M. Barnett, “Private Protection of Patentable Goods” (2004) 25 
Cardozo L. Rev. 1251 at 1257–66 (discussing generally the economics of first-mover 
advantage).

67	 Benkler, above note 55 at 378.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  53

more valuable.”68 The logic behind this bland statement is important. The 
economic incentive is that the innovation and comparative advantage hap-
pen elsewhere (i.e., not in the source code). Under the licence terms, the 
source code must be revealed upon distribution. The techniques of services 
and system integration do not. The importance of integration is echoed by 
Computerworld columnist Frank Hayes:

Once, IT would have looked for unique advantage by writing big custom 
applications. But today that takes too long and is too inflexible. Instead, 
open source-using companies like Google and Yahoo have figured out 
that their secret sauce is in the way they put together pieces of IT—soft-
ware, hardware, networks and practices. Anyone can acquire the gear 
these companies use. How they put it together is the difference.69

A company’s comparative advantage in systems integration also responds 
directly to Professor Benkler’s model. He postulated that “a successful peer 
production enterprise must have low-cost integration, which includes both 
quality control over the modules and a mechanism for integrating the con-
tributions into the finished product.”70 There is an empirical question about 
when a peer-production model will be superior to a corporate-production 
model for these aspects of quality control and integration. It seems plaus-
ible, however, that the reputation of a large company for providing quality 
control and integration will often give it an advantage in the marketplace.71 
To the extent that an advantage does occur, the lucrative market for quality 
control and integration may shift to corporate players, and away from the 
peer-production process.72

68	 Email from Michael Nelson, IBM Employee, to author (21 October 2005) (on file 
with author).

69	  Frank Hayes, “Deliver the Goods” Computerworld (8 August 2005) 54 at 54, online: 
www.computerworld.com/softwaretopics/software/appdev/story/0,10801,103728,00.
html.

70	 Benkler, above note 55 at 379.
71	 For a thorough examination of the factors that can give comparative advantages to 

firms to internalize activities, including quality control and reputation effects, see, 
generally, Oliver E. Williamson, Markets and Hierarchies: Analysis and Antitrust 
Implications (New York: Free Press, 1975).

72	 A web posting made by a frustrated open source programmer offers insight into how 
such marketplace advantages look to someone competing with the big companies: 

IBM often brags about billions in profits from Open Source because of consult-
ing revenues. The problem with that is the guy who contributed most to the 



54  Peter P. Swire

iii)	 Web services and other in-house use of open source 
The current structure of the GNU General Public License creates another 
financial incentive for secrecy. As noted above, that licence requires publi-
cation of the source code upon distribution.73 Before distribution occurs, 
however, there is no requirement to reveal the source code.

A famous example of a company adopting this approach is the online 
retailer Amazon.com (Amazon). Publishing impresario Tim O’Reilly has 
analyzed the subject: “Even though amazon.com is built on top of open 
source software, the licences compel no release of Amazon source because 
its software is never distributed. In the new world of the Internet, software 
is a service, not an artifact.”74

The Amazon example illustrates the powerful business incentive that 
exists under the current GNU General Public License — open source code 
can be used, but need not be made public so long as the code is not “distrib-
uted” to others.75 This “use-but-don’t-disclose” aspect of the General Public 
License creates the possibility of supplying proprietary solutions over the 
Internet. Amazon uses its code, its “secret sauce,” inside of Amazon. In 
this respect, Amazon acts in part as a developer of open source code — its 
employees and agents write code that may give Amazon a competitive ad-
vantage as an online retailer. Amazon also, in part, acts as a user of open 
source code. Like the widget manufacturer discussed above, Amazon may 
be reluctant to reveal proprietary information that is not about the code 
itself. In addition, companies that provide software as a service, but do not 

original source code who did it for the love of coding probably didn’t see too 
many of those dollars. 

While it is possible for guy [sic] who did the coding to sell his consulting 
services, how does he compete with IBM global services? He doesn’t have 1/100th 
the reputation, sales, and marketing force of IBM global services. IBM global 
services can just take your GPL code and implement it however they want. Once 
in a while, they might throw you a few crumbs for you [sic]. 

Posting of george_ou to TalkBack on ZDNet (14 June 2005), online: www.zdnet.
com/5208-10535-0.html?forumID=1&threadID=11136&messageID=222450&start=-30.

73	 See “GNU General Public License,” above note 28 and accompanying text (provid-
ing that distributors of software under the General Public License must “give the 
recipients all the rights that [they] have”).

74	 O’Reilly Network, “Ask Tim: Amazon and Open Source” (February 2004), online: 
www.oreilly.com/pub/a/oreilly/ask_tim/2004/amazon_0204.html.

75	 “GNU General Public License,” above note 28.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  55

trigger the General Public License by distribution through a CD or floppy 
disk are under no obligation to reveal their source code.76

iv)	 Implications of the analysis
The discussion here has highlighted important reasons why those involved 
with open source software will rationally rely on secrecy, at least to some 
extent. On the user side, the incentives to protect confidential business in-
formation will remain even for businesses that use open source software. 
For developers, there are incentives to use secrecy to stay ahead of the curve, 
to provide systems integration and related services, and to use open source 
software in ways that do not involve “distribution” and thus do not trigger 
obligations to disclose. One result has been an open source universe that is 
dominated by services, where profits can be captured by leading companies, 
rather than by the commodity software products that are so prominent in 
the proprietary software space.

In response to this possible shift toward secrecy, there has been discus-
sion of a Version 3.0 of the GNU General Public License, which would 
address the disclosure issue. According to Sleepycat Software CEO Mike 
Olson, the next generation of the licence will address the distribution 
“loophole”: “If you look at the market, Yahoo, eBay, IBM, Amazon, Google 
have all sunk millions into the GPL infrastructure.”77 When it comes to the 
distribution loophole, Olson added, “Not only are we changing the rules, 
we are changing them retroactively.”78

The exact language for Version 3.0 is not known yet, and Eben Moglen, 
the head of the Software Freedom Law Center and a leader of the drafting 
process, has withheld comment until a discussion draft is released.79 None-
theless, it will be most interesting to see the extent to which major corpor-
ate players are willing to shift to Version 3.0 along the lines discussed by 
Mike Olson. The analysis in this chapter suggests that Version 3.0 will be a 
very tough sell. The business strategies of major corporations seem to have 
evolved to what is permitted under Version 2.0, with secrecy an important 
competitive advantage. If Version 3.0 looks the way Mike Olson has stated, 
then there may be a major moment of decision for open source developers: 
to what extent will the requirements for openness be extended, as Olson 

76	 Michael Singer, “Insider Hints at GPL Changes” (7 April 2005), online: www.inter-
netnews.com/dev-news/article.php/3495981.

77	 Ibid.
78	 Ibid.
79	 See ibid.



56  Peter P. Swire

suggests, or to what extent instead will corporate business plans rely on the 
categories of secrecy described in this chapter?

3)	C ase Three: Security Incentives and Proprietary Software

The third case examines, from a security standpoint, the incentives to dis-
close or not for designers of proprietary software. The analysis here shows a 
surprisingly diverse set of factors that create incentives to disclose security 
vulnerabilities.

a)	 The hiddenness of proprietary software
Proprietary software traditionally uses both technological and legal meth-
ods to protect against unauthorized use by others. The technological meth-
od is to not reveal the source code. Outsiders who wish to reverse engineer 
the software thus need to engage in often elaborate efforts to figure out how 
to write code that will have the same function as the proprietary program.80 
The legal methods often include copyright on the program, and may also 
include patent and trade-secret protection. Both the technical and legal 
mechanisms make it more difficult for outsiders to see the source code. 
For security purposes, this implies that outsiders will, at least initially, not 
see the source code. For competitive purposes, as discussed below in Case 
Four, this implies that outsiders are limited in their ability, at least initially, 
to see the source code and use it for derivative or competing works. In these 
technical and legal ways, proprietary software is at the opposite pole from 
the open source software discussed in the previous sections.

b)	 Proprietary software and a monopoly model for information 
about vulnerabilities

In order to understand the incentives to disclose for security purposes, this 
chapter begins with a simple monopoly model. When proprietary software 
is released, one can consider the company to have a monopoly of informa-
tion about the source code. Employees of the company may not be the only 
persons to have experience with the software at the time of release. For 
instance, outside alpha and beta testers may have been used for the new 
software, and the new release may overlap with previous software releases. 

80	 The object code is accessible to authorized users of the software, but the source code 
is not. For one explanation of the meaning of object and source code, and the rela-
tive ease for humans of reading the latter, see Universal City Studios, Inc. v. Corley, 
273 F.3d 429 at 438–39 (2d Cir. 2001).



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  57

Nonetheless, it is helpful to imagine at the moment of release that only 
employees of the software company have knowledge about the software, 
including its vulnerabilities.

Consider, next, the incentives that face the company when it learns 
about a vulnerability. Should the company disclose the vulnerability? Ma-
jor disadvantages of disclosure would include an immediate reduction in 
sales of the program and an overall harm to the company’s reputation for 
quality software. Advantages of disclosure would be more indirect — buyers 
might learn that they could trust the company to disclose vulnerabilities, 
thus increasing the company’s long-term reputation for quality. Another 
advantage would be similar to the open source model — outside program-
mers might suggest how to fix the problem. Looking at these disadvantages 
and advantages of disclosure, a rational corporation might often conclude 
that it is better to keep the vulnerability secret. This reluctance to disclose 
vulnerabilities was indeed widespread not long ago in the proprietary soft-
ware industry.

This simple model at first blush seems quite similar to the breach noti-
fication issues discussed in Part C above. The analysis there showed im-
portant reasons to support the breach-notification statutes that are now 
spreading in the US.81 In both situations, there is a first party (the data 
holder or software company) and a second-party attacker. In both situa-
tions, there are potential harms to third parties (the individuals whose data 
is lost or the users of the software). For data breaches, the conclusion was 
that breach-notification statutes are likely appropriate because it is so diffi-
cult for individuals to trace harm back to the source of the breach. There are 
important differences, however, for proprietary software. One difference 
is that users of software will often (not always) be able to figure out what 
software program to blame if something goes wrong.82 A second important 
difference is that third parties may have important assistance for software 
vulnerabilities that they did not have in the data-breach setting.

The Security Disclosure Model from “Security Model” helps to show 
how the monopoly problem tends to erode over time. Even if the software 
company has a monopoly of information about its product at the time of 
release, outsiders can and do learn about the software. For standardized 

81	 See Section C(2), above in this chapter.
82	 Many computer users have had the experience of a software vendor blaming a 

problem on the hardware vendor or another software vendor. Even in such cases, the 
user generally knows that there is a problem and has a short list of suspects for who 
caused it. Both of these factors are often missing in the breach-of-data scenario.



58  Peter P. Swire

software products, outsiders can probe and attack the software repeatedly 
(high N for number of attacks). When the software has a vulnerability or 
otherwise fails to perform appropriately, the outsiders learn about the flaws 
(high L). They can then communicate (high C) with other outsiders about 
the flaws.

To the extent that high N, L, and C thus exist, the monopoly of in-
formation may evolve quite rapidly to a competitive situation. Under fully 
competitive conditions, outsiders would have the same ability to discov-
er and report on vulnerabilities as the software company itself. “Security 
Model,” indeed, used mass-market software as an example of a situation 
where “security through obscurity” is unlikely to succeed.83 For the new re-
lease of a video game, websites arise almost instantly advising how to “beat 
the game.”84 This is also the case for new proprietary software programs. 
Users can and do learn and communicate rapidly about programs after they 
are released.

To the extent that this analysis is convincing, the rational proprietary 
vendor is much more likely than it initially appeared to try to discover and 
fix vulnerabilities. When outsiders predictably discover and publicize flaws, 
the previous advantages of keeping a secret plummet. Keeping the vulner-
ability secret not only will likely soon fail, but the company will then have 
the additional reputation problem of explaining why it did not tell its cus-
tomers that they were at risk. In such circumstances, it will often be rational 
for the company to disclose vulnerabilities.

c)	 The importance of market structure
The discussion thus far has shown some interestingly strong reasons why 
the market is likely to work well to encourage disclosure of vulnerabilities, 
even for proprietary software. The next step is to notice that the analysis 
depends on an assumption that outsiders are effective at discovering and 
publicizing vulnerabilities. The validity of that assumption will depend on 
the empirical realities for any given software, and especially on the market 
structure. One risk is that the closed source in the software will be a strong 
barrier against outsiders learning about vulnerabilities. A related risk is that 
skilled and malicious hackers may learn about a vulnerability, but not reveal 
their knowledge until they use it in a major attack.

The nature of software buyers is important in determining whether a 
software company will rationally keep a vulnerability hidden. The exist-

83	 See “Security Model,” above note 1 at 181–82.
84	 Ibid. at 182.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  59

ence of large buyers who care about security increases the likelihood that 
disclosure will occur. At the extreme, imagine that a software vendor sells 
to a single buyer (a “monopsonist”), and that the buyer has a high taste 
for security. What will happen if the software has a serious vulnerability, 
known to the seller, and the buyer does not know about it? Quite simply, 
the vendor may lose all its sales.

To choose a vivid example, which, as far as I know, is not true, imagine 
a company that sells communications software to the US Air Force. Sup-
pose that hackers learn about a vulnerability, and the software company 
also knows about it but does not disclose its knowledge to the Air Force. 
Then, on an important mission, the software tells the pilot to turn left when 
he is supposed to turn right. The mission therefore fails.85 The Air Force, 
shall we say, is likely to go ballistic.

This Air Force example brings home the importance to a vendor of 
pleasing large buyers who care about security.86 The vendor might then 
respond with a halfway disclosure, seeking to disclose to its “important” 
customers but not to its “unimportant” customers. But secrets once shared 
among many “important” customers are unlikely to stay secret for long.87 
Major proprietary software companies today now disclose vulnerabilities 
widely, to their own customers and through mechanisms such as the Com-
puter Emergency Response Team (CERT).88

The Air Force example highlights the possibility that important cus-
tomers will get contractual or other legal assurances that they will be noti-
fied about vulnerabilities. Although a purchaser of a single desktop does 
not bargain for such assurances, large customers can and do. The legal as-
surances might be in an individually negotiated licence to use the software 
throughout a large organization. For military and other government con-

85	 If the plane therefore flies into a mountain, that would be a “system crash” of a dif-
ferent sort than usual.

86	 In the language of Oliver Williamson, the buyer and seller would have a high level 
of transaction-specific capital in the use of the software by the organization. Oliver 
E. Williamson, The Economic Institutions of Capitalism (New York: Free Press, 1985) 
at 30 (discussing transaction-specific capital). The organization would therefore have 
important incentives to bargain to protect its investment in the software, such as 
insisting on requirements of disclosure of vulnerabilities.

87	 For a discussion of the weaknesses of selective disclosure, see “Security Model,” 
above note 1 at 203.

88	 See CERT Coordination Center, online: www.cert.org (providing information 
about the CERT Coordination Center as a center of Internet security expertise).



60  Peter P. Swire

tracts, the legal assurance might also come from a statute or other legal 
mandate from the government.

In addition to buyers with market power and government buyers, an-
other check on under-disclosure is the existence of ethical bug hunters.89 
These individuals or firms seek to find vulnerabilities (bugs) in software. 
Upon finding a bug, in many instances, they notify the authors of the code 
in order to provide an opportunity to issue a patch before the vulnerability 
is publicly announced. To the extent that such bug hunters systematically 
discover flaws and provide an opportunity to fix them, disclosure will tend 
to occur even for proprietary software.

d)	 Historical experience and implications
In considering the likelihood of disclosure for security flaws in mass-pro-
duced software, it is helpful to remember the relative youth of the market. 
The IBM PC was introduced in the early 1980s. Attacks from a distance, 
including contagious phenomena such as viruses, only became significant 
with the growth of the Internet in the late 1990s. As late as 1998, the topic of 
cyber security was practically invisible to government agencies and law pro-
fessors who were immersed in the law of cyberspace.90 During the bubble of 
the late 1990s, many software companies emphasized adding new features 
and growing quickly instead of writing secure software.91

In the past several years, security has generally become a more promin-
ent issue in computing and in mass-market proprietary software in particu-
lar. Purchasers, led by large corporations and government agencies, have 
pushed for and received greater access to the source code from Microsoft 
and other vendors.92 An important literature exists within law and eco-
nomics that shows how effective market discipline by a subset of sophis-
ticated buyers (such as large purchasers of software) can provide a high 

89	  Jennifer Stisa Granick, “The Price of Restricting Vulnerability Publications” (2005) 
9 Int’l. J. Comm. L. & Pol’y 1.

90	 See Peter P. Swire, “Elephants and Mice Revisited: Law and Choice of Law on the 
Internet” (2005) 153 U. Pa. L. Rev. 1975 at 1977 note 4 (describing the low level of 
awareness of Internet security as of the late 1990s).

91	 One sign of the shift in industry attitude came in a widely publicized email from 
Bill Gates to all Microsoft employees on 15 January 2002: “So now, when we face 
a choice between adding features and resolving security issues, we need to choose 
security.” Email from Bill Gates, Microsoft Chairman & Chief Software Architect, 
to Microsoft Employees (15 January 2002), online: www.wired.com/news/busi-
ness/0,1367,49826,00.html.

92	 Interview with Dave Ladd, Microsoft Research (28 July 2005).



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  61

level of quality for many other buyers (such as mass-market purchasers of 
software).93 The strong taste for security from prominent buyers, and the 
growth of CERT and other disclosure institutions over time thus suggests 
that the level of disclosure is and will be substantially better for proprietary 
software in the future than it was in the 1990s. 

In conclusion, on the security motive for disclosure for proprietary soft-
ware, the analysis here does not describe some idealized world where propri-
etary software vendors always disclose vulnerabilities promptly. Instead, the 
analysis identifies conditions under which the disclosure is likely to be done 
relatively effectively: high N, L, and C so that flaws are discovered; buyers 
with monopsony power who can force disclosure; governments that require 
disclosure; and effective bug hunters who make the disclosure market more 
efficient. Where those conditions do not exist, there remains a significant 
risk that the incentives for vendors to hide their flaws will result in harm to 
third-party users.

4)	C ase Four: Competitive Incentives and Proprietary Software

The incentive is clear for why proprietary software companies would keep 
source code secret. The technological protection of keeping source code hid-
den complements the legal protection from copyright or other intellectual 
property regimes. These technological and legal measures raise the costs for 
competitors to create equivalent software. The proprietary company expects 
to profit from greater sales of the software.

This incentive to keep source codes hidden is indeed powerful. There 
are major counter-incentives, however, that often lead proprietary software 
companies to disclose significant amounts of source code for competitive 
reasons.

a)	 Network effects and disclosure for standards
Software companies do not face a simple choice between keeping all source 
code hidden and revealing all of their code. Instead, there is a continuum. 
At the closed end of the spectrum, a company can rely entirely on its in-
house programmers and not permit anyone else to see any source code. At 
the opened end of the spectrum, the company can adopt a strong open 

93	 This approach is developed in Alan Schwartz & Louis L. Wilde, “Intervening in 
Markets on the Basis of Imperfect Information: A Legal and Economic Analysis” 
(1979) 127 U. Pa. L. Rev. 630 at 662–66.



62  Peter P. Swire

source licence, and perhaps even make disclosure about consulting and 
other activities that are outside the scope of that licence.

Choosing where to be on that spectrum requires a complex calculus 
that has strong elements of game theory. How will other actors react to 
various levels of openness? Being more open has the potential advantage of 
attracting other developers. If enough developers work with the software 
program, then a critical mass might result. There can thus be “network ef-
fects,” where “the value that consumers place on a good increases as others 
use the good.”94 However, being more open has the potential disadvantage 
that the other participants may get sales from participation with your soft-
ware. At the extreme, this sounds like the complaint quoted earlier from 
the open source programmer who gets, at most, “a few crumbs” from the 
code she has written.95 In essence, the software company is trading-off the 
expanded size of the market that can come from openness versus the dimin-
ished share of that market that can come from the participation of the other 
competitors.

A recent announcement by VMware shows this dynamic at work. In 
August 2005, The New York Times reported: “VMware, the leader in the 
fast-growing market for virtual machine software, plans to announce today 
that it will share its code with partners like I.B.M., Intel and Hewlett-Pack-
ard in an effort to make the VMware technology an industry standard.”96 
The article stated, “The move by VMware is an attempt to defend against 
Microsoft before that company accelerates its drive into virtual machine 
software.”97

The VMware announcement nicely illustrates four points already made 
in this chapter. First, disclosure is on a continuum between an open and 
a closed source: “The partners will be able to modify the basic code for 
their own products, to be sold to customers. But the VMware program 
does not go so far as to allow the code to be freely distributed to anyone, 
as is the case with Open Source software projects.”98 Second, openness is a 
strategy to expand the overall market for a software project. In the words of 

94	 Mark A. Lemley & David McGowan, “Legal Implications of Network Economic 
Effects” (1998) 86 Cal. L. Rev. 479 at 481. Lemley & McGowan provide a compre-
hensive examination of the legal implications of such network effects, including a 
number of software-related issues. 

95	 See Posting on ZDNET, above note 72 and accompanying text.
96	 Steve Lohr, “VMware to Share Its Code: Hoping to Be the Standard” New York 

Times (8 August 2005) C6 [Lohr].
97	 Ibid.
98	 Ibid.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  63

an IBM executive: “This is a move toward open standards, and that is the 
path toward accelerating market growth and innovation.”99 Third, the shift 
to openness is accompanied by a strategy for the proprietary company to 
continue to reap financial rewards. VMware’s chief executive Diane Greene 
said she “sees continued growth opportunities by adding features and ser-
vices on top of its basic technology.”100 This quote matches the discussion 
above of open source competitive strategies: stay ahead of the curve; pro-
vide services where competitors do not learn easily about innovations; and, 
in general, seek a significant percentage of the growing market that uses 
VMware code. Fourth, complex game-theory calculations determine the 
optimal degree of openness for the software company. VMware is trying to 
stay closed enough to reap financial awards, but it is being pushed by other 
large players to become more open: “VMware’s big industry partners have 
become increasingly concerned that it is becoming too powerful, and could 
potentially become a crucial, proprietary layer of software in data centers, 
much as Microsoft’s Windows rules the market for personal computer oper-
ating systems.”101 In short, if VMware had not decided to become more 
open, the big industry partners may have abandoned it and gone elsewhere.

One way that this dynamic often plays out is through the standards pro-
cess. The “effort to make the VMware technology an industry standard”102 
highlights the way that companies often face the question of how much to 
disclose; what should go into an open standard versus what should be kept 
in-house? My discussions with market participants reveal a high level of 
awareness about the importance of this standards issue. I have not found, 
however, any persuasive general account of how to decide how much to 
disclose in the standards process.103

For purposes of this chapter, I suggest two thoughts about the stan-
dards issue. First, because of the importance of the interactions among a 
few or several players, the optimal analysis is likely to depend on game 
theory.104 Second, the rational level of disclosure for a vendor will often 

  99	 Ibid. (quoting Susan Whitney, a general manager in IBM’s server business).
100	 Ibid.
101	 Ibid.
102	 Ibid.
103	 For a thorough examination of legal issues arising from standard-setting organiza-

tions, see generally Mark A. Lemley, “Intellectual Property Rights and Standard-
Setting Organizations” (2002) 90 Cal. L. Rev. 1889.

104	 See Martin Shubik, Game Theory in the Social Sciences: Concepts and Solutions 
(Cambridge: MIT Press, 1982) at 300. Shubik explained that “[f]ew-player games 
are ones in which the players number anywhere from three to around twenty.” Ibid. 



64  Peter P. Swire

be at an intermediate position between the extremes of open and closed 
source. This intermediate position is consistent with a theme of this chapter: 
movement along the continuum between an open and a closed source is a 
strategically and theoretically important topic.

b)	 Developer mindshare and “get them while they’re young”
Proprietary software companies have an incentive to keep the source code 
in-house and only among software writers who have signed non-disclosure 
agreements. In this way, the company keeps maximum control over who 
gets to work with the code and can manage how all aspects of the code are 
developed over time. The number of software writers is then limited to the 
number of persons hired by the company.

Companies simultaneously face an incentive to get the maximum num-
ber of skilled software developers to work with the code. Greater developer 
“mindshare” leads to greater innovation on the company’s code. Developer 
enthusiasm for this software, in turn, may reduce the amount of developer 
innovation that goes into competing software offerings.

Taking the conflicting incentives together, we see that a proprietary 
software company would rationally weigh the profits that come from in-
creased control against the profits that result from innovation and other 
activity by those outside of the firm.

Two strategies illustrate how companies seek to resolve the conflict-
ing incentives. First, companies can try to “get them while they’re young.” 
Apple Computer has famously placed its computers in elementary and 
other schools, hoping to train a new generation of loyal users.105 Similarly, 
Microsoft has been licensing significant and increasing amounts of source 
code to universities since the early 1990s.106 Computer science professors 
and their graduate students thus get to work directly on the source code. 
If programmers learn the intricacies of a software program during their 
student days, then it seems more likely that they will continue to work with 
that code after they leave school. Second, companies can release code to de-

He added, “Oligopoly theory, the formation of political coalitions, international 
negotiations, ecological struggles, and cartel problems all fall into this category.” 
Ibid. His examples of oligopoly theory and cartel problems are closely related to the 
industry-structure issues implicated by the decision of companies about whether to 
cooperate (share source code) or compete (keep source code hidden).

105	 Apple.com, “25 Years of Education Experience,” online: www.apple.com/ca/educa-
tion/whyapple/25years.html (charting Apple’s investments in education from 1980 to 
the present). 

106	 Interview with Dave Ladd, above note 92.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  65

velopers in the hopes of having the outside developers engage more deeply 
with the software. This strategy was used by Microsoft when it launched 
the Shared Source Initiative, under which it has released considerably more 
source code.107

c)	 Overcoming collective action problems
Proprietary software companies may use open approaches for another rea-
son: to overcome collective action problems. Mancur Olson, a pioneer in 
researching such issues, memorably explained that for groups with com-
mon interests “there is a systematic tendency for ‘exploitation’ of the great 
by the small!”108 Olson analyzed the incentives for large and small actors 
who would share in the benefit of a collective good.109 His key point is that 
the large actor may have a rational basis for investing in the collective good 
because its own return from the investment may be large enough to justify 
the cost. A small actor, by contrast, would not get a large enough return 
from its own investment to justify the action. In such cases, the small actors 
would rationally be free riders, not investing even in a good that benefits all 
concerned. Thus, only the large actors will invest in the public good — the 
“exploitation” that Olson described.110

Turning to software, proprietary firms in some circumstances may find 
it rational to invest in open software in order to solve a collective-action 
problem. A notable current example would be an improved system for au-
thentication on the Internet.111 Put simply, it would be a great help to e-com-
merce and many other activities on the Internet for each of the two parties 

107	 For a discussion of the Shared Source Initiative, see Microsoft Shared Source Initia-
tive, online: www.microsoft.com/resources/sharedsource/Initiative/Initiative.mspx.

108	 Mancur Olson, The Logic of Collective Action; Public Goods and the Theory of Groups 
(Cambridge: Harvard University Press, 1965) at 29 [emphasis omitted] [footnote 
omitted].

109	 Olson defines a public good or collective good “in terms of [the] infeasibility of 
excluding potential consumers of the good.” Ibid. at 14 note 21. Modern definitions 
stress that a public good is not only non-excludable but also non-rival (i.e., use by 
one person does not reduce use by another). Robert P. Merges et al., Intellectual 
Property in the New Technological Age, 3d ed. (New York: Aspen Law and Business, 
2003) at 11–12. A classic example of a public good is clean air. If a factory puts filters 
on its smokestacks, reducing pollution, it has no feasible way to exclude potential 
consumers of the good, those who breathe it. Ibid.

110	 Olson, ibid. at 28–29.
111	 Effective privacy protections do not necessarily preclude improved authentication. 

For an excellent National Academies of Science report on the topic, see National 
Research Council Committee on Authentication Technologies and their Privacy Im-



66  Peter P. Swire

to be confident of the identity of the other party. Sellers and credit card 
companies have long faced the risk that buyers were using false identities or 
credit cards. More recently, the problem has grown more acute for buyers, 
who can no longer trust that the apparent seller’s site is what it seems to be. 
Ordinary individuals today face the problem of phishing, defined as “the 
process of tricking or socially engineering an organisation[’]s customers 
into imparting their confidential information for nefarious use.”112 A grow-
ing threat is pharming, defined as manipulation of the way that a customer 
“locates and connects to an organisation’s named hosts or services through 
modification of the name lookup process.”113

The lack of good authentication poses risks not only to websites and 
Internet users, but also to the overall growth of computing and the Internet. 
Large companies who benefit from this overall growth thus may have an 
incentive to take actions that will improve authentication.

The actions of Microsoft in the Internet-authentication area illustrate 
the way that this collective-action problem might be addressed either by a 
proprietary or open approach. Microsoft’s first big authentication effort was 
heavily proprietary. Its Passport program, as proposed in 2000, contemplat-
ed that users would have a unique username that Microsoft would issue.114 
To make the system even more proprietary, data about sites the user visited 
would go through the Microsoft system. 

The reaction to Passport was negative and overwhelming — on secur-
ity, privacy, and competitive grounds.115 A main security problem was that 

plications, Who Goes There? Authentication through the Lens of Privacy ed. by Stephen 
T. Kent & Lynette I. Millett (Washington, DC: National Academies Press, 2003).

112	 Gunter Ollman, Next Generation Security Software Ltd., The Phishing Guide: Under-
standing and Preventing Phishing Attacks (2004) at 3, online: www.ngsconsulting.
com/papers/NISR-WP-Phishing.pdf. I am currently serving as reporter for a process 
convened by the National Consumers League on strategies for addressing phishing.

113	 Gunter Ollman, Next Generation Security Software Ltd., The Pharming Guide: 
Understanding and Preventing DNS-Related Attacks by Phishers (2005) at 3, online: 
www.ngsconsulting.com/papers/ThePharmingGuide.pdf.

114	 See Electronic Privacy Information Center, online: www.epic.org/privacy/consumer/
microsoft. Passport was initially proposed as part of broader Microsoft initiatives 
called “Hailstorm” and “.NET.” See ibid.

115	 See, for example, SOA World Magazine News Desk, “WSJ Exclusive Interview: 
Single Sign-On is a Single Point of Failure, Says EPIC Counsel” (1 January 2000), 
online: http://webservices.sys-con.com/read/39389.htm [SOA World Magazine News 
Desk] (discussing the privacy risk of central authentication). The Federal Trade 
Commission also initiated a complaint on security grounds, stating that Microsoft’s 
disclosures about security were deceptive under section 5 of the Federal Trade Com-



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  67

Microsoft’s role at the centre of the system created a single possible point 
of failure — if the Microsoft system was hacked, then all of the identifying 
information could be compromised. On privacy, advocacy groups sharply 
criticized the amount of identifiable data that would be gathered,116 and the 
EU brought a major privacy complaint.117 On competitive grounds, online 
retailers and other key players did not want Microsoft to have the “crown 
jewels” of electronic retailing (e-tailing), namely information about iden-
tified persons, including where they surfed and shopped.118 The original 
Passport plans were halted, and a scaled-down Passport system has been 
used principally to sign into Hotmail, MSN, and other Microsoft-specific 
activities.119

In late 2005, Microsoft announced an entirely different approach to 
Internet authentication based on openness.120 The new InfoCard approach 

mission Act, 15 U.S.C. § 34 (2000). See Federal Trade Commission, Press Release, 
“Microsoft Settles FTC Charges Alleging False Security and Privacy Promises” (8 
August 2002), online: www.ftc.gov/opa/2002/08/microsoft.htm (discussing Micro-
soft’s agreement to settle the FTC’s “charges regarding the privacy and security of 
personal information collected from consumers” through Passport); see also Com-
plaint para. 21, In re Microsoft Corp., No. 012-3240 (8 August 2002), online: www.
ftc.gov/os/caselist/0123240/microsoftcmp.pdf (“The acts and practices of respondent 
as alleged in this complaint constituted unfair or deceptive acts or practices in or af-
fecting commerce in violation of Section 5(a) of the Federal Trade Commission Act.”).

116	 See, for example, SOA World Magazine News Desk, above note 115 (“‘It’s bad prac-
tice to create personally identifiable records unless it’s necessary. Microsoft, through 
Passport, is creating personally identifiable records.’” (interviewing Chris Hoofnagle, 
legislative counsel for Electronic Privacy Information Center (EPIC)).

117	 See Paul Meller, “Microsoft to Alter Online System to Satisfy Europe” The New York 
Times (31 January 2003), online: http://query.nytimes.com/gst/fullpage.html?res=95
03EFDE1638F932A05752C0A9659C8B63 (reporting that Microsoft agreed to make 
“radical” changes to .Net Passport to “avert a clash with European regulators over 
data privacy”).

118	 Byron Acohido, “Microsoft, Banks Battle to Control Your E-Info” USA TODAY (13 
August 2001), online: www.usatoday.com/tech/news/2001-08-13-microsoft-banks-e-
info.htm.

119	 For the current privacy policies for Passport, see “Microsoft.com Privacy Statement,” 
online: www.microsoft.com/info/privacy.mspx#E6D.

120	 For a good overview of this approach, called InfoCard, see Robert McMillan, “Info-
Card Not Son of Passport, Says Microsoft Executive” INFOWORLD (21 September 
2005), online: www.infoworld.com/article/05/09/21/HNinfocard_1.html [McMillan], 
who notes that, unlike Passport, “InfoCard is being designed to work on client and 
server software that was not developed by Microsoft.” As in “Security Model,” I note 
that I am a member of Microsoft’s Trustworthy Computing Academic Advisory 



68  Peter P. Swire

is designed to make it easy for users to keep track of their passwords and 
other credentials,121 while also making it far harder to impersonate a buyer 
or seller. InfoCard is a standard (or a set of standards) rather than a solu-
tion provided by one company. The approach is designed to be open on the 
client side — working with browsers such as Firefox and Opera — and on 
hardware running Apache, Linux, and other systems.122 Unlike the original 
Passport, Microsoft would not see the data that moves between surfers and 
websites. In addition, Microsoft has announced it will not charge for its 
work on InfoCard.123

The suggestion I make here is that the InfoCard project is an illustra-
tion of what Mancur Olson described as the “‘exploitation’ of the great by 
the small.”124 It would benefit a very wide range of players to have effective 
authentication on the Internet, so that a wide variety of surfers and websites 
can interact with less risk of spoofing and fraud. It will likely take large 
investment by one or more major players, however, to make a dent in the 
collective-action problem of how to authenticate such a range of surfers and 
websites. Microsoft showed with Passport that it would prefer to have a 
proprietary approach to solving the authentication problem. That effort did 
not succeed. As a next-best solution, Microsoft is now investing resources 
in the open InfoCard process.

It is useful to compare the ways in which InfoCard is similar to or dif-
ferent from the VMware account discussed above. The similarity is based 
on the role of standards and the way that critical mass may develop where 
there is openness in development. The difference essentially boils down to 
the extent that there is a private good versus a public good. For VMware, 
the goal was to create a private good so that its software would succeed 

Committee, which is a group of nineteen academics that has been asked to provide 
advice on security and privacy issues to Microsoft “Security Model,” above note 1 at 
198 note 51. I have heard presentations on InfoCard both in public, and in connec-
tion with that committee’s work. The views expressed in this chapter are entirely 
my own, and I have not been compensated by Microsoft in connection with this re-
search. I have also spoken about the issues in this chapter at great length with many 
open source supporters.

121	 McMillan, ibid.
122	 Ibid.
123	 See Mary Branscombe, “Credit Where It’s Due” The Guardian (9 June 2005), online: 

www.guardian.co.uk/microsoft/Story/0,,1501893,00.html.
124	 Olson, above note 108 at 29 [emphasis omitted]. A similar argument would support 

the investment in another authentication project, the Liberty Alliance, by a coalition 
of large companies engaged in e-commerce, online: www.projectliberty.org.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  69

competitively against Microsoft. VMware strategically chose the degree of 
openness in order to gain allies such as IBM and HP, and to get direct prof-
its based on “adding features and services on top of its basic technology.”125 
By contrast, InfoCard seems designed to create a public good, which is non-
excludable (anyone can use the standard) and non-rival (use by one person 
does not limit use by another). Speakers for Microsoft have stressed instead 
the goal of growing the entire space of e-commerce and computing, rather 
than forcing users to buy Microsoft for authentication.126 The incentive for 
Microsoft is that it will gain enough new sales from overall growth to jus-
tify its investment in creating InfoCard.127

d)	 Convergence of open source and proprietary approaches
In summary of Case Four, there are complicated interactions that affect 
when a proprietary software company will reveal source code for competi-
tive reasons. Significant incentives exist for such disclosure, including: the 
possibility of network effects; the strategic use of open standards; the entice-
ment of students and other developers; and the possibility of overcoming 
collective-action problems. Taken together, there are major incentives for 
proprietary software to shift toward disclosure, just as there are major in-
centives for open source software to use secrecy in substantial ways. The 
overall trend appears to be toward substantial convergence of the two previ-
ously separate approaches.

5)	C ase Five: Security Incentives and Government Agencies

From the discussion of open source and proprietary software, we now shift 
to examination of the incentives for government agencies to disclose or not. 
Case Five examines the incentives to disclose in connection with promoting 
security. Case Six looks at the competitive incentives of government agencies 
and focuses on agency incentives to protect and expand their own turf.

125	 Lohr, above note 96.
126	 Microsoft Corporation, “Microsoft’s Vision for an Identity Metasystem” (May 

2005), online: http://msdn.microsoft.com/en-us/library/ms996422.aspx.
127	 Note that the Mancur Olson argument shows why the large company may invest 

substantial funds in the creation of a public good. The investment in the public good 
may still be less than is societally optimal.



70  Peter P. Swire

a)	 Government agencies and national security
To begin, the government agency can be modeled similarly to the propri-
etary software company. The agency has information about its own systems 
and activities. The agency has various incentives to keep information secret, 
including the hope that attackers will not learn about any vulnerabilities. 
The agency also has various incentives to disclose information, including 
the gain the agency may realize if more defenders know and respond to the 
information.

As discussed in “Security Model,” there are often good reasons for cat-
egories of military and intelligence information to be kept secret. First, the 
high cost of each military attack, including the risk of casualties, means 
the number of attacks (N) is often low. In such instances, secrecy is often a 
rational strategy.128 Second, many government secrets concern sources and 
methods, and other aspects of surveillance where secrecy is, again, ration-
al.129 Third, the chain of command and hierarchical nature of the military 
often make it more feasible to disclose to allies selectively, without disclos-
ing to all parties.130

Related to the low N is the fact that significant portions of government 
activities are different from activities in the private sector. For example, 
nuclear launch codes and stealth aircraft are not (presumably) used in the 
private sector. To the extent that government activities are different, attack-
ers gain less experience from attacking private-sector systems. In such situa-
tions, there is low N and L, and secrecy is more likely to be rational. Even if 
an agency knows about a vulnerability, the benefits of non-disclosure to the 
attackers quite possibly outweigh the benefits of disclosure to the defenders.

b)	 Information sharing and third-party effects
There are other government activities where the calculus is more complex. 
Consider the incentives for an agency, such as the FBI, to disclose informa-
tion about suspected terrorists to state and local agencies and private-sector 
actors. The various third parties might help the FBI by spotting and ar-
resting the suspects, but disclosure to the third parties might also help the 
terrorists by tipping them off that their identities are known. In this infor-

128	 See “Security Model,” above note 1 at 177 (commenting that hiddenness will benefit 
military defenders because the cost of each attack will lower the total number of at-
tacks and prevent the attackers from taking advantage of increased knowledge about 
the defences).

129	 Ibid. at 191–93.
130	 Ibid. at 203–4.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  71

mation-sharing instance, disclosure quite possibly will help both attackers 
and defenders, and it is difficult to generalize about when to disclose.

In other instances, the third parties may receive clear benefits from dis-
closure, but the first party may not share in those benefits. Consider the pos-
sibility that the FBI learns that a certain type of attack is likely to occur, such 
as a nighttime attack on a power plant in an American or foreign city. The 
FBI may decide not to disclose because it places a higher priority on continu-
ing its investigation of the entire terrorist group. The area that is attacked, 
however, is likely to place a much greater value on damage to its city.131 In this 
example, the benefits of disclosure to the city may be external to the FBI’s 
calculus. The FBI may err on the side of less disclosure than would have oc-
curred if the localities and the FBI had made the decision jointly.

This possibility of external, negative effects on third parties can occur 
much more generally as a result of government action. One sad and dramatic 
example is the way that environmental decisions were made in the Soviet 
Union before its dissolution. Essentially, government agencies made deci-
sions based on their incentives to meet production quotas and other govern-
ment goals. Meanwhile, very serious environmental spillover effects often 
occurred. Due to one especially large disaster, the entire Aral Sea now ap-
pears to be on course to dry up, with numerous secondary consequences.132

c)	 Public choice and the weak constraints on government secrecy
The potentially large effect of government secrecy on third parties is an-
alogous to the potentially large effect of proprietary software secrecy on 
third-party users. For proprietary software, the discussion above identified 
a number of mechanisms that push toward disclosure of vulnerabilities, 
even for companies that initially prefer to keep the vulnerabilities secret. 
These mechanisms included: (i) high N, L, and C so that flaws were dis-
covered; (ii) buyers with monopsony power who could force disclosure; (iii) 
governments that required disclosure; and (iv) effective bug hunters who 
made the disclosure market more efficient.

131	 The locality, in this example, is analogous to the users of proprietary software who 
would benefit from the disclosure of vulnerabilities by the software creator. Both the 
locality and the software users can suffer negative effects due to the incentives facing 
the first party.

132	 For discussion of the environmental effects of Soviet-era decision making on the 
Aral Sea, see Nicola Jones, “South Aral ‘Gone in 15 Years’” New Scientist (19 July 
2003) at 9; Joshua Calder & Jim Lee, “Inventory of Conflict and Environment, Case 
Study Number 69: Aral Sea and Defense Issues” (1995), online: www.american.edu/
ted/ice/aralsea.htm.



72  Peter P. Swire

The question is the extent to which those market mechanisms have 
an analogy for government agencies. Public choice theory is the branch of 
political economy that analyzes political institutions by use of economic 
theory.133 In some instances, agencies and other institutional actors may get 
to good outcomes because the organizational incentives are well-designed. 
When it comes to the optimal level of disclosure for vulnerabilities, how-
ever, the mechanisms to force disclosure seem much less likely to be suc-
cessful than for proprietary software. The number of attacks and learning 
by attackers will often be less due to the backdrop of national security and 
secrecy. Rarely will there be any equivalents of monopsony purchasers who 
can force disclosure.134 Laws such as the Freedom of Information Act135 are 
indeed a crucial mechanism for creating openness and accountability, but 
discovery of any specific vulnerability depends at best on the serendipity 
of whether someone makes the right Freedom of Information Act request. 
Finally, bug hunters are discouraged in various ways in the public sector: 
stealing classified information is a crime; there are legal and personnel sanc-
tions against those who “leak”; and whistleblowing is typically risky to do.

In short, it is difficult to be optimistic about the mechanisms in place 
to ensure the optimal level of disclosure from government agencies. As the 
next section shows, the magnitude of the problem is likely even greater 
when one considers an agency’s competitive incentives.

6)	C ase Six: Competitive Incentives and Government Agencies

When examining incentives to disclose, Case Five shows that government 
agencies would consider the effects on their own security goals but would 
not internalize the effects on third parties. Those risks are magnified when 
one considers the overall competitive position of a government agency.

133	 See Daniel A. Farber & Philip P. Frickey, Law and Public Choice: A Critical Intro-
duction (Chicago: University of Chicago Press, 1991) at 1 and 6–7 (defining public 
choice theory).

134	 For instance, it seems unlikely that foreign or American localities will be effective at 
forcing the FBI or other federal agencies to disclose information when the FBI does 
not believe it is in the Bureau’s best interest to do so. One partial exception, where 
the incentive effects lead to fuller disclosure, is when the Presidency and Congress 
are held by different parties. My experience in the Clinton Administration was that 
the Republican Congress vigorously investigated even small alleged problems. The 
level of oversight fell sharply when the same Republican majority was in office with a 
Republican, President George W. Bush, in the White House,.

135	 5 U.S.C. § 552 (2002).



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  73

A prominent strand of public choice theory posits that agencies will seek 
to maximize “turf.”136 That is, agencies will have goals such as expanding 
their budget, maximizing their flexibility vis-à-vis other institutions, avoid-
ing embarrassment, and so on. One example is when different law-enforce-
ment agencies compete to get credit on a high-profile case. There have long 
been laments in law enforcement that information sharing (i.e., disclosure) 
is lacking because agents do not want to lose control of a case.137

Under this model, consider the incentives of a government agency 
when there is a known problem, such as a vulnerability, in a project where 
the agency is supposed to be in charge. The disadvantages of disclosure 
are evident — disclosure will expose problems in the agency’s area of re-
sponsibility. There could well be hostile public hearings, as well as possible 
reductions in budget and agency discretion. The advantages of disclosure 
may be only indirect. If the embarrassing details will come out later, it may 
make sense to disclose the problem earlier, spun in a way that favours the 
agency. In many instances, these indirect benefits of disclosure are small. 
The incentive of government agencies in many situations, when they know 
about a vulnerability or mistake, is to deny, deny, deny.

To what extent are there market or similar mechanisms to correct for 
this tendency to err on the side of secrecy? Some such mechanisms can 
exist. An opposing political party has the incentive to expose corruption 
or wrongdoing in the current administration. Depending on the degree 
to which it is beholden to the current administration, the media may have 
incentives to “break a story” that shows mistakes or wrongdoing in govern-
ment. The analysis here is consistent with the grand tradition of checks and 
balances because opposition political parties and a free press set limits on 
secrecy and wrongdoing by incumbents.

On a more day-to-day level, however, the political opposition or repor-
ters may not be able to learn about many agency secrets. In that instance, 
it is good policy to have additional accountability institutions. In the US 
federal government, such institutions include the following: inspector 
generals in each agency; reports from the General Accountability Office; 

136	 See, for example, William A. Niskanen, Jr., Bureaucracy and Representative Gov-
ernment (Chicago: Aldine-Atherton, 1971) at 111–12 (arguing that bureaus seek to 
provide the broadest possible range of services in order to garner the most power 
possible).

137	 For one article that gives a vivid flavour of ongoing turf wars at the federal and state 
level, see Mike Kelly, “State Counter-Terror Organization in Disarray” The (Bergen 
County, NJ) Record (9 October 2005) O1.



74  Peter P. Swire

congressional hearings; the Freedom of Information Act;138 and other open-
government requirements. Creation of these institutions and these laws is 
crucial. Without them, there will undoubtedly be too much secrecy and 
self-protection by agencies. Even with them, I believe that agencies err on 
the side of secrecy and excessive use of classified documents far too often.139

In response, I believe there should be ongoing and significant efforts 
to detect and correct areas of excessive government secrecy. For instance, 
I have proposed modifying the “gag rules” under the foreign intelligence 
surveillance laws.140 More generally, this entire project on security and ob-
scurity has developed systematic approaches to describing and assessing the 
limited circumstances under which obscurity actually helps security.

E.	CONC LUSION

An organizing theme of this chapter has been that the incentives to dis-
close are based on two distinct calculations. How does disclosure help or 
hurt security? How does disclosure help or hurt the organization competi-
tively? Discussions about disclosure of vulnerabilities have typically failed 
to address the competitive issues. Discussions about the economics of open 
source versus proprietary software have typically failed to address the se-
curity disclosure issues. Understanding of the incentives to disclose or hide 
requires attention to both questions.

For the open source movement, one theme of this chapter has been to 
identify and highlight ways that secrecy is used for security and competitive 
reasons, despite the ideology of openness. The repeated use of the term “se-
cret sauce” is suggestive here — even cute. The image of the sauce is a small 
layer of secrecy on top of the main course, which is not secret. The secret 
sauce is tasty, adding zest and individuality to each dish. The term suggests 
that the use of secrecy is, after all, a minor ingredient.

138	 Above note 135.
139	 For one excellent source on overclassification, including quotations about the 

extent of the problem, see US, Emerging Threats: Overclassification & Pseudoclas-
sification: Hearing Before the Subcommittee on National Security, Emerging Threats, 
and International Relations of the House Committee on Government Reform, 109th 
Cong. (2005) (statement of Thomas Blanton, Executive Director, National Secur-
ity Archive, George Washington University) at 121–24, online: www.fas.org/sgp/
congress/2005/030205overclass.html.

140	 Peter P. Swire, “The System of Foreign Intelligence Surveillance Law” (2004) 72 
Geo. Wash. L. Rev. 1306 at 1356–60.



Chapter 3: A Theory of Disclosure for Security and Competitive Reasons  75

I speculate that use of the term “secret sauce” is a linguistic effort to 
downplay the use of secrecy, in recognition that any lapse from openness 
risks being viewed as a shameful act among the open source community. 
To the extent that the analysis here shows multiple, significant ways that se-
crecy-for-security and secrecy-for-competitiveness coexist with open source 
projects, the linguistic effort may be a sign of guilty consciences among true 
believers who nonetheless employ secrecy. The ideology of openness is not 
necessarily a good match for how the rational open source programmer acts.

Do I write this out of some admiration or preference for secrecy over 
openness? Not at all. I am a great supporter, for instance, of the Freedom of 
Information Act, openness in government, and robust rights of a free press. 
For breach notification, I support measures to ensure that third parties are 
not harmed by the externality described in this chapter. For software vul-
nerabilities, I applaud the many measures taken in recent years that have 
accelerated discovery, notice, and patch-creation for vulnerabilities. Where 
there is evidence that the incentives to disclose and fix vulnerabilities are 
not working, further measures should be explored.

This chapter, instead, has been primarily descriptive. It began with an 
attempt to explain when it is correct to say “there is no security through ob-
scurity” and when instead it makes sense to say that “loose lips sink ships.” 
“Security Model” examined when disclosure would help or hurt security, 
considering the effects on all the relevant actors. This work took on the next 
task, identifying the incentives for key actors to disclose or not, for both se-
curity and competitiveness reasons. Together, the hope is to create systematic 
ways to decide when it makes sense to disclose or keep a secret. In a world of 
pervasive new information flows and systems, that is no small thing.


